Health Implications of Shift Work in Airline Pilots and Cabin Crew: A Narrative Review and Pilot Study Findings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Survey Component
2.3. Narrative Review Component
2.4. Ethics and Data Protection
3. Results
3.1. Study Population
3.2. Occupational Health Outcomes
3.3. Dietary Behavior and Circadian Misalignment
3.4. Supplement Use and Self-Management
4. Occupational Risks and Health Consequences in Aircrew: A Narrative Review
4.1. Circadian Disruption and Fatigue
4.2. Nutritional Challenges in Aviation
4.3. Cabin Environment and Respiratory Health
4.4. Cancer Risk and Cosmic Radiation Exposure
4.5. Endocrine and Reproductive Health in Aircrew
4.6. Gastrointestinal and Microbiome Considerations in Aviation Personnel
4.7. Integrated Cardiometabolic Risk and Organizational Determinants
5. Strategies to Mitigate Risks: A Narrative Review
5.1. Sleep and Circadian Rhythm Management
5.2. Nutritional and Sensory Interventions in Aviation Personnel
5.3. Environmental and Engineering Controls
5.4. Radiation Protection and Reproductive Health Surveillance
5.5. Gastrointestinal and Microbiome-Targeted Strategies
5.6. Integrated Cardiometabolic and Organizational Health Strategies
| Risk Factor | Mitigation Strategy or Intervention | Implementation | References |
|---|---|---|---|
| Sleep and circadian rhythm management | |||
| Circadian disruption and shift work-related insomnia/fatigue | Melatonin supplementation, chronotherapy, strategic lighting, schedule adaptation to chronotype, fatigue risk management | 0.5–3 mg 30–60 min before sleep; <3 consecutive night shifts; controlled light exposure (10,000 lux AM); strategic naps/walks | Carriedo-Diez et al. [87]; Caldwell and Knapik [29]; Boivin and Boudreau [118]; Lack et al. [101]; Kalra and Kour [119]; Grasa-Ciria et al. [67]; Khan et al. [72] |
| Oxidative stress and post-flight fatigue | Melatonin (antioxidant) + short walking breaks q 30 min during night shifts + performance recovery protocols | 3–10 mg melatonin (antioxidant action) | Leonardo-Mendonça et al. [91]; Farjallah et al. [92]; Easton et al. [103]; Mahdi et al. [120] |
| Sleep apnea and breathing disorders | Melatonin (adjunct) + diagnostic and causal treatment + sleep hygiene education | 3–6 mg melatonin (supportive) | Caldwell and Knapik [29]; Lasala and Lucero-Prisno [102] |
| Nutritional and sensory interventions in aviation personnel | |||
| Irregular eating patterns/meal-timing misalignment | Chronobiological meal planning + structured schedules + education adapted to flight work | Timed meals aligned to circadian rhythms; pre-flight nutrition protocols | Carretero-Krug et al. [31]; Gonçalves et al. [33]; Silva et al. [34] |
| Nutritional deficiencies/poor food access | Targeted supplementation + improved in-flight catering + portable nutrient-dense packs | Vitamin D; micronutrient-controlled meals; access protocols | Gaździńska et al. [32]; Hemmer et al. [121] |
| Impaired taste and smell at altitude | Enhanced flavor profiling + multisensory food design + VR testing + controlled humidity | Umami enhancement; aromatic compounds; humidity 40–60% | Prabodha et al. [38]; Loke et al. [39]; Teleszewski and Gładyszewska-Fiedoruk [40] |
| Excessive sodium intake from flavor compensation | Salt substitutes + reduced-sodium formulations + blood pressure monitoring + CV risk assessment | Potassium-based salts; gradual sodium reduction; regular BP screening | Wang et al. [42]; Huang et al. [43]; Yin et al. [44] |
| Cabin pressure effects (GI gas and comfort) | Dietary modifications, gas-reducing foods, meal-timing optimization, pre-flight counseling | Avoid legumes/carbonated beverages; eat 2–4 h before flight; low-FODMAP education | Li et al. [70]; Qi et al. [69] |
| Environmental and engineering controls | |||
| Cabin air contamination and chemical exposure | Contaminated-air event protocols + source control + continuous monitoring | Standardized medical investigation; low-VOC materials; CO/VOC sensors in air supply | Burdon et al. [48]; Dong et al. [47]; Hageman et al. [49] |
| Low humidity and particle exposure | Environmental controls + engineering solutions + personal protection | Humidity management; personalized ventilation; enhanced HVAC filtration | Georgescu et al. [113]; Michaelis et al. [46]; Wang et al. [42] |
| Environmental stressors | Advanced air quality systems + ergonomic galley design + stress management programs + crew rest optimization | HEPA upgrades; humidity 40–60%; mindfulness-based stress reduction | Qi et al. [69]; Bakr et al. [73] |
| Infection/resistance risk | Enhanced hygiene protocols + antimicrobial stewardship + surveillance systems + crew health monitoring | Hand hygiene > 95%; judicious antibiotic use; pathogen surveillance; regular health screenings | Bakr et al. [73]; Alyami et al. [68] |
| Radiation protection and reproductive health surveillance | |||
| Cosmic radiation and UV exposure | Radiation dose monitoring + UV protection + enhanced medical surveillance + career exposure limits | Personal dosimetry; cockpit UV shields; sunscreen use; periodic cancer screening; rotation policies | Emslie et al. [55]; Scheibler et al. [52]; Dreger et al. [54] |
| DNA damage and impaired repair capacity | Biomarker monitoring + lifestyle interventions + preventive strategies | DNA repair capacity testing; antioxidant-rich diet; controlled interventions | Toprani et al. [58]; Kumar et al. [56]; Wilson et al. [83] |
| Cosmic radiation (exposure in pregnancy) | Dosimetric monitoring, route rotation, pregnancy duty modification | Personal dosimeters; polar route limits; modified assignments during pregnancy | Grajewski et al. [62]; Gómez et al. [122] |
| Thyroid dysfunction | Annual TSH + antibody testing + endocrine consultation | Baseline and periodic testing; specialist referral protocols | Radowicka et al. [65]; Chiovato et al. [64] |
| Ovarian reserve decline | AMH monitoring, reproductive counseling, fertility preservation | Testing for crew > 30 y; specialist consultation; early intervention | Barraza-Ortega et al. [63] |
| Gastrointestinal and microbiome-targeted strategies | |||
| Microbiome dysbiosis | Probiotic therapy + prebiotics + fermented foods + microbiome monitoring | Bifidobacterium longum JBLC-141; inulin/FOS; kefir/kimchi; quarterly profiling | Li et al. [70]; Grasa-Ciria et al. [67] |
| GI symptom burden | Clinical assessment + symptom-directed therapy + occupational health coordination + validated tools | Rome IV criteria; IBS/dyspepsia management; GI referral; quarterly surveys | Alyami et al. [68]; Khan et al. [72] |
| Integrated cardiometabolic and organizational health strategies | |||
| Cardiovascular disease risk (CAD, HTN, MetS) | Enhanced cardiac screening (CCTA) + risk stratification + lifestyle programs + medical certification guidelines | CCTA ≥ 40 y (high-risk); structured exercise; dietary interventions; updated certification criteria | Frijters et al. [78]; Kurek et al. [117]; Wilson et al. [83] |
| Shift work and circadian disruption (night shifts, irregular schedules, metabolic dysfunction) | Optimized work scheduling + fatigue risk management + chronotherapy + health monitoring | Limited consecutive night shifts; strategic napping; circadian lighting; regular assessments | Xi et al. [79]; Cho et al. [80]; Marqueze et al. [81] |
| Obesity and metabolic disorders (weight management, diabetes risk, inactivity) | Weight-management programs + pharmacological options + fitness protocols + nutritional counseling | Structured weight-loss programs; FDA-approved drugs (with safety evaluation); mandatory fitness standards | Prokop et al. [111]; Maculewicz et al. [76] |
| Occupational stress | Workload modification + stress-management + ergonomic improvements | Schedule adjustments; wellness programs; workplace modifications | McNeely et al. [61]; Kim et al. [114] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monk, T.H.; Folkard, S. Making Shiftwork Tolerable; CRC Press: London, UK, 2024. [Google Scholar]
- Buxton, O.M.; Shea, S.A. Sleep & Work, Work & Sleep. Sleep Health 2018, 4, 497–498. [Google Scholar] [CrossRef]
- Sweileh, W.M. Analysis and mapping of global research publications on shift work (2012–2021). J. Occup. Med. Toxicol. 2022, 17, 22. [Google Scholar] [CrossRef]
- European Commission. Employment and Working Conditions in Air Transport and Airports; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- CAE. Aviation Talent Forecast 2025: 10-Year Outlook of Demand for Pilots, Cabin Crew, Aircraft Maintenance Technicians and Air Traffic Controllers in Civil Aviation; CAE: Montreal, QC, Canada, 2025. [Google Scholar]
- Group, A.T.A. Aviation: Benefits Beyond Borders 2024; ATAG: Geneva, Switzerland, 2024. [Google Scholar]
- Wen, C.C.Y.; Cherian, D.; Schenker, M.T.; Jordan, A.S. Fatigue and Sleep in Airline Cabin Crew: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 2652. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Alhejaili, F.; Alnouri, L.; Samman, A.; Balkhyour, M.; Seithikurippu, P.-P.R.; O Wali, S.; Wali, S.O.; Alzehairi, A.M.; AlShumrani, R.; et al. Sleep Patterns of Pilots: An Objective Assessment. Cureus 2023, 15, e38983. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-J.; Hong, R.-M.; Yeh, G.-L.; Hsieh, I.-C. Insomnia, Work-Related Burnout, and Eating Habits Affecting the Work Ability of Flight Attendants. Aerosp. Med. Hum. Perform. 2019, 90, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, F.; Xu, W.; Fu, L. Association of age and night flight duration with sleep disorders among Chinese airline pilots. Front. Public Health 2023, 11, 1217005. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Gombert, M.; Martínez-Raga, J.; Cenit, M.C. Circadian Disruption and Mental Health: The Chronotherapeutic Potential of Microbiome-Based and Dietary Strategies. Int. J. Mol. Sci. 2023, 24, 7579. [Google Scholar] [CrossRef]
- Minoretti, P.; Emanuele, E. Health in the Skies: A Narrative Review of the Issues Faced by Commercial Airline Pilots. Cureus 2023, 15, e38000. [Google Scholar] [CrossRef] [PubMed]
- Wingelaar-Jagt, Y.Q.; Wingelaar, T.T.; Riedel, W.J.; Ramaekers, J.G. Fatigue in Aviation: Safety Risks, Preventive Strategies and Pharmacological Interventions. Front. Physiol. 2021, 12, 712628. [Google Scholar] [CrossRef]
- Pellegrino, P.; Moreno, C.R.d.C.; Marqueze, E.C. Aspects of work organization and reduced sleep quality of airline pilots. Sleep Sci. 2019, 12, 43–48. [Google Scholar] [CrossRef]
- Castro, M.; Carvalhais, J.; Teles, J. Irregular working hours and fatigue of cabin crew. Work 2015, 51, 505–511. [Google Scholar] [CrossRef]
- Hemiö, K.; Puttonen, S.; Viitasalo, K.; Härmä, M.; Peltonen, M.; Lindström, J. Food and nutrient intake among workers with different shift systems. Occup. Environ. Med. 2015, 72, 513–520. [Google Scholar] [CrossRef]
- Perrin, S.L.; Dorrian, J.; Gupta, C.; Centofanti, S.; Coates, A.; Marx, L.; Beyne, K.; Banks, S. Timing of Australian flight attendant food and beverage while crewing: A preliminary investigation. Ind. Health 2019, 57, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.A.A.D.; Millán, V.A.E.A.; Jerez, C.A.T.O.; Cárdenas, D.A.A.; Mayorga, G.A.Z.; González, M.D.Z. Characterization of nutritional state and physical activity of a rotative pilots population in bogota city. Revista Med. 2015, 23, 12–18. [Google Scholar]
- Wilson, D.; Driller, M.; Johnston, B.; Gill, N. Healthy Nutrition, Physical Activity, and Sleep Hygiene to Promote Cardiometabolic Health of Airline Pilots: A Narrative Review. J. Lifestyle Med. 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Hong, R.M.; Hsu, C.Y.; Hu, C.J. Exploring relationships between health-related lifestyle habits and fatigue among flight attendants and trainees. Work 2023, 74, 1361–1369. [Google Scholar] [CrossRef]
- Zhang, E.; Li, H.; Han, H.; Wang, Y.; Cui, S.; Zhang, J.; Chen, M.; Li, Y.; Qi, H.; Takahashi, M.; et al. Dietary Rhythmicity and Mental Health Among Airline Personnel. JAMA Netw. Open 2024, 7, e2422266. [Google Scholar] [CrossRef]
- Iskra-Golec; Barnes-Farrell, J.; Bohle, P. Social and Family Issues in Shift Work and Non Standard Working Hours; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Ruscitto, C.; Ogden, J. Predicting jet lag in long-haul cabin crew: The role of illness cognitions and behaviour. Psychol. Health 2017, 32, 1055–1081. [Google Scholar] [CrossRef] [PubMed]
- ECFSPR. ECFSPR Annual Data Report 2022; ECFSPR: Karup, Denmark, 2024. [Google Scholar]
- Akerstedt, T. Shift Work and Disturbed Sleep/Wakefulness. Occup. Med. 2003, 53, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.; Boudreau, P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. 2014, 62, 292–301. [Google Scholar] [CrossRef]
- Azmi, N.A.S.M.; Juliana, N.; Azmani, S.; Effendy, N.M.; Abu, I.F.; Teng, N.I.M.F.; Das, S. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. Int. J. Environ. Res. Public Health 2021, 18, 676. [Google Scholar] [CrossRef] [PubMed]
- Radowicka, M.; Pietrzak, B.; Wielgoś, M. Diurnal Cortisol Rhythm in Female Flight Attendants. Int. J. Environ. Res. Public Health 2021, 18, 8395. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.A.; Knapik, J.J. Trends and Factors Associated with Insomnia and Sleep Apnea in U.S. Military Aviators, 2006–2022. Aerosp. Med. Hum. Perform 2025, 96, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Akbar, Z.; Shi, Z. Unfavorable Mealtime, Meal Skipping, and Shiftwork Are Associated with Circadian Syndrome in Adults Participating in NHANES 2005–2016. Nutrients 2024, 16, 1581. [Google Scholar] [CrossRef]
- Carretero-Krug, A.; Montero-Bravo, A.; Úbeda, N. Dietary Nutrient Adequacy in Aeronautical Military Personnel in Spain: Strengths and Weaknesses. Nutrients 2024, 17, 92. [Google Scholar] [CrossRef]
- Gaździńska, A.; Krzyżanowska, M.; Jagielski, P. Effect of COVID-19 on The Nutritional Status of Polish Military Flying Personnel and Vitamin D Supplementation on the Incidence of Disease—A Retrospective Cohort Study. Pol. J. Aviat. Med. Bioeng. Psychol. 2025, 28, 5–16. [Google Scholar] [CrossRef]
- Gonçalves, J.V.d.S.; Gonzalez, T.N.; Brito, A.S.d.A.; Gadelha, G.O.; Santos, E.d.S.G.d.; Bezerra, P.C.d.L.; Nehme, P.X.S.d.A.; Moreno, C.R.d.C.; Vasconcelos, S.P. Chrononutritional Patterns: Examining the Interaction Between Shift Work, Eating Habits and Mealtimes in Shift Workers. Am. J. Health Promot. 2025, 39, 8901171251336887. [Google Scholar] [CrossRef]
- Silva, C.M.; Teixeira, B.S.; Wright, K.P.; Maia, Y.C.d.P.; Crispim, C.A. Time-Related Eating Patterns Are Associated with the Total Daily Intake of Calories and Macronutrients in Day and Night Shift Workers. Nutrients 2022, 14, 2202. [Google Scholar] [CrossRef]
- Spence, C. Tasting in the air: A review. Int. J. Gastron. Food Sci. 2017, 9, 10–15. [Google Scholar] [CrossRef]
- Burdack-Freitag, A.; Bullinger, D.; Mayer, F.; Breuer, K. Odor and taste perception at normal and low atmospheric pressure in a simulated aircraft cabin. J. Consum. Prot. Food Saf. 2010, 6, 95–109. [Google Scholar] [CrossRef]
- Holthuysen, N.T.; Vrijhof, M.; de Wijk, R.A.; Kremer, S. “Welcome on board”: Overall liking and just-about-right ratings of airplane meals in three different consumption contexts—Laboratory, re-created airplane, and actual airplane. J. Sens. Stud. 2017, 32, e12254. [Google Scholar] [CrossRef]
- Prabodha, T.; Danner, L.; Iles, G.N.; Heer, M.; Mack, I.; Brennan, C.; Low, J. Initiating Sensory Science Research in Space Conditions—Current Practices and Future Perspectives. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70241. [Google Scholar] [CrossRef]
- Loke, G.; Chandrapala, J.; Besnard, A.; Kantono, K.; Brennan, C.; Newman, L.; Low, J. Food odour perception and affective response in Virtual spacecraft and microgravity body posture (1-G)—Potential ground-based simulations. Food Res. Int. 2024, 197, 115260. [Google Scholar] [CrossRef]
- Teleszewski, T.J.; Gładyszewska-Fiedoruk, K. Development of a Simplified One-Dimensional Model of Humidity in the Cabin of a Passenger Aircraft Based on an Experiment. Atmosphere 2025, 16, 280. [Google Scholar] [CrossRef]
- Klos, B.; Wolf, S.; Ohla, K.; Thoolen, S.; Hagson, H.; Enck, P.; Mack, I. Effects of one year of extreme isolation in Antarctica on olfactory and gustatory functions. Sci. Rep. 2025, 15, 32369. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Yeh, T.-L.; Shih, M.-C.; Tu, Y.-K.; Chien, K.-L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef]
- Yin, X.; Rodgers, A.; Perkovic, A.; Huang, L.; Li, K.-C.; Yu, J.; Wu, Y.; Wu, J.H.Y.; Marklund, M.; Huffman, M.D.; et al. Effects of salt substitutes on clinical outcomes: A systematic review and meta-analysis. Heart 2022, 108, 1608–1615. [Google Scholar] [CrossRef]
- Bekö, G.; Allen, J.G.; Weschler, C.J.; Vallarino, J.; Spengler, J.D. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft. PLoS ONE 2015, 10, e0128454. [Google Scholar] [CrossRef]
- Michaelis, S.; Loraine, T.; Howard, C.V. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft. Environ. Health 2021, 20, 89. [Google Scholar] [CrossRef]
- Dong, X.; Yin, Y.; Pei, J.; Qu, M. Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins. Sustainability 2025, 17, 909. [Google Scholar] [CrossRef]
- Burdon, J.; Budnik, L.T.; Baur, X.; Hageman, G.; Howard, C.V.; Roig, J.; Coxon, L.; Furlong, C.E.; Gee, D.; Loraine, T.; et al. Health consequences of exposure to aircraft contaminated air and fume events: A narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ. Health 2023, 22, 43. [Google Scholar] [CrossRef]
- Hageman, G.; van Broekhuizen, P.; Nihom, J. The role of carbon monoxide in aerotoxic syndrome. NeuroToxicology 2023, 100, 107–116. [Google Scholar] [CrossRef]
- Shargorodsky, J.; Zheng, L.; Stillman, F.; Soong, A.; Navas-Acien, A.; Reh, D. The association between airline flight and sinonasal symptoms. Int. Forum Allergy Rhinol. 2016, 6, 437–444. [Google Scholar] [CrossRef]
- Davis, J.T.; Uyhelji, H.A. Aviation and the Microbiome. Aerosp. Med. Hum. Perform. 2020, 91, 651–661. [Google Scholar] [CrossRef]
- Scheibler, C.; Toprani, S.M.; Mordukhovich, I.; Schaefer, M.; Staffa, S.; Nagel, Z.D.; McNeely, E. Cancer risks from cosmic radiation exposure in flight: A review. Front. Public Health 2022, 10, 947068. [Google Scholar] [CrossRef]
- Blask, D.E. Melatonin, sleep disturbance and cancer risk. Sleep Med. Rev. 2009, 13, 257–264. [Google Scholar] [CrossRef]
- Dreger, S.; Wollschläger, D.; Schafft, T.; Hammer, G.P.; Blettner, M.; Zeeb, H. Cohort study of occupational cosmic radiation dose and cancer mortality in German aircrew, 1960–2014. Occup. Environ. Med. 2020, 77, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Emslie, N.A.; Ben Liley, J.; Johnston, P. Pilot Ultraviolet A Exposures in the Cockpit of Flying Commercial Aircraft. Aerosp. Med. Hum. Perform. 2025, 96, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Angdisen, J.; Ma, J.; Datta, K.; Fornace, A.J.; Suman, S. Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers 2024, 16, 3954. [Google Scholar] [CrossRef] [PubMed]
- Toprani, S.M.; Mordukhovich, I.; McNeely, E.; Nagel, Z.D. Suppressed DNA repair capacity in flight attendants after air travel. Sci. Rep. 2025, 15, 16513. [Google Scholar] [CrossRef]
- Toprani, S.M.; Scheibler, C.; Mordukhovich, I.; McNeely, E.; Nagel, Z.D. Cosmic Ionizing Radiation: A DNA Damaging Agent That May Underly Excess Cancer in Flight Crews. Int. J. Mol. Sci. 2024, 25, 7670. [Google Scholar] [CrossRef]
- Şahinkaya, B.; Oktal, H. Modeling of Aircrew Rostering Problem with Fatigue Risk Management Approach. Int. J. Aerosp. Psychol. 2021, 31, 269–282. [Google Scholar] [CrossRef]
- Palil, M.R.; Osman, L.H.; Rahman, M.R.C.A.; Ali, M.H.; Jamsari, E.A.; Ahmad, M.; Khairuddin, N.A.B.; Jamaluddin, N.A.A.B.; Ibrahim, I.A.; Ismail, I.S. Flight Crew Fatigue and the Effect on Airline Business. J. Bisnis dan Akunt. 2021, 23, 157–164. [Google Scholar] [CrossRef]
- McNeely, E.; Mordukhovich, I.; Tideman, S.; Gale, S.; Coull, B. Estimating the health consequences of flight attendant work: Comparing flight attendant health to the general population in a cross-sectional study. BMC Public Health 2018, 18, 346. [Google Scholar] [CrossRef]
- Grajewski, B.; Whelan, E.A.; Lawson, C.C.; Hein, M.J.; Waters, M.A.; Anderson, J.L.; MacDonald, L.A.; Mertens, C.J.; Tseng, C.-Y.; Cassinelli, R.T.I.; et al. Miscarriage Among Flight Attendants. Epidemiology 2015, 26, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Barraza-Ortega, E.; Gómez-Gil, B.; García-Gasca, T.; Lizárraga, D.; Díaz, N.; García-Gasca, A. The Impact of Lifestyle on Reproductive Health: Microbial Complexity, Hormonal Dysfunction, and Pregnancy Outcomes. Int. J. Mol. Sci. 2025, 26, 8574. [Google Scholar] [CrossRef] [PubMed]
- Chiovato, L.; Magri, F.; Carlé, A. Hypothyroidism in Context: Where We’ve Been and Where We’re Going. Adv. Ther. 2019, 36, 47–58. [Google Scholar] [CrossRef]
- Radowicka, M.; Madej, A.; Pietrzak, B.; Wielgoś, M. Assessment of the Thyroid Functions among Female Flight Attendants. Int. J. Environ. Res. Public Health 2021, 18, 1929. [Google Scholar] [CrossRef]
- Blazhkova, A.; Czaja, M.; Łukaszyk, M.; Sitka, H.; Solisch, S.; Susłow, A.; Szczęsna, E. Endocrine Disruptors in Female Fertility. Int. J. Innov. Technol. Soc. Sci. 2025, 2, 47. [Google Scholar] [CrossRef]
- Grasa-Ciria, D.; Couto, S.; Samatán, E.; Martínez-Jarreta, B.; Cenit, M.d.C.; Iguacel, I. Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations. Nutrients 2025, 17, 2894. [Google Scholar] [CrossRef]
- Alyami, S.H.; Lomer, M.C.E.; Gibson, R. Gastrointestinal Symptoms and the Assessment of Diet in Shift Workers: A Systematic Scoping Review. J. Hum. Nutr. Diet. 2025, 38, e70114. [Google Scholar] [CrossRef]
- Qi, P.; Jiang, X.; Wang, X.; Sheng, L.; Liang, J.; Zhang, L. Unraveling the pathogenesis and prevention strategies of acute high-altitude illness through gut microecology. Npj Biofilms Microbiomes 2025, 11, 62. [Google Scholar] [CrossRef]
- Li, X.-Y.; Shang, J.; Wang, X.-J.; Ma, H.-P.; Ren, L.-F.; Zhang, L. Bifidobacterium longum JBLC-141 alleviates hypobaric hypoxia-induced intestinal barrier damage by attenuating inflammatory responses and oxidative stress. Front. Microbiol. 2024, 15, 1501999. [Google Scholar] [CrossRef]
- Yan, F.; Wu, S.; Yuan, W.; Yang, Y.; Zhu, H.; Cui, D. Thermophiles, Thick-Walled Bacteria, and Pseudomonads in High-Altitude Gut Microbiota. J. Gastroenterol. Hepatol. 2025, 40, 1976–1990. [Google Scholar] [CrossRef]
- Ahmad, I.; Farooq, M.; Khan, M.A.; Khan, A.; Ullah, F. Gut-Brain Axis: Exploring the Link Between Digestive Health and Mental Health. Indus J. Biosci. Res. 2024, 2, 1307–1313. [Google Scholar] [CrossRef]
- Bakr, M.M.; Caswell, G.M.; Al Ankily, M.; Zeitoun, S.I.; Ahmed, N.; Meer, M.; Shamel, M. Composition and Interactions of the Oral–Gastrointestinal Microbiome Populations During Health, Disease, and Long-Duration Space Missions: A Narrative Review. Oral 2025, 5, 66. [Google Scholar] [CrossRef]
- Hathorn, B.; Adams, J. Return of a flight attendant to full duty following myocardial infarction and subsequent coronary artery bypass grafting through a high-intensity occupation-specific cardiovascular rehabilitation program. Bayl. Univ. Med Cent. Proc. 2023, 37, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Driller, M.; Johnston, B.; Gill, N. The Prevalence of Cardiometabolic Health Risk Factors among Airline Pilots: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4848. [Google Scholar] [CrossRef]
- Maculewicz, E.; Pabin, A.; Kowalczuk, K.; Dziuda, Ł.; Białek, A. Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots. J. Clin. Med. 2022, 11, 4314. [Google Scholar] [CrossRef]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose–response relationship. Scand. J. Work. Environ. Health 2017, 44, 229–238. [Google Scholar] [CrossRef]
- Frijters, E.; Nathoe, H.; Grobben, R.; Broekhuizen, L.; Rienks, R.; Velthuis, B. Prevalence and severity of coronary artery disease in asymptomatic military air crew in the Netherlands: A prospective, cross-sectional study (SUSPECT). BMJ Open 2025, 15, e100250. [Google Scholar] [CrossRef]
- Xi, J.; Ma, W.; Tao, Y.; Zhang, X.; Liu, L.; Wang, H. Association between night shift work and cardiovascular disease: A systematic review and dose-response meta-analysis. Front. Public Health 2025, 13, 1668848. [Google Scholar] [CrossRef]
- Cho, H.A.; Lee, D.; Yang, M.; Jang, T.; Cho, S.; Kang, M. Comparing the Health Impacts of Fixed Night and Rotating Shift Work: An Umbrella Review of Meta-Analyses. J. Sleep Res. 2025, e70172. [Google Scholar] [CrossRef]
- Marqueze, E.C.; Benevides, E.A.d.S.e.; Russo, A.C.; Fürst, M.S.G.; Roscani, R.C.; Guimarães, P.C.V.; Salim, C.A. Organizational Risk Factors for Aircrew Health: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2023, 20, 3401. [Google Scholar] [CrossRef]
- Russo, A.C.; Marqueze, E.C.; Furst, M.S.G.; Benevides, E.A.d.S.e.; Roscani, R.C.; Salim, C.A.; Guimarães, P.C.V. Aircrew Health: A Systematic Review of Physical Agents as Occupational Risk Factors. Int. J. Environ. Res. Public Health 2023, 20, 5849. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Driller, M.; Winwood, P.; Clissold, T.; Johnston, B.; Gill, N. The Effectiveness of a Combined Healthy Eating, Physical Activity, and Sleep Hygiene Lifestyle Intervention on Health and Fitness of Overweight Airline Pilots: A Controlled Trial. Nutrients 2022, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Zakariassen, E.; Waage, S.; Harris, A.; Gatterbauer-Trischler, P.; Lang, B.; Voelckel, W.; Pallesen, S.; Bjorvatn, B. Causes and Management of Sleepiness Among Pilots in a Norwegian and an Austrian Air Ambulance Service—A Comparative Study. Air Med. J. 2019, 38, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Sauvet, F.; Beauchamps, V.; Cabon, P. Sleep Inertia in Aviation. Aerosp. Med. Hum. Perform. 2024, 95, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.; Lack, L. A Brief Afternoon Nap Following Nocturnal Sleep Restriction: Which Nap Duration is Most Recuperative? Sleep 2006, 29, 831–840. [Google Scholar] [CrossRef]
- Carriedo-Diez, B.; Tosoratto-Venturi, J.L.; Cantón-Manzano, C.; Wanden-Berghe, C.; Sanz-Valero, J. The Effects of the Exogenous Melatonin on Shift Work Sleep Disorder in Health Personnel: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10199. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, X.; Zhong, C.; Wu, T.; Sun, D.; Wang, R.; Zhan, Q.; Luo, H. Efficacy of Dietary Supplements on Sleep Quality and Daytime Function of Shift Workers: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 850417. [Google Scholar] [CrossRef] [PubMed]
- Minich, D.M.; Henning, M.; Darley, C.; Fahoum, M.; Schuler, C.B.; Frame, J. Is Melatonin the “Next Vitamin D”?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022, 14, 3934. [Google Scholar] [CrossRef]
- Azzeh, F.S.; Kamfar, W.W.M.; Ghaith, M.M.; Alsafi, R.T.; Shamlan, G.; Ghabashi, M.A.; Farrash, W.F.; Alyamani, R.A.; Alazzeh, A.Y.; Alkholy, S.O.; et al. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine 2024, 103, e39657. [Google Scholar] [CrossRef] [PubMed]
- Leonardo-Mendonça, R.C.; Ocaña-Wilhelmi, J.; de Haro, T.; de Teresa-Galván, C.; Guerra-Hernández, E.; Rusanova, I.; Fernández-Ortiz, M.; Sayed, R.K.; Escames, G.; Acuña-Castroviejo, D. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Appl. Physiol. Nutr. Metab. 2017, 42, 700–707. [Google Scholar] [CrossRef]
- Farjallah, M.A.; Hammouda, O.; Ben Mahmoud, L.; Graja, A.; Ghattassi, K.; Boudaya, M.; Jammoussi, K.; Sahnoun, Z.; Souissi, N. Melatonin supplementation ameliorates oxidative stress, antioxidant status and physical performances recovery during a soccer training camp. Biol. Rhythm. Res. 2018, 51, 441–452. [Google Scholar] [CrossRef]
- Nuszkiewicz, J.; Rzepka, W.; Markiel, J.; Porzych, M.; Woźniak, A.; Szewczyk-Golec, K. Circadian Rhythm Disruptions and Cardiovascular Disease Risk: The Special Role of Melatonin. Curr. Issues Mol. Biol. 2025, 47, 664. [Google Scholar] [CrossRef]
- Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev. 2005, 9, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Synnott, N.C.; Polymeropoulos, C.M.; Xiao, C.; Birznieks, G.; Polymeropoulos, M.H. Melatonin agonist tasimelteon (HETLIOZ®) improves sleep in patients with primary insomnia: A multicenter, randomized, double-blind, placebo-controlled trial. PLoS ONE 2025, 20, e0332366. [Google Scholar] [CrossRef]
- Iyer, S.; Monk, V.; Slater, R.; Baxter, L. Exogenous Melatonin and Sleep Quality: A Scoping Review of Systematic Reviews. J. Clin. Pharmacol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Reiter, R.J.; Mayo, J.C.; Tan, D.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Hannemann, J.; Laing, A.; Middleton, B.; Schwedhelm, E.; Marx, N.; Federici, M.; Kastner, M.; Skene, D.J.; Böger, R. Effect of oral melatonin treatment on insulin resistance and diurnal blood pressure variability in night shift workers. A double-blind, randomized, placebo-controlled study. Pharmacol. Res. 2023, 199, 107011. [Google Scholar] [CrossRef]
- Hohor, S.; Mandanach, C.; Maftei, A.; Zugravu, C.A.; Oțelea, M.R. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants 2023, 12, 959. [Google Scholar] [CrossRef]
- Wei, T.; Li, C.; Heng, Y.; Gao, X.; Zhang, G.; Wang, H.; Zhao, X.; Meng, Z.; Zhang, Y.; Hou, H. Association between night-shift work and level of melatonin: Systematic review and meta-analysis. Sleep Med. 2020, 75, 502–509. [Google Scholar] [CrossRef]
- Lack, L.C.; Micic, G.; Lovato, N. 831Circadian Rhythm Sleep–Wake Disorders I: Advanced and Delayed Phase Disorders. In The Oxford Handbook of Sleep and Sleep Disorders; Espie, C.A., Zee, P.C., Morin, C.M., Eds.; Oxford University Press: Oxford, UK, 2025. [Google Scholar]
- Lasala, J.J.; Lucero-Prisno, D.E.I. Melatonin as a Therapeutic Adjunct in Obstructive Sleep Apnea: A Review of Potential Benefits. Sleep Med. Res. 2025, 16, 84–92. [Google Scholar] [CrossRef]
- Easton, D.; Gupta, C.; Vincent, G.; Vandelanotte, C.; Duncan, M.; Tucker, P.; Di Milia, L.; Ferguson, S.A. The relationship between circadian type and physical activity as predictors of cognitive performance during simulated nightshifts: A randomised controlled trial. Chrono. Int. 2025, 42, 736–754. [Google Scholar] [CrossRef]
- Makowski, M.S.; Trockel, M.T.; Menon, N.K.; Wang, H.M.; Katznelson, L.; Shanafelt, T.D. Performance Nutrition for Physician Trainees Working Overnight Shifts: A Randomized Controlled Trial. Acad. Med. 2021, 97, 426–435. [Google Scholar] [CrossRef]
- Oriyama, S.; Yamashita, K. Effects of a snack on performance and errors during a simulated 16-h night shift: A randomized, crossover-controlled, pilot study. PLoS ONE 2021, 16, e0258569. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Vujovic, N.; Nguyen, H.; Rahman, N.; Heng, S.W.; Amira, S.; Scheer, F.A.J.L.; Chellappa, S.L. Daytime eating prevents mood vulnerability in night work. Proc. Natl. Acad. Sci. USA 2022, 119, e2206348119. [Google Scholar] [CrossRef]
- de Rijk, M.G.; van EekelenAlexander, A.P.J.; Boesveldt, S.B.; Kaldenberg, E.K.; Holwerda, T.H.; Lansink, C.J.M.; Feskens, E.J.M.; de VriesJeanne, H.J.H.M. Macronutrient intake and alertness during night shifts—the time interval matters. Front. Nutr. 2023, 10, 1245420. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, A.; Lowson, E.; Arber, S.; Griffin, B.A.; Skene, D.J. Dietary Patterns of Nurses on Rotational Shifts Are Marked by Redistribution of Energy into the Nightshift. Nutrients 2020, 12, 1053. [Google Scholar] [CrossRef]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Prokop, R.L.; Stork, B.F.; James, L.C. Should Military Aircrew Members be Allowed to Use Food and Drug Administration Approved Weight Loss Medications? A Review of the Literature and Recommendations. Mil. Med. 2025, 190, e2303–e2308. [Google Scholar] [CrossRef]
- Wang, F.; You, R.; Zhang, T.; Chen, Q. Recent progress on studies of airborne infectious disease transmission, air quality, and thermal comfort in the airliner cabin air environment. Indoor Air 2022, 32, e13032. [Google Scholar] [CrossRef]
- Georgescu, M.-R.; Danca, P.; Cosoiu, C.I.; Bode, F.; Nastase, I. Seat-integrated Personalized Ventilation Diffuser for Improving Air Quality Aboard Commercial Aircraft. E3S Web Conf. 2025, 608, 02006. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, N.; Heo, S.J.; Lee, Y.J.; Hwang, J.Y.; Lee, S.J.; Im, J.H.; Im, H. Impact of endocrine disrupting chemical exposure on thyroid disruption and oxidative stress in early pregnancy. Environ. Anal. Health Toxicol. 2025, 40, e2025002. [Google Scholar] [CrossRef] [PubMed]
- Harker, S.A.; Bonham, K.S.; McCann, S.H.; Volpe, A.R.; Zhu, Q.; D’sa, V.; Koinis-Mitchell, D.; Deoni, S.C.L.; Klepac-Ceraj, V.; Lewis, C.R. Associations between relative abundances of Bifidobacterium species in the gut and DNA methylation of cortisol-related genes in a pediatric population. Front. Microbiol. 2025, 16, 1558809. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; de Oliveira, F.L.; Salgaço, M.K.; Mesa, V.; Sartoratto, A.; Duailibi, K.; Sivieri, K. Restoring Balance: Probiotic Modulation of Microbiota, Metabolism, and Inflammation in SSRI-Induced Dysbiosis Using the SHIME® Model. Pharmaceuticals 2025, 18, 1132. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Rola, M.; Bard, W.M.A.M.; Dziuda, Ł. MANAGEMENT OF MILITARY PILOTS WITH CORONARY ARTERY DISEASE AND CORONARY ARTERY ANOMALIES IN THE CONTEXT OF NEW MEDICAL CERTIFICATION REGULATIONS IN POLAND. Pol. J. Aviat. Med. Bioeng. Psychol. 2025, 28, 24–31. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P. 856Circadian Rhythm Sleep–Wake Disorders II: Shift Work, Irregular, and Non-24-Hour Sleep–Wake Rhythm Disorders. In The Oxford Handbook of Sleep and Sleep Disorders; Espie, C.A., Zee, P.C., Morin, C.M., Eds.; Oxford University Press: Oxford, UK, 2025. [Google Scholar]
- Kalra, Y.; Kour, P. Harnessing Chronobiology for a Healthier and More Productive Workforce: Chronobiology at Work. In Prioritizing Employee Mental Health and Well-Being for Organizational Success; Wongmahesak, K., Marzo, R.R., Ghosh, U.K., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 275–322. [Google Scholar]
- Mahdi, N.; Delleli, S.; Jebabli, A.; Ben Maaoui, K.; Del Coso, J.; Chtourou, H.; Ardigò, L.P.; Ouergui, I. Melatonin Supplementation Enhances Next-Day High-Intensity Exercise Performance and Recovery in Trained Males: A Placebo-Controlled Crossover Study. Sports 2025, 13, 190. [Google Scholar] [CrossRef]
- Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.-H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. [Google Scholar] [CrossRef]
- Gomez, A.P.B.; Dominguez, K.R.L.; de Souza Filho, P.R.; Souza, H.M.R. EFECTOS DE LA EXPOSICIÓN OCUPACIONAL A RADIACIÓN CÓSMICA EN TRIPULANTES AÉREOS: UNA REVISIÓN SISTEMÁTICA. Rev. Ibero Am. De Humanidades Ciências E Educ. 2025, 11, 2237–2254. [Google Scholar] [CrossRef]
- Qian, J.; Morris, C.J.; Caputo, R.; Wang, W.; Garaulet, M.; Scheer, F.A.J.L. Sex differences in the circadian misalignment effects on energy regulation. Proc. Natl. Acad. Sci. USA 2019, 116, 23806–23812. [Google Scholar] [CrossRef]
- Wolberg, A.S.; Rosendaal, F.R.; Weitz, J.I.; Jaffer, I.H.; Agnelli, G.; Baglin, T.; Mackman, N. Venous thrombosis. Nat. Rev. Dis. Primers 2015, 1, 15006. [Google Scholar] [CrossRef]
- Yonis, H.G.H.; Mørch, L.S.; Løkkegaard, E.; Kragholm, K.; Møller, A.L.; Torp-Pedersen, C.; Meaidi, A. Contemporary Hormonal Contraception and Risk of Venous Thromboembolism. JAMA 2025, 333, 1358. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Yang, W.; Lin, F.; Jia, M.; Feng, Y.; Chen, Y.; Bai, X.; Dong, Y.; Mao, S.; Hayat, K.; et al. Polycystic ovary syndrome and organochlorine pesticides: Exploring potential links and mechanisms. Front. Reprod. Health 2025, 7, 1563414. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.; Silver, R. Sex differences in circadian timing systems: Implications for disease. Front. Neuroendocr. 2014, 35, 111–139. [Google Scholar] [CrossRef] [PubMed]
- Mong, J.A.; Cusmano, D.M. Sex differences in sleep: Impact of biological sex and sex steroids. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150110. [Google Scholar] [CrossRef]
- Boivin, D.B.; Shechter, A.; Boudreau, P.; Begum, E.A.; Ying-Kin, N.M.K.N. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women. Proc. Natl. Acad. Sci. USA 2016, 113, 10980–10985. [Google Scholar] [CrossRef]
- Fazlali, F.; Lazar, R.; Yahya, F.; Stefani, O.; Spitschan, M.; Cajochen, C. Sex and Seasonal Variations in Melatonin Suppression and Alerting Response to Light. J. Endocr. Soc. 2025, 9, bvaf155. [Google Scholar] [CrossRef]
- Grant, L.K.; Gooley, J.J.; Hilaire, M.A.S.; Rajaratnam, S.M.W.; Brainard, G.C.; A Czeisler, C.; Lockley, S.W.; A Rahman, S. Menstrual phase-dependent differences in neurobehavioral performance: The role of temperature and the progesterone/estradiol ratio. Sleep 2019, 43, zsz227. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, K.M.; Stumper, A.; Peters, J.R. Applying advanced menstrual cycle affective science methods to study mood regulation and sleep. Sleep 2023, 46, zsad102. [Google Scholar] [CrossRef] [PubMed]
- Moderie, C.; Boudreau, P.; Shechter, A.; Lespérance, P.; Boivin, D.B. Effects of exogenous melatonin on sleep and circadian rhythms in women with premenstrual dysphoric disorder. Sleep 2021, 44, zsab171. [Google Scholar] [CrossRef] [PubMed]
- Gunn, P.J.; Middleton, B.; Davies, S.K.; Revell, V.L.; Skene, D.J. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chrono. Int. 2016, 33, 39–50. [Google Scholar] [CrossRef]
- Boivin, D.B.; Caetano, G.M.; Kervezee, L.; Gonzales-Aste, F.; Boudreau, P. Exploratory study of the effects of sex and hormonal contraceptives on alertness, fatigue, and sleepiness of police officers on rotating shifts. Sleep Adv. 2023, 4, zpac049. [Google Scholar] [CrossRef]
- Carter, J.R.; Gervais, B.M.; Adomeit, J.L.; Greenlund, I.M. Subjective and objective sleep differ in male and female collegiate athletes. Sleep Health 2020, 6, 623–628. [Google Scholar] [CrossRef]


| Practical Recommendation | Expected Effect |
|---|---|
| Take short naps (10–20 min) during night or long flights; avoid naps > 30 min. | Improves alertness and reduces fatigue without post-nap grogginess. |
| Use melatonin (0.5–3 mg, 30–60 min before sleep) after night duties or long-haul flights. | Enhances sleep quality and circadian adaptation. |
| Follow balanced, daytime-aligned meals; choose fiber-rich, low-sodium foods, maintain hydration, and include fermented or probiotic-rich products. | Supports digestive comfort, microbiome balance, and metabolic stability. |
| Engage in ≥150 min of moderate or ≥75 min of vigorous activity per week. | Improves cardiovascular fitness and reduces metabolic risk. |
| Apply UV-protective sunscreen and eyewear; prioritize cabins with filtered, humidified air (40–60%). | Reduces radiation exposure and respiratory irritation. |
| Perform regular medical surveillance (thyroid, cardiovascular, and metabolic screening). | Enables early detection and management of occupational health risks. |
| Practice stress-reduction techniques and ensure recovery time post-duty. | Improves psychological resilience and overall well-being. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefańska, O.; Barbarska, O.; Minkiewicz-Zochniak, A. Health Implications of Shift Work in Airline Pilots and Cabin Crew: A Narrative Review and Pilot Study Findings. Nutrients 2025, 17, 3906. https://doi.org/10.3390/nu17243906
Stefańska O, Barbarska O, Minkiewicz-Zochniak A. Health Implications of Shift Work in Airline Pilots and Cabin Crew: A Narrative Review and Pilot Study Findings. Nutrients. 2025; 17(24):3906. https://doi.org/10.3390/nu17243906
Chicago/Turabian StyleStefańska, Oliwia, Olga Barbarska, and Anna Minkiewicz-Zochniak. 2025. "Health Implications of Shift Work in Airline Pilots and Cabin Crew: A Narrative Review and Pilot Study Findings" Nutrients 17, no. 24: 3906. https://doi.org/10.3390/nu17243906
APA StyleStefańska, O., Barbarska, O., & Minkiewicz-Zochniak, A. (2025). Health Implications of Shift Work in Airline Pilots and Cabin Crew: A Narrative Review and Pilot Study Findings. Nutrients, 17(24), 3906. https://doi.org/10.3390/nu17243906

