Integrating Imaging and Nutrition: Chest CT Muscle Analysis in Adults with Cystic Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design and Participants
2.3. Morphofunctional Assessment
- Height, weight, and BMI.
- BIA using TANITA MC980MA (TANITA Corporation, Tokyo, Japan) to assess total body composition, including raw phase angle, fat mass, and FFM. FFM index (FFMI) was calculated for anthropometry and BIA. Low FFMI was defined according to Global Leadership Initiative on Malnutrition (GLIM) consensus [17].
- Handgrip strength measurement using a Jamar dynamometer (Asimow Engineering Co., Los Angeles, CA, USA).
- For patients assessed at the Hospital Regional Universitario de Malaga, muscle ultrasonography of rectus femoris muscle using a 10–12 MHz probe and an Esaote MyLab Gamma device (Esaote, Genova, Italy). Measurements were acquired at point one third of the distance along a line drawn from the upper edge of the patella to the anterosuperior iliac spine, without applying pressure with the probe. Parameters measured included X-axis (major transversal axis of rectus anterior), Y-axis (minor anteroposterior axis of rectus anterior), muscular area of rectus anterior (MARA), and transverse subcutaneous adipose tissue (TSAT) [18]. MARA index (MARAI) was calculated.
2.4. Computed Tomography (CT) Image Analysis
2.5. Assessment of Nutritional Status
2.6. Assessment of Respiratory Status
2.7. Statistical Analysis
3. Results
3.1. Correlation Between Computed Tomography and Other Body Composition Parameters
3.2. Respiratory Variables
3.3. Nutritional Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Sánchez-Torralvo, F.J.; Porras, N.; Ruiz-García, I.; Maldonado-Araque, C.; García-Olivares, M.; Girón, M.V.; Gonzalo-Marín, M.; Olveira, C.; Olveira, G. Usefulness of Muscle Ultrasonography in the Nutritional Assessment of Adult Patients with Cystic Fibrosis. Nutrients 2022, 14, 3377. [Google Scholar] [CrossRef]
- Culhane, S.; George, C.; Pearo, B.; Spoede, E. Malnutrition in cystic fibrosis: A review. Nutr. Clin. Pract. 2013, 28, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, P.; Fotoulaki, M.; Nikolaou, A.; Nousia-Arvanitakis, S. Prevalence of malnutrition and obesity among cystic fibrosis patients. Pediatr. Int. 2014, 56, 89–94. [Google Scholar] [CrossRef]
- Schönenberger, K.A.; Reber, E.; Bally, L.; Geiser, T.; Lin, D.; Stanga, Z. Nutritional assessment in adults with cystic fibrosis. Nutrition 2019, 67–68, 110518. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Bolívar, V.; Olveira, C.; Porras, N.; García-Olivares, M.; Girón, M.V.; Sánchez-Torralvo, F.J.; Ruiz-García, I.; Alonso-Gallardo, S.P.; Olveira Fuster, G. Assessment of body composition in cystic fibrosis: Agreement between skinfold measurement and densitometry. Nutr. Hosp. 2022, 39, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Sovtic, A.; Minic, P.; Markovic-Sovtic, G.; Trajkovic, G.Z. Respiratory Muscle Strength and Exercise Performance in Cystic Fibrosis-A Cross Sectional Study. Front. Pediatr. 2018, 6, 244. [Google Scholar] [CrossRef]
- Dickinson, K.M.; Collaco, J.M. Cystic Fibrosis. Pediatr. Rev. 2021, 42, 55–67. [Google Scholar] [CrossRef]
- Wilschanski, M.; Munck, A.; Carrion, E.; Cipolli, M.; Collins, S.; Colombo, C.; Declercq, D.; Hatziagorou, E.; Hulstc, J.; Kalnins, D.; et al. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin. Nutr. 2024, 43, 413–445. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Gaspar, I.; Porras, N.; Martín-Núñez, G.; Rubio, E.; Colomo, N.; Rojo-Martínez, G.; Soriguer, F. Fat-free mass depletion and inflammation in patients with bronchiectasis. J. Acad. Nutr. Diet. 2012, 112, 1999–2006. [Google Scholar] [CrossRef]
- García Almeida, J.M.; García García, C.; Vegas Aguilar, I.M.; Bellido Castañeda, V.; Bellido Guerrero, D. Morphofunctional assessment of patient’s nutritional status: A global approach. Nutr. Hosp. 2021, 38, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, A.; Pakarinen, T.; Sassi, A.; Kyttä, J.; Cancino, W.; Rinta-Kiikka, I.; Pertuz, S.; Arponen, O. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. Eur. J. Radiol. 2021, 145, 109943. [Google Scholar] [CrossRef] [PubMed]
- Navas-Moreno, V.; Sebastian-Valles, F.; Rodríguez-Laval, V.; Knott-Torcal, C.; Marazuela, M.; de la Blanca, N.S.; Martín, J.A.A.; Girón, R.M.; Sampedro-Núñez, M.A. Impact of CFTR Modulator Therapy on Body Composition as Assessed by Thoracic Computed Tomography: A Follow-Up Study. Nutrition 2024, 123, 112425. [Google Scholar] [CrossRef]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition 1993, 9, 480–491, discussion 492. [Google Scholar]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- García-Almeida, J.M.; García-García, C.; Vegas-Aguilar, I.M.; Ballesteros Pomar, M.D.; Cornejo-Pareja, I.M.; Fernández Medina, B.; de Luis Román, D.A.; Guerrero, D.B.; Lesmes, I.B.; Madueño, F.J.T. Nutritional ultrasound®: Conceptualisation, technical considerations and standardisation. Endocrinol. Diabetes Nutr. 2023, 70 (Suppl. S1), 74–84. [Google Scholar] [CrossRef]
- Máiz, L.; Baranda, F.; Coll, R.; Prados, C.; Vendrell, M.; Escribano, A.; Gartner, S.; de Gracia, S.; Martínez, M.; Salcedo, A.; et al. SEPAR (Spanish Society of Pneumology and Thoracic Surgery) Guidelines. Guideline for diagnosis and treatment of respiratory involvements in cystic fibrosis. Arch. Bronconeumol. 2001, 37, 316–324. [Google Scholar] [CrossRef]
- Bhalla, M.; Turcios, N.; Aponte, V.; Jenkins, M.; Leitman, B.S.; McCauley, D.I.; Naidich, D.P. Cystic fibrosis: Scoring system with thin-section CT. Radiology 1991, 179, 783–788. [Google Scholar] [CrossRef]
- Diab-Cáceres, L.; Girón-Moreno, R.M.; García-Castillo, E.; Pastor-Sanz, M.T.; Olveira, C.; García-Clemente, M.M.; Nieto-Royo, R.; Prados-Sánchez, C.; Caballero-Sánchez, P.; Olivera-Serrano, M.J.; et al. Predictive value of the modified Bhalla score for assessment of pulmonary exacerbations in adults with cystic fibrosis. Eur. Radiol. 2021, 31, 112–120. [Google Scholar] [CrossRef]
- Pastor-Vivero, M.D.; Delgado Pecellín, I.; Solé Jover, A.; Álvarez Fernández, A.; Gómez Bonilla, A.; Vicente Santamaría, S.; Mondéjar López, P.; Gartner, S.; Girón, R.M.; Pérez Ruiz, E.; et al. Registro Español de Fibrosis Quística: Informe Anual 2022; Zenodo: Valencia, Spain, 2025; p. 106. [Google Scholar] [CrossRef]
- King, S.J.; Nyulasi, I.B.; Strauss, B.J.G.; Kotsimbos, T.; Bailey, M.; Wilson, J.W. Fat-free mass depletion in cystic fibrosis: Associated with lung disease severity but poorly detected by body mass index. Nutrition 2010, 26, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.D.M.; Rodríguez-Juan, J.J.; Ruiz-Cárdenas, J.D. Influence of sex gap on muscle strength and functional mobility in patients with cystic fibrosis. Appl. Physiol. Nutr. Metab. 2020, 45, 387–392. [Google Scholar] [CrossRef]
- Soltman, S.; Hicks, R.A.; Naz Khan, F.; Kelly, A. Body composition in individuals with cystic fibrosis. J. Clin. Transl. Endocrinol. 2021, 26, 100272. [Google Scholar] [CrossRef]
- Calella, P.; Valerio, G.; Brodlie, M.; Taylor, J.; Donini, L.M.; Siervo, M. Tools and Methods Used for the Assessment of Body Composition in Patients with Cystic Fibrosis: A Systematic Review. Nutr. Clin. Pract. 2019, 34, 701–714. [Google Scholar] [CrossRef]
- Bryl, B.; Merrix, S.; Proud, D.; Marin, A.; Byrne, A.; Duckers, J. Are We Missing the Opportunity to Measure Muscle Mass on Computed Tomography Thorax? J. Thorac. Imaging 2021, 36, W32–W33. [Google Scholar] [CrossRef] [PubMed]
- Jennerich, A.L.; Downey, L.; Goss, C.H.; Kapnadak, S.G.; Pryor, J.B.; Ramos, K.J. Computed tomography body composition and clinical outcomes following lung transplantation in cystic fibrosis. BMC Pulm. Med. 2023, 23, 105. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, R.; Sanmartín-Sánchez, A.; Cabrera-César, E.; Espíldora-Hernández, F.; Vegas-Aguilar, I.; Amaya-Campos, M.D.M.; Palmas-Candia, F.X.; Claro-Brandner, M.; Olivares-Alcolea, J.; Simón-Frapolli, V.J.; et al. IA-Body Composition CT at T12 in Idiopathic Pulmonary Fibrosis: Diagnosing Sarcopenia and Correlating with Other Morphofunctional Assessment Techniques. Nutrients 2024, 16, 2885. [Google Scholar] [CrossRef]
- Arayne, A.A.; Gartrell, R.; Qiao, J.; Baird, P.N.; Yeung, J.M. Comparison of CT derived body composition at the thoracic T4 and T12 with lumbar L3 vertebral levels and their utility in patients with rectal cancer. BMC Cancer 2023, 23, 56. [Google Scholar] [CrossRef]
- Kong, M.; Geng, N.; Zhou, Y.; Lin, N.; Song, W.; Xu, M.; Li, S.; Piao, Y.; Han, Z.; Guo, R.; et al. Defining reference values for low skeletal muscle index at the L3 vertebra level based on computed tomography in healthy adults: A multicentre study. Clin. Nutr. 2022, 41, 396–404. [Google Scholar] [CrossRef]
- Palmas, F.; Ciudin, A.; Guerra, R.; Eiroa, D.; Espinet, C.; Roson, N.; Burgos, R.; Simó, R. Comparison of computed tomography and dual-energy X-ray absorptiometry in the evaluation of body composition in patients with obesity. Front. Endocrinol. 2023, 14, 1161116. [Google Scholar] [CrossRef] [PubMed]
- Soria-Utrilla, V.; Sánchez-Torralvo, F.J.; Palmas-Candia, F.X.; Fernández-Jiménez, R.; Mucarzel-Suarez-Arana, F.; Guirado-Peláez, P.; Olveira, G.; García-Almeida, J.M.; Burgos-Peláez, R. AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis. Nutrients 2024, 16, 1869. [Google Scholar] [CrossRef] [PubMed]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Brath, M.S.G.; Sahakyan, M.; Mark, E.B.; Frøkjær, J.B.; Rasmussen, H.H.; Østergaard, L.R.; Weinreich, U.M. Association between thoracic and third lumbar CT-derived muscle mass and density in Caucasian patients without chronic disease: A proof-of-concept study. Eur. Radiol. Exp. 2023, 7, 26. [Google Scholar] [CrossRef]
- Molwitz, I.; Ozga, A.K.; Gerdes, L.; Ungerer, A.; Köhler, D.; Ristow, I.; Leiderer, M.; Adam, G.; Yamamura, J. Prediction of abdominal CT body composition parameters by thoracic measurements as a new approach to detect sarcopenia in a COVID-19 cohort. Sci. Rep. 2022, 12, 6443. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 55) | Normo-Nourished (n = 31) | Malnourished (n = 24) | p Value a | ||
---|---|---|---|---|---|
Age (years) | m ± SD | 31.2 ± 9.3 | 32.7 ± 10.1 | 29.3 ± 8.0 | 0.195 |
Gender | n (%) | 0.059 | |||
Men | 33 (60) | 22 (71) | 11 (45.8) | ||
Women | 22 (40) | 9 (29) | 13 (54.2) | ||
Mutation | n (%) | 0.100 | |||
Homozygous for Δ-F508 | 15 (27.3) | 5 (16.1) | 10 (41.7) | ||
Heterozygous for Δ-F508 | 24 (43.6) | 15 (48.4) | 9 (37.5) | ||
Negative for Δ-F508 | 16 (29.1) | 11 (35.5) | 5 (20.8) | ||
Cystic fibrosis-related diabetes | n (%) | 25 (45.5) | 14 (45.2) | 11 (45.8) | 0.960 |
Pancreatic insufficiency | n (%) | 38 (69.1) | 18 (58.1) | 20 (83.3) | 0.044 |
Osteoporosis | n (%) | 12 (21.8) | 6 (19.4) | 6 (25) | 0.615 |
Total exacerbations | m ± SD | 0.98 ± 1.07 | 1.07 ± 1.14 | 0.88 ± 0.99 | 0.519 |
Severe exacerbations | m ± SD | 0.11 ± 0.37 | 0.07 ± 0.36 | 0.17 ± 0.38 | 0.331 |
FEV1 (%) | m ± SD | 66.8 ± 25.2 | 74.9 ± 24.0 | 57.0 ± 23.6 | 0.009 |
FVC (%) | m ± SD | 80.3 ± 20.0 | 84.9 ±19.5 | 74.5 ±19.3 | 0.062 |
FEV1/FVC (%) | m ± SD | 0.67 ± 0.13 | 0.71 ± 0.11 | 0.63 ± 0.14 | 0.018 |
Colonizations | n (%) | 50 (90.9) | 29 (93.5) | 21 (87.5) | 0.643 |
Pseudomonas aeruginosa | n (%) | 31 (56.4) | 17 (54.8) | 14 (58.3) | 0.796 |
Staphylococcus aureus | n (%) | 41 (74.5) | 25 (80.6) | 16 (66.7) | 0.238 |
Haemophilus influenzae | n (%) | 17 (30.9) | 10 (32.3) | 7 (29.2) | 0.806 |
Bhalla Score | m ± SD | 12.8 ± 5.1 | 14.5 ± 5.7 | 10.7 ± 3.4 | 0.004 |
Severity according to Bhalla Score | n (%) | 0.011 | |||
Normal or Mild | 29 (52.7) | 21 (67.7) | 8 (33.3) | ||
Moderate or Severe | 26 (47.3) | 10 (32.3) | 16 (66.7) | ||
Treatment with ETI | n (%) | 11 (20) | 7 (22.6) | 4 (16.7) | 0.738 |
Bhalla Score Severity | Normal or Mild (n = 29) | Moderate or Severe (n = 26) | p Value | |
---|---|---|---|---|
Malnutrition (GLIM) | n (%) | 8 (27.6) | 16 (61.5) | 0.011 |
FEV1 (%) | m ± SD | 78.5 ± 23.2 | 52.7 ± 20.1 | <0.001 |
FVC (%) | m ± SD | 88.2 ± 16.6 | 70.3 ± 19.6 | 0.001 |
FEV1/FVC (%) | m ± SD | 0.72 ± 0.12 | 0.62 ± 0.11 | 0.005 |
Total exacerbations | m ± SD | 1.1 ± 1.2 | 0.9 ± 0.9 | 0.524 |
Severe exacerbations | m ± SD | 0.1 ± 0.4 | 0.1 ± 0.3 | 0.872 |
Anthropometry | ||||
BMI (kg/m2) | m ± SD | 23.9 ± 3.9 | 21.8 ± 2.8 | 0.023 |
FFM (kg) | m ± SD | 53.8 ± 9.4 | 47.0 ± 10.2 | 0.017 |
FFMI (kg/m2) | m ± SD | 18.3 ± 2.4 | 17.1 ± 2.1 | 0.056 |
FM (kg) | 15.7 ± 7.9 | 12.8 ± 5.1 | 0.117 | |
BIA | ||||
Raw phase angle (º) | m ± SD | 6.4 ± 0.8 | 5.9 ± 1.0 | 0.037 |
FFM (kg) | m ± SD | 52.9 ± 8.7 | 45.0 ± 8.5 | 0.001 |
FFMI (kg/m2) | m ± SD | 18.0 ± 2.3 | 16.5 ± 1.7 | 0.007 |
FM (kg) | m ± SD | 16.7 ± 7.1 | 14.5 ± 7.4 | 0.283 |
Dynamometer | ||||
Handgrip strength (kg) | m ± SD | 35.3 ± 10.0 | 27.7 ± 7.6 | 0.003 |
CT | ||||
Muscle area (cm2) | m ± SD | 94.6 ± 21.1 | 79.3 ± 20.9 | 0.009 |
Muscle percentage | m ± SD | 16.5 ± 2.7 | 15.9 ± 2.3 | 0.439 |
Muscle HU | m ± SD | 39.0 ± 9.8 | 43.2 ± 9.4 | 0.110 |
SMI (cm2/m2) | m ± SD | 32.2 ± 6.7 | 29.1 ± 6.5 | 0.083 |
IMAT area (cm2) | m ± SD | 4.4 ± 3.8 | 2.8 ± 1.8 | 0.049 |
IMAT percentage | m ± SD | 0.7 ± 0.5 | 0.5 ± 0.3 | 0.155 |
IMAT HU | m ± SD | −61.1 ± 5.7 | −58.0 ± 5.1 | 0.038 |
VAT area (cm2) | m ± SD | 58.9 ± 50.9 | 37.9 ± 30.5 | 0.067 |
VAT percentage | m ± SD | 9.2 ± 6.5 | 7.2 ± 4.4 | 0.168 |
VAT HU | m ± SD | −90.1 ± 11.2 | −86.6 ± 13.5 | 0.304 |
SAT area (cm2) | m ± SD | 63.24 ± 55.7 | 35.9 ± 30.6 | 0.031 |
SAT percentage | m ± SD | 9.9 ± 6.5 | 6.8 ± 5.1 | 0.056 |
SAT HU | m ± SD | −88.4 ± 15.1 | −81.1 ± 17.1 | 0.099 |
Ultrasonography | Normal or Mild (n = 15) | Moderate or Severe (n = 13) | p Value | |
MARA (cm2) | m ± SD | 5.2 ± 1.6 | 3.4 ± 1.1 | 0.003 |
MARAI (cm2/m2) | m ± SD | 1.8 ± 0.5 | 1.3 ± 0.4 | 0.010 |
X-axis (cm) | m ± SD | 3.9 ± 0.6 | 3.5 ± 0.7 | 0.130 |
Y-axis (cm) | m ± SD | 1.6 ± 0.3 | 1.1 ± 0.2 | <0.001 |
TSAT (cm) | m ± SD | 0.8 ± 0.4 | 0.9 ± 0.4 | 0.652 |
Normo- Nourished (n = 31) | Malnourished (n = 24) | p Value | ||
---|---|---|---|---|
Muscle area (cm2) | m ± SD | 96.3 ± 17.9 | 75.9 ± 22.1 | <0.001 |
SMI (cm2/m2) | m ± SD | 33.5 ± 4.9 | 27.1 ± 7.1 | <0.001 |
IMAT area (cm2) | m ± SD | 4.3 ± 3.3 | 2.8 ± 2.5 | 0.008 |
VAT area (cm2) | m ± SD | 59.9 ± 48.2 | 34.9 ± 32.2 | 0.033 |
SAT area (cm2) | m ± SD | 65.1 ± 53.2 | 31.2 ± 29.5 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria-Utrilla, V.; Piñar-Gutiérrez, A.; Sánchez-Torralvo, F.J.; Adarve-Castro, A.; Porras, N.; Jiménez-Sánchez, A.; Quintana-Gallego, M.E.; Olveira, C.; Girón, M.V.; Olveira, G.; et al. Integrating Imaging and Nutrition: Chest CT Muscle Analysis in Adults with Cystic Fibrosis. Nutrients 2025, 17, 2940. https://doi.org/10.3390/nu17182940
Soria-Utrilla V, Piñar-Gutiérrez A, Sánchez-Torralvo FJ, Adarve-Castro A, Porras N, Jiménez-Sánchez A, Quintana-Gallego ME, Olveira C, Girón MV, Olveira G, et al. Integrating Imaging and Nutrition: Chest CT Muscle Analysis in Adults with Cystic Fibrosis. Nutrients. 2025; 17(18):2940. https://doi.org/10.3390/nu17182940
Chicago/Turabian StyleSoria-Utrilla, Virginia, Ana Piñar-Gutiérrez, Francisco José Sánchez-Torralvo, Antonio Adarve-Castro, Nuria Porras, Andrés Jiménez-Sánchez, María Esther Quintana-Gallego, Casilda Olveira, María Victoria Girón, Gabriel Olveira, and et al. 2025. "Integrating Imaging and Nutrition: Chest CT Muscle Analysis in Adults with Cystic Fibrosis" Nutrients 17, no. 18: 2940. https://doi.org/10.3390/nu17182940
APA StyleSoria-Utrilla, V., Piñar-Gutiérrez, A., Sánchez-Torralvo, F. J., Adarve-Castro, A., Porras, N., Jiménez-Sánchez, A., Quintana-Gallego, M. E., Olveira, C., Girón, M. V., Olveira, G., & García-Luna, P. P. (2025). Integrating Imaging and Nutrition: Chest CT Muscle Analysis in Adults with Cystic Fibrosis. Nutrients, 17(18), 2940. https://doi.org/10.3390/nu17182940