Arachidic Acid-Carrying Phosphatidylglycerol Lipids Statistically Mediate the Relationship Between Central Adiposity and Cognitive Function in Cognitively Unimpaired Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Assessments
2.3. Physical Assessments
2.4. Blood Samples
2.5. Lipidomics
2.5.1. LC-QqQ-MS Analysis of Plasma Lipids
2.5.2. Mass Spectrometry Data Integration
2.6. Data Analysis
2.6.1. Pre-Processing
2.6.2. Associations of Cognition with Central Adiposity
2.6.3. Weighted Gene-Co Expression Network Analysis
2.6.4. Module–Phenotype Associations
3. Results
3.1. Participant Demographics
3.2. Relationship Between Central Adiposity and Cognition
3.3. WGCNA Lipid Modules
3.4. Associations Between Modules and Phenotypes
3.5. Mediation Analysis of Lipids, Central Adiposity, and Cognition
3.5.1. Lipid Modules
3.5.2. Individual Lipid Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACME | Average Causal Mediation Effect |
| AD | Alzheimer’s Disease |
| ADE | Average Direct Effect |
| APOE | Apolipoprotein E |
| BMI | Body Mass Index |
| CE | Cholesteryl Ester |
| Cer | Ceramide |
| DG | Diacylglycerol |
| DhCer | Dehydroxyceramide |
| FA | Free Fatty Acid |
| FDR | False Discovery Rate |
| HDL | High-Density Lipoprotein |
| HexCer | Hexosylceramide |
| LacCer | Lactosylceramide |
| LDL | Low-Density Lipoprotein |
| LPC | Lysophosphatidylcholine |
| LPE | Lysophosphatidylethanolamine |
| LPG | Lysophosphatidylglycerol |
| LPI | Lysophosphatidylinostol |
| ME | Module Eigenvalue |
| MG | Monoacylglycerol |
| MMSE | Mini-Mental State Examination |
| MS | Mass Spectrometry |
| PC | Phosphatidylcholine |
| PE | Phosphatidylethanolamine |
| PE.O | Plasmanyl-Phosphatidylethanolamine |
| PE.P | Plasmenyl-Phosphatidylethanolamine |
| PG | Phosphatidylglycerol |
| PI | Phosphatidylinositol |
| PS | Phosphatidylserine |
| SM | Sphingomyelin |
| TG | Triacylglycerol |
| TOM | Topological Overlap Matrix |
| UHPLC | Ultra-High-Performance Liquid Chromatography |
| WGCNA | Weighted Gene Co-Expression Network Analysis |
| WHO | World Health Organisation |
| WHR | Wait–Hip Ratio |
References
- Prince, J.B.; Davis, H.L.; Tan, J.; Muller-Townsend, K.; Markovic, S.; Lewis, D.M.G.; Hastie, B.; Thompson, M.B.; Drummond, P.D.; Fujiyama, H.; et al. Cognitive and Neuroscientific Perspectives of Healthy Ageing. Neurosci. Biobehav. Rev. 2024, 161, 105649. [Google Scholar] [CrossRef]
- Rodrigues, E.A.; Moreno, S. Conceptualizing Healthy Cognitive Aging: The Role of Time and Variability. Front. Hum. Neurosci. 2023, 17, 1240630. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia Prevention, Intervention, and Care: 2024 Report of the Lancet Standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Bai, B.; Liu, Q.; Liu, Y.; Liu, F.; Wang, Y.; Chen, Y.; Liang, Y.; Wang, H.; Wu, C.; Guo, L.; et al. Long-Term Trends in Lifestyle Factors among Respondents with Dyslipidemia in the United States. Am. J. Med. Sci. 2024, 368, 600–609. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, H.; Chen, S.; Cai, J.; Huang, Z. The Association between Body Mass Index, Waist Circumference, Waist-Hip Ratio and Cognitive Disorder in Older Adults. J. Public Health 2019, 41, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Kadyrov, M.; Whiley, L.; Brown, B.; Erickson, K.I.; Holmes, E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.B.; Olshansky, G.; Giles, C.; Huynh, K.; Cinel, M.; Mellett, N.A.; Smith, A.A.T.; Shaw, J.E.; Magliano, D.J.; Meikle, P.J. Lipidomic Signatures of Changes in Adiposity: A Large Prospective Study of 5849 Adults from the Australian Diabetes, Obesity and Lifestyle Study. Metabolites 2021, 11, 646. [Google Scholar] [CrossRef]
- Yoon, J.H.; Seo, Y.; Jo, Y.S.; Lee, S.; Cho, E.; Cazenave-Gassiot, A.; Shin, Y.-S.; Moon, M.H.; An, H.J.; Wenk, M.R.; et al. Brain Lipidomics: From Functional Landscape to Clinical Significance. Sci. Adv. 2022, 8, eadc9317. [Google Scholar] [CrossRef] [PubMed]
- Postila, P.A.; Róg, T. A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol. Neurobiol. 2020, 57, 910–925. [Google Scholar] [CrossRef]
- Wu, J.; Cyr, A.; Gruen, D.S.; Lovelace, T.C.; Benos, P.V.; Das, J.; Kar, U.K.; Chen, T.; Guyette, F.X.; Yazer, M.H.; et al. Lipidomic Signatures Align with Inflammatory Patterns and Outcomes in Critical Illness. Nat. Commun. 2022, 13, 6789. [Google Scholar] [CrossRef]
- Castellanos, D.B.; Martín-Jiménez, C.A.; Rojas-Rodríguez, F.; Barreto, G.E.; González, J. Brain Lipidomics as a Rising Field in Neurodegenerative Contexts: Perspectives with Machine Learning Approaches. Front. Neuroendocrinol. 2021, 61, 100899. [Google Scholar] [CrossRef] [PubMed]
- Chua, X.Y.; Torta, F.; Chong, J.R.; Venketasubramanian, N.; Hilal, S.; Wenk, M.R.; Chen, C.P.; Arumugam, T.V.; Herr, D.R.; Lai, M.K.P. Lipidomics Profiling Reveals Distinct Patterns of Plasma Sphingolipid Alterations in Alzheimer’s Disease and Vascular Dementia. Alzheimer’s Res. Ther. 2023, 15, 214. [Google Scholar] [CrossRef]
- Akyol, S.; Ugur, Z.; Yilmaz, A.; Ustun, I.; Gorti, S.K.K.; Oh, K.; McGuinness, B.; Passmore, P.; Kehoe, P.G.; Maddens, M.E.; et al. Lipid Profiling of Alzheimer’s Disease Brain Highlights Enrichment in Glycerol(Phospho)Lipid, and Sphingolipid Metabolism. Cells 2021, 10, 2591. [Google Scholar] [CrossRef]
- Liu, Y.; Thalamuthu, A.; Mather, K.A.; Crawford, J.; Ulanova, M.; Wong, M.W.K.; Pickford, R.; Sachdev, P.S.; Braidy, N. Plasma Lipidome Is Dysregulated in Alzheimer’s Disease and Is Associated with Disease Risk Genes. Transl. Psychiatry 2021, 11, 344. [Google Scholar] [CrossRef]
- Udagawa, J.; Hino, K. Plasmalogen in the Brain: Effects on Cognitive Functions and Behaviors Attributable to Its Properties. Brain Res. Bull. 2022, 188, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.; Hauser, J.; Oliveira, M.; Cazaubon, E.; Mottaz, S.C.; O’Neill, B.V.; Steiner, P.; Deoni, S.C.L. Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 2019, 6, 1311. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.M.; Frost, N.; Rainey-Smith, S.R.; Doecke, J.; Markovic, S.; Gordon, N.; Weinborn, M.; Sohrabi, H.R.; Laws, S.M.; Martins, R.N.; et al. High-Intensity Exercise and Cognitive Function in Cognitively Normal Older Adults: A Pilot Randomised Clinical Trial. Alzheimer’s Res. Ther. 2021, 13, 33. [Google Scholar] [CrossRef]
- Brown, B.M.; Rainey-Smith, S.R.; Castalanelli, N.; Gordon, N.; Markovic, S.; Sohrabi, H.R.; Weinborn, M.; Laws, S.M.; Doecke, J.; Shen, K.; et al. Study Protocol of the Intense Physical Activity and Cognition Study: The Effect of High-Intensity Exercise Training on Cognitive Function in Older Adults. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 562–570. [Google Scholar] [CrossRef]
- Nordenswan, E.; Kataja, E.-L.; Deater-Deckard, K.; Korja, R.; Karrasch, M.; Laine, M.; Karlsson, L.; Karlsson, H. Latent Structure of Executive Functioning/Learning Tasks in the CogState Computerized Battery. Sage Open 2020, 10, 2158244020948846. [Google Scholar] [CrossRef]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test–Second Edition (CVLT-II); The Psychological Corporation: San Antonio, TX, USA, 2000. [Google Scholar]
- Benedict, R.H.; Schretlen, D.; Groninger, L.; Dobraski, M.; Shpritz, B. Revision of the Brief Visuospatial Memory Test: Studies of Normal Performance, Reliability, and Validity. Psychol. Assess. 1996, 8, 145. [Google Scholar] [CrossRef]
- Kramer, J.H.; Mungas, D.; Possin, K.L.; Rankin, K.P.; Boxer, A.L.; Rosen, H.J.; Bostrom, A.; Sinha, L.; Berhel, A.; Widmeyer, M. NIH EXAMINER: Conceptualization and Development of an Executive Function Battery. J. Int. Neuropsychol. Soc. 2014, 20, 11–19. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and Interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale–Third Edition (WAIS-III); The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Gadekar, T.; Dudeja, P.; Basu, I.; Vashisht, S.; Mukherji, S. Correlation of Visceral Body Fat with Waist–Hip Ratio, Waist Circumference and Body Mass Index in Healthy Adults: A Cross Sectional Study. Med. J. Armed Forces India 2020, 76, 41–46. [Google Scholar] [CrossRef]
- Ntlholang, O.; McCarroll, K.; Laird, E.; Molloy, A.M.; Ward, M.; McNulty, H.; Hoey, L.; Hughes, C.F.; Strain, J.J.; Casey, M.; et al. The Relationship between Adiposity and Cognitive Function in a Large Community-Dwelling Population: Data from the Trinity Ulster Department of Agriculture (TUDA) Ageing Cohort Study. Br. J. Nutr. 2018, 120, 517–527. [Google Scholar] [CrossRef]
- Ryan, M.J.; Grant-St James, A.; Lawler, N.G.; Fear, M.W.; Raby, E.; Wood, F.M.; Maker, G.L.; Wist, J.; Holmes, E.; Nicholson, J.K.; et al. Comprehensive Lipidomic Workflow for Multicohort Population Phenotyping Using Stable Isotope Dilution Targeted Liquid Chromatography-Mass Spectrometry. J. Proteome Res. 2023, 22, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.J.; Pratt, B.; Bose, N.; Dubois, L.G.; St John-Williams, L.; Perrott, K.M.; Ky, K.; Kapahi, P.; Sharma, V.; MacCoss, M.J.; et al. Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J. Proteome Res. 2020, 19, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Ji, F.; Chen, Y.; Cai, Z. statTarget: A Streamlined Tool for Signal Drift Correction and Interpretations of Quantitative Mass Spectrometry-Based Omics Data. Anal. Chim. Acta 2018, 1036, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R packagte version 0.7.2. 2023. Available online: https://cran.r-project.org/web/packages/rstatix/index.html (accessed on 21 February 2025).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Tingley, D.; Yamamoto, T.; Hirose, K.; Keele, L.; Imai, K. mediation: R Package for Causal Mediation Analysis, R package version 4.5.0. 2014. Available online: https://CRAN.R-project.org/package=mediation (accessed on 21 February 2025).
- Kayser, B.D.; Lhomme, M.; Prifti, E.; Cunha, C.D.; Marquet, F.; Chain, F.; Naas, I.; Pelloux, V.; Dao, M.; Kontush, A.; et al. Phosphatidylglycerols Are Induced by Gut Dysbiosis and Inflammation, and Favorably Modulate Adipose Tissue Remodeling in Obesity. FASEB J. 2019, 33, 4741–4754. [Google Scholar] [CrossRef]
- Mejia, E.M.; Hatch, G.M. Mitochondrial Phospholipids: Role in Mitochondrial Function. J. Bioenerg. Biomembr. 2016, 48, 99–112. [Google Scholar] [CrossRef]
- Pope, S.; Land, J.M.; Heales, S.J.R. Oxidative Stress and Mitochondrial Dysfunction in Neurodegeneration; Cardiolipin a Critical Target? Biochim. Biophys. Acta Bioenerg. 2008, 1777, 794–799. [Google Scholar] [CrossRef]
- Falabella, M.; Vernon, H.J.; Hanna, M.G.; Claypool, S.M.; Pitceathly, R.D.S. Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol. Metab. 2021, 32, 224–237. [Google Scholar] [CrossRef]
- Kim, W.S.; Jary, E.; Pickford, R.; He, Y.; Ahmed, R.M.; Piguet, O.; Hodges, J.R.; Halliday, G.M. Lipidomics Analysis of Behavioral Variant Frontotemporal Dementia: A Scope for Biomarker Development. Front. Neurol. 2018, 9, 104. [Google Scholar] [CrossRef]
- Kawatani, K.; Holm, M.-L.; Starling, S.C.; Martens, Y.A.; Zhao, J.; Lu, W.; Ren, Y.; Li, Z.; Jiang, P.; Jiang, Y.; et al. ABCA7 Deficiency Causes Neuronal Dysregulation by Altering Mitochondrial Lipid Metabolism. Mol. Psychiatry 2024, 29, 809–819. [Google Scholar] [CrossRef]
- Choudhary, V.; Uaratanawong, R.; Patel, R.R.; Patel, H.; Bao, W.; Hartney, B.; Cohen, E.; Chen, X.; Zhong, Q.; Isales, C.M.; et al. Phosphatidylglycerol Inhibits Toll-Like Receptor-Mediated Inflammation by Danger-Associated Molecular Patterns. J. Investig. Dermatol. 2019, 139, 868–877. [Google Scholar] [CrossRef]
- Chen, W.-W.; Chao, Y.-J.; Chang, W.-H.; Chan, J.-F.; Hsu, Y.-H.H. Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Inflammation. Sci. Rep. 2018, 8, 4919. [Google Scholar] [CrossRef] [PubMed]
- Fretts, A.M.; Imamura, F.; Marklund, M.; Micha, R.; Wu, J.H.Y.; Murphy, R.A.; Chien, K.-L.; McKnight, B.; Tintle, N.; Forouhi, N.G.; et al. Associations of Circulating Very-Long-Chain Saturated Fatty Acids and Incident Type 2 Diabetes: A Pooled Analysis of Prospective Cohort Studies. Am. J. Clin. Nutr. 2019, 109, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Kotlęga, D.; Peda, B.; Palma, J.; Zembroń-Łacny, A.; Gołąb-Janowska, M.; Masztalewicz, M.; Nowacki, P.; Szczuko, M. Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors. Int. J. Environ. Res. Public Health 2021, 18, 6500. [Google Scholar] [CrossRef]
- Bi, J.; Xu, Y.; Li, S.; Zhan, G.; Hua, D.; Tan, J.; Chi, X.; Xiang, H.; Guo, F.; Luo, A. Contribution of Preoperative Gut Microbiota in Postoperative Neurocognitive Dysfunction in Elderly Patients Undergoing Orthopedic Surgery. Front Aging Neurosci. 2023, 15, 1108205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, D.; Zhao, N.; Peng, G. Serum Lipidomic Analysis Identifies Potential Therapeutic Targets for Neurodegeneration. Front. Hum. Neurosci. 2025, 19, 1598495. [Google Scholar] [CrossRef]
- Fan, L.; Borenstein, A.R.; Wang, S.; Nho, K.; Zhu, X.; Wen, W.; Huang, X.; Mortimer, J.A.; Shrubsole, M.J.; Dai, Q. Associations of Circulating Saturated Long-Chain Fatty Acids with Risk of Mild Cognitive Impairment and Alzheimer’s Disease in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Cohort. eBioMedicine 2023, 97, 104818. [Google Scholar] [CrossRef]
- Parilli-Moser, I.; Domínguez-López, I.; Trius-Soler, M.; Castellví, M.; Bosch, B.; Castro-Barquero, S.; Estruch, R.; Hurtado-Barroso, S.; Lamuela-Raventós, R.M. Consumption of Peanut Products Improves Memory and Stress Response in Healthy Adults from the ARISTOTLE Study: A 6-Month Randomized Controlled Trial. Clin. Nutr. 2021, 40, 5556–5567. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, C.; Taishi, Y.; Zhang, G.; Su, Z.; Zhao, P.; Wang, Y.; Li, M.; Ji, Y.; Sun, L. Association between the Circulating Very Long-Chain Saturated Fatty Acid and Cognitive Function in Older Adults: Findings from the NHANES. BMC Public Health 2024, 24, 1061. [Google Scholar] [CrossRef]
- Dhillon, V.S.; Thomas, P.; Lee, S.L.; Deo, P.; Fenech, M. Red Blood Cell Fatty Acid Profiles Are Significantly Altered in South Australian Mild Cognitive Impairment and Alzheimer’s Disease Cases Compared to Matched Controls. Int. J. Mol. Sci. 2023, 24, 14164. [Google Scholar] [CrossRef]
- Petersen, K.; Sullivan, V.; Fulgoni, V., III; Eren, F.; Cassens, M.; Bunczek, M.; Kris-Etherton, P. Plasma Linoleic Acid Is Associated with Less Adiposity and Lower Risk of Metabolic Syndrome: An NHANES Analysis (P08-121-19). Curr. Dev. Nutr. 2019, 3, nzz044.P08-121-19. [Google Scholar] [CrossRef]
- Liu, M.; Zuo, L.-S.-Y.; Sun, T.-Y.; Wu, Y.-Y.; Liu, Y.-P.; Zeng, F.-F.; Chen, Y.-M. Circulating Very-Long-Chain Saturated Fatty Acids Were Inversely Associated with Cardiovascular Health: A Prospective Cohort Study and Meta-Analysis. Nutrients 2020, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; McKnight, B.; Sotoodehnia, N.; Fretts, A.M.; Qureshi, W.T.; Song, X.; King, I.B.; Sitlani, C.M.; Siscovick, D.S.; Psaty, B.M.; et al. Circulating Very Long-Chain Saturated Fatty Acids and Heart Failure: The Cardiovascular Health Study. J. Am. Heart Assoc. 2018, 7, e010019. [Google Scholar] [CrossRef]
- Tso, J.V.; Liu, C.; Turner, C.G.; Uppal, K.; Prabakaran, G.; Ejaz, K.; Baggish, A.L.; Jones, D.P.; Quyyumi, A.A.; Kim, J.H. Metabolic Alterations Differentiating Cardiovascular Maladaptation from Athletic Training in American-Style Football Athletes. Med. Sci. Sports Exerc. 2022, 54, 1617–1624. [Google Scholar] [CrossRef]
- Lechner, K.; von Schacky, C.; Scherr, J.; Lorenz, E.; Bock, M.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; et al. Saturated Fatty Acid Blood Levels and Cardiometabolic Phenotype in Patients with HFpEF: A Secondary Analysis of the Aldo-DHF Trial. Biomedicines 2022, 10, 2296. [Google Scholar] [CrossRef] [PubMed]
- Fretts, A.M.; Mozaffarian, D.; Siscovick, D.S.; Djousse, L.; Heckbert, S.R.; King, I.B.; McKnight, B.; Sitlani, C.; Sacks, F.M.; Song, X.; et al. Plasma Phospholipid Saturated Fatty Acids and Incident Atrial Fibrillation: The Cardiovascular Health Study. J. Am. Heart Assoc. 2014, 3, e000889. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, Y.; Shin, M.-J. Dietary Very Long Chain Saturated Fatty Acids and Metabolic Factors: Findings from the Korea National Health and Nutrition Examination Survey 2013. Clin. Nutr. Res. 2015, 4, 182–189. [Google Scholar] [CrossRef]
- Matsumoto, C.; Hanson, N.Q.; Tsai, M.Y.; Glynn, R.J.; Gaziano, J.M.; Djoussé, L. Plasma Phospholipid Saturated Fatty Acids and Heart Failure Risk in the Physicians’ Health Study. Clin. Nutr. 2013, 32, 819–823. [Google Scholar] [CrossRef]
- Dirajlal-Fargo, S.; Sattar, A.; Yu, J.; Albar, Z.; Chaves, F.C.; Riedl, K.; Kityo, C.; Bowman, E.; McComsey, G.A.; Funderburg, N. Lipidome Association with Vascular Disease and Inflammation in HIV+ Ugandan Children. AIDS 2021, 35, 1615–1623. [Google Scholar] [CrossRef]
- Ardisson Korat, A.V.; Malik, V.S.; Furtado, J.D.; Sacks, F.; Rosner, B.; Rexrode, K.M.; Willett, W.C.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating Very-Long-Chain SFA Concentrations Are Inversely Associated with Incident Type 2 Diabetes in US Men and Women. J. Nutr. 2020, 150, 340–349. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.; et al. Differences in the Prospective Association between Individual Plasma Phospholipid Saturated Fatty Acids and Incident Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. Lancet Diabetes Endocrinol. 2014, 2, 810. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, H.; Wang, X.; Xia, L.; Huang, H.; Peng, X.; Xia, C.; Liu, L. The Associations between Individual Plasma SFAs, Serine Palmitoyl-Transferase Long-Chain Base Subunit 3 Gene Rs680379 Polymorphism, and Type 2 Diabetes among Chinese Adults. Am. J. Clin. Nutr. 2021, 114, 704–712. [Google Scholar] [CrossRef]
- Harris, W.S.; Luo, J.; Pottala, J.V.; Margolis, K.L.; Espeland, M.A.; Robinson, J.G. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women’s Health Initiative Memory Study. PLoS ONE 2016, 11, e0147894. [Google Scholar] [CrossRef]
- Fretts, A.M.; Jensen, P.N.; Hoofnagle, A.; McKnight, B.; Howard, B.V.; Umans, J.; Yu, C.; Sitlani, C.; Siscovick, D.S.; King, I.B.; et al. Plasma Ceramide Species Are Associated with Diabetes Risk in Participants of the Strong Heart Study. J. Nutr. 2020, 150, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Dong, H.; Chen, G.; Chen, Z.; Dong, X.; Zheng, J.; Chen, Y. Erythrocyte Saturated Fatty Acids and Incident Type 2 Diabetes in Chinese Men and Women: A Prospective Cohort Study. Nutrients 2018, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Bockus, L.B.; Biggs, M.L.; Lai, H.T.M.; de Olivera Otto, M.C.; Fretts, A.M.; McKnight, B.; Sotoodehnia, N.; King, I.B.; Song, X.; Siscovick, D.S.; et al. Assessment of Plasma Phospholipid Very-Long-Chain Saturated Fatty Acid Levels and Healthy Aging. JAMA Netw. Open 2021, 4, e2120616. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Satheesh, G.; Vijayakumar, G.; Chandran, M.; Prabhu, P.R.; Simon, L.; Kutty, V.R.; Kartha, C.C.; Jaleel, A. Plasma Leptin Level Mirrors Metabolome Alterations in Young Adults. Metabolomics 2020, 16, 87. [Google Scholar] [CrossRef] [PubMed]



| Variable | n = 94 1 |
|---|---|
| Age, years | 69.0 ± 5.0 |
| Sex, female | 51 (54%) |
| Years of Education | 14.1 ± 2.3 |
| APOE ε4 Allele Carriers | 24 (26%) |
| Waist–Hip Ratio | 0.9 ± 0.1 |
| Men with central adiposity 2 | 2 (5%) |
| Women with central adiposity 2 | 20 (39%) |
| Total with central adiposity 2 | 22 (22%) |
| Body Mass Index (kg/m2) | 25.8 ± 3.6 |
| Underweight (<18.5) | 1 (1%) |
| Normal weight (18.5–24.9) | 41 (44%) |
| Overweight (25.0–29.9) | 39 (41%) |
| Obese (>30) | 13 (14%) |
| Cognitive Composites 3 | |
| Attention | 0.02 ± 0.73 |
| Delayed recall | −0.07 ± 0.76 |
| Episodic memory | −0.06 ± 0.75 |
| Executive function | −0.03 ± 0.40 |
| Global cognition | −0.03 ± 0.46 |
| Learning | 0.01 ± 0.70 |
| Working memory | −0.02 ± 0.81 |
| Term | Estimate | 95% C.I. | p Value | |
|---|---|---|---|---|
| Lower | Upper | |||
| Average Causal Mediation Effect (ACME) | −0.072 | −0.148 | −0.017 | 0.006 |
| Average Direct Effect (ADE) | −0.075 | −0.193 | 0.042 | 0.203 |
| Total Effect | −0.147 | −0.263 | −0.028 | 0.016 |
| Proportion Mediated | 0.49 | 0.099 | 1.642 | 0.022 |
| Lipid | Effect | Estimate | 95% C.I. | p Value | |
|---|---|---|---|---|---|
| Lower | Upper | ||||
| PG (20:0_16:1) | ACME | −0.745 | −1.864 | −0.165 | 0.004 |
| ADE | −1.239 | −2.769 | 0.510 | 0.169 | |
| Total Effect | −1.983 | −3.580 | −0.385 | 0.019 | |
| Prop. Mediated | 0.375 | 0.067 | 1.604 | 0.021 | |
| PG (20:0_18:1) | ACME | −0.661 | −1.607 | −0.044 | 0.030 |
| ADE | −1.323 | −2.966 | 0.329 | 0.120 | |
| Total Effect | −1.983 | −3.565 | −0.378 | 0.012 | |
| Prop. Mediated | 0.333 | 0.012 | 1.459 | 0.041 | |
| PG (20:0_18:2) | ACME | −0.797 | −1.574 | −0.174 | 0.008 |
| ADE | −1.186 | −2.774 | 0.414 | 0.144 | |
| Total Effect | −1.983 | −3.536 | −0.424 | 0.014 | |
| Prop. Mediated | 0.402 | 0.073 | 1.557 | 0.020 | |
| PG (20:0_20:1) | ACME | −0.380 | −0.996 | 0.000 | 0.050 |
| ADE | −1.603 | −3.005 | −0.117 | 0.036 | |
| Total Effect | −1.983 | −3.511 | −0.379 | 0.015 | |
| Prop. Mediated | 0.192 | −0.008 | 0.680 | 0.062 | |
| PG (20:0_20:2) | ACME | −0.246 | −0.973 | 0.295 | 0.410 |
| ADE | −1.737 | −3.324 | −0.068 | 0.041 | |
| Total Effect | −1.983 | −3.529 | −0.336 | 0.022 | |
| Prop. Mediated | 0.124 | −0.224 | 0.700 | 0.419 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyrov, M.; Whiley, L.; Erickson, K.I.; Brown, B.; Holmes, E. Arachidic Acid-Carrying Phosphatidylglycerol Lipids Statistically Mediate the Relationship Between Central Adiposity and Cognitive Function in Cognitively Unimpaired Older Adults. Nutrients 2025, 17, 3405. https://doi.org/10.3390/nu17213405
Kadyrov M, Whiley L, Erickson KI, Brown B, Holmes E. Arachidic Acid-Carrying Phosphatidylglycerol Lipids Statistically Mediate the Relationship Between Central Adiposity and Cognitive Function in Cognitively Unimpaired Older Adults. Nutrients. 2025; 17(21):3405. https://doi.org/10.3390/nu17213405
Chicago/Turabian StyleKadyrov, Maria, Luke Whiley, Kirk I. Erickson, Belinda Brown, and Elaine Holmes. 2025. "Arachidic Acid-Carrying Phosphatidylglycerol Lipids Statistically Mediate the Relationship Between Central Adiposity and Cognitive Function in Cognitively Unimpaired Older Adults" Nutrients 17, no. 21: 3405. https://doi.org/10.3390/nu17213405
APA StyleKadyrov, M., Whiley, L., Erickson, K. I., Brown, B., & Holmes, E. (2025). Arachidic Acid-Carrying Phosphatidylglycerol Lipids Statistically Mediate the Relationship Between Central Adiposity and Cognitive Function in Cognitively Unimpaired Older Adults. Nutrients, 17(21), 3405. https://doi.org/10.3390/nu17213405

