Dietary Interventions in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review of Evidence, Mechanisms, and Translational Challenges
Abstract
1. Introduction
2. Methods
3. Dietary Interventions
3.1. Dietary Patterns and Nutritional Interventions
3.1.1. Mediterranean Diet and Plant-Based Approaches
3.1.2. Western Diets and Hepatotoxicity
3.1.3. Ketogenic/Low-Carbohydrate Diet
3.1.4. Ultra-Processed Foods and MASLD
3.1.5. Nutrient-Specific Interventions
3.1.6. Food-Specific Interventions
4. Meal Timing—Time-Restricted Eating (TRE)
5. Body Weight Reduction
6. Microbiome
6.1. Prebiotics and Probiotics
6.2. Synbiotics
6.3. Microbiota Consortia and Fecal Microbiota Transplantation (FMT)
6.4. The Gut–Liver Axis and Oral–Gut–Liver Axis: Role of the Microbiome
6.5. Multi-Omics and Precision Nutrition
7. Methodological Limitations and Causal Inference
- Observational study bias: Most findings come from non-randomized studies, which are prone to confounding, placebo effects and reverse causality [60].
- Short intervention duration: Many interventions only last a short amount of time, limiting insight into long-term effects or histologic progression. A systematic review found that most clinical trials evaluating diet and exercise in MASLD last between 8 and 24 weeks, and only a few interventions extended beyond 24 weeks [61]. Additionally, a randomized trial of postmenopausal women with biopsy-confirmed MASLD showed that a 24-week exercise intervention results in metabolic benefits but not significant changes in liver fat. This is especially important because it shows that these shorter trials may fail to capture the full extent of hepatic improvements [62].
- Underutilization of causal frameworks: Tools such as target trial emulation are not widely applied but have great potential to improve causal inference from observational data.
- Mitigating observational bias (within existing and new cohorts):
- Incorporate negative-control exposures/outcomes and quantitative bias analyses (e.g., E-values) to probe residual confounding.
- Leverage Mendelian randomization and instrumental variable strategies, where valid instruments exist, to reduce confounding and reverse causality; prior bidirectional MR linking diet with liver outcomes illustrates this potential and underscores food groups (e.g., beans) as testable prebiotic interventions [64].
- Overcoming short duration and enhancing outcome capture:
- Design longer pragmatic trials (≥48–96 weeks) with remote follow-up, wearables, and EHR linkage to maintain adherence and reduce cost.
- Use hybrid outcome strategies: short-term mechanistic endpoints (e.g., MRI-PDFF, MRE, serum biomarkers) embedded within longer follow-up to assess histology, fibrosis progression, and clinically meaningful events.
- Consider adaptive and platform features (response-adaptive randomization, interim futility) to focus resources on promising nutrient patterns (e.g., Mediterranean-style, higher MUFA/PUFA; n-6:n-3 balance) while maintaining rigor.
- Employ registry-based or cohort-embedded RCTs to accelerate recruitment and extend follow-up via routine care data.
- Systematizing causal frameworks:
8. Implementation and Equity Considerations
9. Discussion
10. Future Directions and Research Priorities
- Causal inference at scale: Use target trial emulation and real-world data analytics (active comparators, new-user designs, g-methods) to strengthen causal estimates of dietary interventions and minimize immortal-time and confounding biases.
- Longer, outcome-rich trials: Prioritize ≥48–96-week pragmatic studies with standardized imaging/biomarker panels (e.g., MRI-PDFF, MRE, serologic fibrosis markers) and, when feasible, histology to assess durability and antifibrotic effects.
- Mechanistic depth via multi-omics: Integrate metagenomics, metabolomics, proteomics, and epigenomics with clinical phenotypes to uncover pathways (e.g., SCFAs, bile-acid derivatives) that mediate response and reveal therapeutic targets.
- Microbiome axes: Test the gut–liver and oral–gut–liver pathways by pairing oral health interventions, barrier integrity measures, and microbial/metabolite profiling to evaluate causality and translational potential.
- Personalization: Apply systems biology and machine-learning models to stratify patients by dietary and microbiome response phenotypes, enabling precision nutrition.
- Implementation and sustainability: Evaluate scalable, culturally tailored delivery models (digital tools, community partnerships) to improve adherence and real-world effectiveness.
- Equity: Intentionally include and co-design with underserved populations to address access gaps and ensure generalizability.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Le, P.; Tatar, M.; Dasarathy, S.; Alkhouri, N.; Herman, W.H.; Taksler, G.B.; Deshpande, A.; Ye, W.; Adekunle, O.A.; McCullough, A.; et al. Estimated Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease in US Adults, 2020 to 2050. JAMA Netw. Open 2025, 8, e2454707. [Google Scholar] [CrossRef] [PubMed]
- Díaz Carnicero, J.; Saurí-Ferrer, I.; Redon, J.; Navarro, J.; Fernández, G.; Hurtado, C.; Ferreira, K.; Alvarez-Ortega, C.; Gómez, A.; Martos-Rodríguez, C.J.; et al. Clinical and Economic Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Spanish Mediterranean Region: A Population-Based Study. J. Clin. Med. 2025, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves First Treatment for Patients with Liver Scarring Due to Fatty Liver Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-liver-scarring-due-fatty-liver-disease (accessed on 18 September 2025).
- FDA Approves Treatment for Serious Liver Disease Known as ‘MASH’. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-serious-liver-disease-known-mash (accessed on 19 August 2025).
- Hansrivijit, P.; Ortega-Montiel, J.; Wexler, D.J.; Patorno, E.; Paik, J.M. Utilization Trends of Dual GIP/GLP-1 Receptor Agonist, Newer Glucose-Lowering Medications, and Anti-Obesity Medications Among Patients With Chronic Kidney Disease With and Without Type 2 Diabetes. Kidney Med. 2025, 7, 101013. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, P.; Wu, Q.; Zhang, Y.; Xu, G.; Pan, C.; Tong, H. Insights into Clinical Trials for Drugs Targeting MASLD: Progress, Challenges, and Future Directions. Clin. Pharmacol. Ther. 2025, 117, 1614–1626. [Google Scholar] [CrossRef]
- Jurek, J.M.; Zablocka-Sowinska, K.; Clavero Mestres, H.; Reyes Gutiérrez, L.; Camaron, J.; Auguet, T. The Impact of Dietary Interventions on Metabolic Outcomes in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Comorbid Conditions, Including Obesity and Type 2 Diabetes. Nutrients 2025, 17, 1257. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; European Association for the Study of Diabetes; European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD): Executive Summary. Diabetologia 2024, 67, 2375–2392. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Brunner, K.T.; Henneberg, C.J.; Wilechansky, R.M.; Long, M.T. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr. Obes. Rep. 2019, 8, 220–228. [Google Scholar] [CrossRef]
- Wang, K.; Xiang, S.; He, Q.; Liu, A.; Huang, C.; Yang, Z.; Li, R.; Hu, J.; Cai, R.; Mi, N.; et al. Mediterranean diet and associated metabolite signatures in relation to MASLD progression: A prospective cohort study. Hepatol. Commun. 2025, 9, e0791. [Google Scholar] [CrossRef]
- Arita, V.A.; Cabezas, M.C.; Hernández Vargas, J.A.; Trujillo-Cáceres, S.J.; Mendez Pernicone, N.; Bridge, L.A.; Raeisi-Dehkordi, H.; Dietvorst, C.A.W.; Dekker, R.; Uriza-Pinzón, J.P.; et al. Effects of Mediterranean diet, exercise, and their combination on body composition and liver outcomes in metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis of randomized controlled trials. BMC Med. 2025, 23, 502. [Google Scholar] [CrossRef]
- Xiong, Y.; Shi, X.; Xiong, X.; Li, S.; Zhao, H.; Song, H.; Wang, J.; Zhang, L.; You, S.; Ji, G.; et al. A systematic review and meta-analysis of randomized controlled trials: Effects of mediterranean diet and low-fat diet on liver enzymes and liver fat content of NAFLD. Food Funct. 2024, 15, 8248–8257. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Huang, J. The effects of time-restricted eating for patients with nonalcoholic fatty liver disease: A systematic review. Front. Nutr. 2024, 10, 1307736. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Yoon, E.L.; Park, H.; Lee, S.; Jo, A.J.; Cho, S.; Kwon, E.; Nah, E.-H.; Lee, J.-H.; Park, J.H.; et al. Efficacy and safety of time-restricted eating in metabolic dysfunction-associated steatotic liver disease. J. Hepatol. 2025, in press. [CrossRef] [PubMed]
- Chee, N.M.-Z.; Sinnanaidu, R.P.; Chan, W.-K. Vitamin E improves serum markers and histology in adults with metabolic dysfunction-associated steatotic liver disease: Systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2024, 39, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Castelnuovo, G.; Perez-Diaz-Del-Campo, N.; Rosso, C.; Armandi, A.; Caviglia, G.P.; Bugianesi, E. A Healthful Plant-Based Diet as an Alternative Dietary Approach in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024, 16, 2027. [Google Scholar] [CrossRef]
- Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Rosen, P.; Shelef, I.; Youngster, I.; Shalev, A.; Blüher, M.; et al. Effect of green-Mediterranean diet on intrahepatic fat: The DIRECT PLUS randomised controlled trial. Gut 2021, 70, 2085–2095. [Google Scholar] [CrossRef]
- Zhang, X.; Daniel, C.R.; Soltero, V.; Vargas, X.; Jain, S.; Kanwal, F.; Thrift, A.P.; Balakrishnan, M. A Study of Dietary Patterns Derived by Cluster Analysis and their Association with Nonalcoholic Fatty Liver Disease Severity among Hispanic Patients. Am. J. Gastroenterol. 2024, 119, 505–511. [Google Scholar] [CrossRef]
- Kim, C.H.; Kallman, J.B.; Bai, C.; Pawloski, L.; Gewa, C.; Arsalla, A.; Sabatella, M.E.; Younossi, Z.M. Nutritional assessments of patients with non-alcoholic fatty liver disease. Obes. Surg. 2010, 20, 154–160. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.M.; Rinella, M.E. The role of diet and nutrient composition in nonalcoholic Fatty liver disease. J. Acad. Nutr. Diet. 2012, 112, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Holmer, M.; Lindqvist, C.; Petersson, S.; Moshtaghi-Svensson, J.; Tillander, V.; Brismar, T.B.; Hagström, H.; Stål, P. Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet—A randomised controlled trial. JHEP Rep. 2021, 3, 100256. [Google Scholar] [CrossRef] [PubMed]
- Sripongpun, P.; Churuangsuk, C.; Bunchorntavakul, C. Current Evidence Concerning Effects of Ketogenic Diet and Intermittent Fasting in Patients with Nonalcoholic Fatty Liver. J. Clin. Transl. Hepatol. 2022, 10, 730–739. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef]
- Chirapongsathorn, S.; Rintaravitoon, W.; Tangjaturonrasme, B.; Chotsriluecha, S.; Pumsutas, Y.; Kanchanapradith, A.; Treeprasertsuk, S. Effect of a Ketogenic Diet on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Progression: A Randomized Controlled Trial. JGH Open 2025, 9, e70099. [Google Scholar] [CrossRef]
- Dyńka, D.; Rodzeń, Ł.; Rodzeń, M.; Łojko, D.; Kraszewski, S.; Ibrahim, A.; Hussey, M.; Deptuła, A.; Grzywacz, Ż.; Ternianov, A.; et al. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease (NAFLD/MAFLD). J. Clin. Med. 2024, 13, 4857. [Google Scholar] [CrossRef]
- Emanuele, F.; Biondo, M.; Tomasello, L.; Arnaldi, G.; Guarnotta, V. Ketogenic Diet in Steatotic Liver Disease: A Metabolic Approach to Hepatic Health. Nutrients 2025, 17, 1269. [Google Scholar] [CrossRef]
- Soto-Mota, A.; Flores-Jurado, Y.; Norwitz, N.G.; Feldman, D.; Pereira, M.A.; Danaei, G.; Ludwig, D.S. Increased low-density lipoprotein cholesterol on a low-carbohydrate diet in adults with normal but not high body weight: A meta-analysis. Am. J. Clin. Nutr. 2024, 119, 740–747. [Google Scholar] [CrossRef]
- Schmidt, T.; Harmon, D.M.; Kludtke, E.; Mickow, A.; Simha, V.; Kopecky, S. Dramatic elevation of LDL cholesterol from ketogenic-dieting: A Case Series. Am. J. Prev. Cardiol. 2023, 14, 100495. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef]
- Geladari, E.V.; Kounatidis, D.; Christodoulatos, G.S.; Psallida, S.; Pavlou, A.; Geladari, C.V.; Sevastianos, V.; Dalamaga, M.; Vallianou, N.G. Ultra-Processed Foods and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): What Is the Evidence So Far? Nutrients 2025, 17, 2098. [Google Scholar] [CrossRef]
- García, S.; Monserrat-Mesquida, M.; Ugarriza, L.; Casares, M.; Gómez, C.; Mateos, D.; Angullo-Martínez, E.; Tur, J.A.; Bouzas, C. Ultra-Processed Food Consumption and Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Longitudinal and Sustainable Analysis. Nutrients 2025, 17, 472. [Google Scholar] [CrossRef]
- Leslie, T.; Pawloski, L.; Kallman-Price, J.; Escheik, C.; Hossain, N.; Fang, Y.; Gerber, L.H.; Younossi, Z.M. Survey of health status, nutrition and geography of food selection of chronic liver disease patients. Ann. Hepatol. 2014, 13, 533–540. [Google Scholar] [CrossRef]
- Larion, S.; Khurana, S. Clinical studies investigating the effect of vitamin E therapy in patients with NASH. Clin Liver Dis 2018, 11, 16–21. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, Vitamin E, or Placebo for Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef]
- Cansanção, K.; Citelli, M.; Carvalho Leite, N.; López de las Hazas, M.-C.; Dávalos, A.; Tavares do Carmo, M.d.G.; Peres, W.A.F. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 3372. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Fu, Y.; Yang, S.-J.; Chi, C.-C. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2769. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, S.H.; Yun, J.M. Omega-3 polyunsaturated fatty acids and nonalcoholic fatty liver disease in adults: A meta-analysis of randomized controlled trials. Clin. Nutr. 2025, 50, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Qian, L.; Siliceo, S.L.; Long, X.; Nychas, E.; Liu, Y.; Ismaiah, M.J.; Leung, H.; Zhang, L.; Gao, Q.; et al. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab. 2023, 35, 1530–1547.e1538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Irajizad, E.; Hoffman, K.L.; Fahrmann, J.F.; Li, F.; Seo, Y.D.; Browman, G.J.; Dennison, J.B.; Vykoukal, J.; Luna, P.N.; et al. Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: Insights from the BE GONE trial. EBioMedicine 2023, 98, 104873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, J.; Wong, V.W. Vive la resistant starch: A potential treatment for metabolic dysfunction-associated steatohepatitis. Cell Metab. 2023, 35, 1491–1493. [Google Scholar] [CrossRef] [PubMed]
- Feehan, J.; Mack, A.; Tuck, C.; Tchongue, J.; Holt, D.Q.; Sievert, W.; Moore, G.T.; de Courten, B.; Hodge, A. Time-Restricted Fasting Improves Liver Steatosis in Non-Alcoholic Fatty Liver Disease-A Single Blinded Crossover Trial. Nutrients 2023, 15, 4870. [Google Scholar] [CrossRef]
- Wei, X.; Lin, B.; Huang, Y.; Yang, S.; Huang, C.; Shi, L.; Liu, D.; Zhang, P.; Lin, J.; Xu, B.; et al. Effects of Time-Restricted Eating on Nonalcoholic Fatty Liver Disease: The TREATY-FLD Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e233513. [Google Scholar] [CrossRef]
- Khoo, J.; Hsiang, J.C.; Taneja, R.; Koo, S.H.; Soon, G.H.; Kam, C.J.; Law, N.M.; Ang, T.L. Randomized trial comparing effects of weight loss by liraglutide with lifestyle modification in non-alcoholic fatty liver disease. Liver Int. 2019, 39, 941–949. [Google Scholar] [CrossRef]
- Moolla, A.; Poolman, T.; Othonos, N.; Dong, J.; Smith, K.; Cornfield, T.; White, S.; Ray, D.W.; Mouchti, S.; Mózes, F.E.; et al. Randomised trial comparing weight loss through lifestyle and GLP-1 receptor agonist therapy in people with MASLD. JHEP Rep. 2025, 7, 101363. [Google Scholar] [CrossRef]
- Reshef, N.; Gophna, U.; Reshef, L.; Konikoff, F.; Gabay, G.; Zornitzki, T.; Knobler, H.; Maor, Y. Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)-A Randomized Pilot Trial. Nutrients 2024, 16, 1571. [Google Scholar] [CrossRef]
- Ahn, S.B.; Jun, D.W.; Kang, B.-K.; Lim, J.H.; Lim, S.; Chung, M.-J. Randomized, Double-blind, Placebo-controlled Study of a Multispecies Probiotic Mixture in Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019, 9, 5688. [Google Scholar] [CrossRef]
- Cai, J.; Dong, J.; Chen, D.; Ye, H. The effect of synbiotics in patients with NAFLD: A systematic review and meta-analysis. Ther. Adv. Gastroenterol. 2023, 16, 17562848231174299. [Google Scholar] [CrossRef]
- Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef] [PubMed]
- Imai, J.; Kitamoto, S.; Kamada, N. The pathogenic oral-gut-liver axis: New understandings and clinical implications. Expert. Rev. Clin. Immunol. 2021, 17, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Acharya, C.; Sahingur, S.E.; Bajaj, J.S. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight 2017, 2, e94416. [Google Scholar] [CrossRef]
- Lei, Y.; Li, S.; He, M.; Ao, Z.; Wang, J.; Wu, Q.; Wang, Q. Oral Pathogenic Bacteria and the Oral-Gut-Liver Axis: A New Understanding of Chronic Liver Diseases. Diagnostics 2023, 13, 3324. [Google Scholar] [CrossRef] [PubMed]
- Kamata, Y.; Kessoku, T.; Shimizu, T.; Sato, S.; Kobayashi, T.; Kurihashi, T.; Morozumi, T.; Iwasaki, T.; Takashiba, S.; Hatanaka, K.; et al. Periodontal Treatment and Usual Care for Nonalcoholic Fatty Liver Disease: A Multicenter, Randomized Controlled Trial. Clin. Transl. Gastroenterol. 2022, 13, e00520. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, H.; Zheng, Q.; Sun, X. The crucial function of gut microbiota on gut–liver repair. hLife 2025, 3, 364–385. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xie, R.; Dai, C.S.; Gao, H.W.; Zhou, G.; Qi, T.T.; Wang, W.Y.; Wang, H.; Cui, Y.M. Thyroid hormone receptor-beta agonist HSK31679 alleviates MASLD by modulating gut microbial sphingolipids. J. Hepatol. 2025, 82, 189–202. [Google Scholar] [CrossRef]
- Glass, O.; Filozof, C.; Noureddin, M.; Berner-Hansen, M.; Schabel, E.; Omokaro, S.O.; Schattenberg, J.M.; Barradas, K.; Miller, V.; Francque, S.; et al. Standardisation of diet and exercise in clinical trials of NAFLD-NASH: Recommendations from the Liver Forum. J. Hepatol. 2020, 73, 680–693. [Google Scholar] [CrossRef]
- Fernández, T.; Viñuela, M.; Vidal, C.; Barrera, F. Lifestyle changes in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263931. [Google Scholar] [CrossRef]
- Rezende, R.E.; Duarte, S.M.; Stefano, J.T.; Roschel, H.; Gualano, B.; de Sá Pinto, A.L.; Vezozzo, D.C.; Carrilho, F.J.; Oliveira, C.P. Randomized clinical trial: Benefits of aerobic physical activity for 24 weeks in postmenopausal women with nonalcoholic fatty liver disease. Menopause 2016, 23, 876–883. [Google Scholar] [CrossRef]
- Anderson, A.H. Invited commentary: Target trial emulation-a call for more widespread use. Am. J. Epidemiol. 2025, 194, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yun, Z.; Li, L.; Wang, H.; Zeng, H.; Ran, Y. Exploring causal associations between dietary intake and liver diseases: A bidirectional Mendelian randomization study. Medicine 2024, 103, e40095. [Google Scholar] [CrossRef] [PubMed]
- Domosławska-Żylińska, K.; Łopatek, M.; Krysińska-Pisarek, M.; Sugay, L. Barriers to Adherence to Healthy Diet and Recommended Physical Activity Perceived by the Polish Population. J. Clin. Med. 2023, 13, 22. [Google Scholar] [CrossRef]
- Tapper, E.B.; Baki, J.; Nikirk, S.; Hummel, S.; Asrani, S.K.; Lok, A.S. Medically tailored meals for the management of symptomatic ascites: The SALTYFOOD pilot randomized clinical trial. Gastroenterol. Rep. 2020, 8, 453–456. [Google Scholar] [CrossRef]
- Seguin, R.; Connor, L.; Nelson, M.; LaCroix, A.; Eldridge, G. Understanding barriers and facilitators to healthy eating and active living in rural communities. J. Nutr. Metab. 2014, 2014, 146502. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Zelber-Sagi, S.; Henry, L.; Gerber, L.H. Lifestyle interventions in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 708–722. [Google Scholar] [CrossRef]
- Bae, J.H. Racial and ethnic disparities in metabolic dysfunction-associated steatotic liver disease outcomes: A call for culturally sensitive interventions: Editorial on “Differences in liver and mortality outcomes of non-alcoholic fatty liver disease by race and ethnicity: A longitudinal real-world study”. Clin. Mol. Hepatol. 2024, 30, 665–668. [Google Scholar] [CrossRef]
- Villalona, S.; Ortiz, V.; Castillo, W.J.; Garcia Laumbach, S. Cultural Relevancy of Culinary and Nutritional Medicine Interventions: A Scoping Review. Am. J. Lifestyle Med. 2022, 16, 663–671. [Google Scholar] [CrossRef]
- REACH Program Impact. Available online: https://www.cdc.gov/reach/php/program-impact/ (accessed on 8 October 2025).
| Section | Type of Study | Study (Year, Country) | Population/Inclusion | Final n | Intervention (Type and Dose) | Comparator | Duration | Primary Liver Outcomes and Methods | Main Results | Notes/Risk of Bias |
|---|---|---|---|---|---|---|---|---|---|---|
| 3.1.1 Mediterranean/plant-forward | RCT (3-arm) | DIRECT-PLUS (Meir et al., 2021, Israel) [21] | Adults with abdominal obesity/dyslipidemia | 294 | Green-MED (MED + Mankai + green tea + walnuts; reduced red meat) | Standard MED; healthy dietary guidelines | 18 mo | Intrahepatic fat by MRI-PDFF (primary) | Green-MED: IHF −38.9%; MED −19.6%; Guidelines −12.2%; NAFLD prevalence ≈ 50% lower. | Randomized; imaging blinded; behavioral counseling in all arms |
| 3.1.3 Ketogenic/Low-Carbohydrate | RCT (3-arm, open-label) | Holmer et al., 2021 (Sweden) [25] | Adults with MASLD (MRI/MRS-confirmed steatosis) | 74 | Low-carb high-fat (LCHF) diet, ad libitum, dietitian-guided | 5:2 intermittent calorie restriction; standard hepatology lifestyle advice (SoC) | 12 wks | Intrahepatic fat by 1H-MRS (primary); TE stiffness; metabolic markers | Both LCHF and 5:2 reduced IHTG vs. SoC (Δ LCHF −7.2% [95% CI −9.3, −5.1]; 5:2 −6.1% [−8.1, −4.2]; SoC −3.6% [−5.8, −1.5]); mean weight loss ≈ 7 kg; liver stiffness improved in 5:2 and SoC but not in LCHF. | Open-label; behavioral counseling in all arms; short duration; MRI blinded |
| Pilot RCT (open-label) | Chirapongsathorn et al., 2025 (Thailand) [28] | Adults with MASLD | 24 | Home-delivery ketogenic diet program (very-low-carb, KD) | DASH-based nutrition education/standard lifestyle advice | 8 wks | Steatosis and stiffness by transient elastography (CAP/LSM); body weight; metabolic risk factors | No significant change in steatosis or stiffness; KD led to greater weight loss (−6.16 kg vs. −2.14 kg) and reductions in waist circumference, fat mass, triglycerides, and systolic blood pressure; HDL decreased in the KD arm | Small sample; short duration; elastography (not MRI-PDFF); home-delivery support likely increased adherence | |
| Mechanistic trial (pre–post) | Luukkonen et al., 2020, (Finland/USA) [27] | Adults with NAFLD, overweight/obesity | 10 | Strict ketogenic diet (~6 days; <20 g carb/day) to induce nutritional ketosis | Baseline (self-controlled) | 6 days | IHTG by 1H-MRS (primary); hepatic insulin resistance; isotope-traced mitochondrial flux (NMR/LC-MS) | IHTG decreased by 31% with 3% weight loss; hepatic insulin resistance decreased by 58%, with greater β-oxidation and lower de novo lipogenesis. IFC change −7.7% (T1) vs. −2.6% (T3, p = 0.047); Mediterranean-diet adherence increased by 5.2 points; fibrosis and stiffness were unchanged | Very short term; small N; mechanistic focus; no control arm; robust fluxomics data | |
| 3.1.4 Ultra-processed foods (UPF) | Longitudinal cohort (secondary analysis within FLIPAN) | García et al., 2025, Spain [36] | Adults 40–60 y; BMI 27–40 kg/m2; MRI-diagnosed MASLD; ≥3 MetS criteria (IDF) | 70 | Δ UPF (NOVA) across tertiles (T1 max reduction ≤ −7.27 pp vs. T3 min ≥ −0.62 pp) | Between-tertile comparisons | 6 mo | Intrahepatic fat by MRI; US steatosis; FibroScan stiffness | IFC −7.7% (T1) vs. −2.6% (T3), p = 0.047; Mediterranean-diet adherence increased 5.2 points (T1); fibrosis/stiffness NS | Secondary analysis; small n |
| 3.1.5 Nutrient-specific—vitamin E | Multicenter RCT, double-blind | PIVENS (Sanyal et al., 2010, USA) [39] | Non-diabetic, biopsy-proven NASH | 247 | α-tocopherol 800 IU/day | Placebo (and pioglitazone arm) | 96 wks | Histology (NAS components; fibrosis stage) | Vitamin E improved steatosis, ballooning, and inflammation vs. placebo; no clear antifibrotic effect | Strong histology endpoint; non-diabetic only |
| 3.1.5 Nutrient-specific—n-3 PUFA | RCT (double-blind) | Cansanção et al., 2020, Brazil [40] | Adults with US-NAFLD | 24 | Fish oil ≈ 1509 mg DHA + 306 mg EPA/day | Olive-oil placebo | 6 mo | Liver stiffness (FibroScan); CAP; biomarkers | Decreased Stiffness (p = 0.039) and ALP (p = 0.002); RBC DHA increased (adherence) | Pilot size; elastography (not biopsy) |
| 3.1.6 Food-specific—resistant starch | RCT (double-blind) | Ni et al., 2023, China [43] | Adults with MRI-quantified NAFLD | 196 | Resistant starch 40 g/day | Isocaloric control starch | 4 mo | IHTG by MRI-PDFF (primary); microbiome and metabolites | Absolute IHTG −9.1% vs. control; favorable microbiome and BCAA shifts | Strong mechanistic profiling |
| 3.1.6 Food-specific—beans (legumes) | RCT (parallel) | Zhang et al., 2023, USA (“BE GONE”) [44] | Adults with overweight/obesity and colorectal neoplasia risk | 55 | High-bean diet | Control | 8 wks | Microbiome and metabolic biomarkers | Beans increased beneficial metabolites and induced favorable gut-microbiota changes. | Not a NAFLD sample; gut–liver axis relevance |
| 4. Meal timing (TRE/TRF) | RCT (parallel) | TREATY-FLD (Wei et al., 2023, China) [47] | Adults with obesity and NAFLD | 88 | 8 h TRE (08:00–16:00) + caloric targets | Daily calorie restriction (habitual timing) | 12 mo | IHTG by MRI (primary); body fat and metabolic risk | IHTG decreased by 6.9% (TRE) and 7.9% (DCR); no added benefit of TRE under isocaloric conditions. | Strong design; energy restriction likely main driver |
| RCT (single-blind) | Feehan et al., 2023, Australia [46] | Adults with NAFLD | 32 | 16:8 TRF (no calorie targets) | Standard care | 12 wks | CAP steatosis; visceral adiposity | Time-restricted feeding reduced CAP and visceral fat versus standard advice (short-term). | Pilot scale; CAP endpoint | |
| 5. Body-weight reduction | RCT | Khoo et al., 2019 (Liver Int), Singapore [48] | Obese, non-diabetic NAFLD; MRI-LFF ≥ 5.5% | 30 | Liraglutide 3.0 mg/day | Structured lifestyle (~500 kcal/d deficit) | 12–26 wks + f/u | Liver fat by MRI; ALT/AST; weight | Similar weight loss (≈−3.5 kg) and LFF reductions (~−7% to −9%); ALT/AST improved in both arms | Highlights weight loss as primary driver |
| Randomized experimental-medicine trial | Moolla et al., 2025, UK [49] | MASLD; no T2D; phenotyping baseline–12 wks–12 wks off | 29 | GLP-1RA (liraglutide; dose not specified) | Lifestyle (~500 kcal/d deficit; matched weight loss) | 12 wks + 12 wks off | Liver fat by MRS; cT1; ALT/AST; multi-omics | Matched weight loss both arms; similar reductions in liver fat and ALT; GLP-1RA improved glucose/lipid benefits; post-withdrawal proteomic rebound | Small, open-label; short duration; industry links declared | |
| 6.1 Prebiotics | Pilot RCT | Reshet et al., 2024, Israel [50] | Adults 18–70 y, MASLD + MetS, ALT ≥ 30 U/L | 19 | Prebiotic supplement (weight stable) | Placebo | 8–12 wks | Liver fat; hepatic/metabolic markers; FGF-19; fecal taxa | Increased Bifidobacterium but no liver/metabolic benefit without weight loss | Underpowered for clinical endpoints |
| 6.1 Probiotics | RDBPC RCT | Ahn et al., 2019, Korea [51] | Adults with NAFLD, MRI-PDFF > 5% | 68 | 6-strain mix (L. acidophilus, L. rhamnosus, L. paracasei, Pediococcus pentosaceus, B. lactis, B. breve) | Placebo | 12 wks | MRI-PDFF (IHF %); labs | IHF reduction 2.6% vs. placebo (p = 0.012); TG −34 mg/dL; weight loss confounded some effects | Good imaging endpoint; short duration |
| 6.3 FMT vs. probiotics | RCT | Xue et al., 2022, China [53] | Adults with NAFLD | 75 | FMT (colonoscopy) + 3 enemas over 3 days + lifestyle advice | Oral probiotics + same advice | 1 mo | Hepatic fat; metabolic indices | FMT reduced hepatic fat vs. probiotic control at 1 mo | Very short follow-up; co-interventions present |
| 6.4 Oral–gut–liver (periodontal therapy) | Multicenter RCT | PERION (Kamata et al., 2022, Japan) [57] | NAFLD + periodontitis; ALT ≥ 40 U/L; steatosis grade ≥ 1 | 40 | Scaling and root planing (SRP) | Usual care/tooth-brushing | 12 wks | ALT (primary); P. gingivalis IgG; endotoxemia | SRP reduced ALT and P. gingivalis titers vs. control | Pragmatic dental intervention; biochemical outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Marin, A.; He, Y.; Zhang, X. Dietary Interventions in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review of Evidence, Mechanisms, and Translational Challenges. Nutrients 2025, 17, 3491. https://doi.org/10.3390/nu17213491
Paredes-Marin A, He Y, Zhang X. Dietary Interventions in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review of Evidence, Mechanisms, and Translational Challenges. Nutrients. 2025; 17(21):3491. https://doi.org/10.3390/nu17213491
Chicago/Turabian StyleParedes-Marin, Alejandra, Yulu He, and Xiaotao Zhang. 2025. "Dietary Interventions in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review of Evidence, Mechanisms, and Translational Challenges" Nutrients 17, no. 21: 3491. https://doi.org/10.3390/nu17213491
APA StyleParedes-Marin, A., He, Y., & Zhang, X. (2025). Dietary Interventions in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review of Evidence, Mechanisms, and Translational Challenges. Nutrients, 17(21), 3491. https://doi.org/10.3390/nu17213491

