The Association Between Nutritional Status and Muscle Strength of Shoulder, Hip, and Knee, and the Timed Up and Go Test in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Selection
2.2. Methodology
2.2.1. Shoulder Abduction at 0° and Abduction at 90°
2.2.2. Hip Abduction and Flexion
2.2.3. Knee Extension
2.2.4. The TUG Test
2.3. Statistical Analysis
3. Results
3.1. Nutritional Status, Upper and Lower Muscle Strength, and Timed Up and Go Test
3.2. Binary Logistic Regression by Nutritional Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leslie, W.; Hankey, C. Aging, Nutritional Status and Health. Healthcare 2015, 3, 648–658. [Google Scholar] [CrossRef]
- World Health Organization: Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 16 August 2025).
- United Nations. Department of Economic and Social Affairs Population Division; World Population Ageing [Report]; United Nations: New York, NY, USA, 2017. [Google Scholar]
- United Nations. Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Methodology of the United Nations Population Estimates and Projections [Report]; ST/ESA/SER.A/425; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Alqahtani, B.A.; Alenazi, A.M.; Alshehri, M.M.; Osailan, A.M.; Alsubaie, S.F.; Alqahtani, M.A. Prevalence of Frailty and Associated Factors among Saudi Community-Dwelling Older Adults: A Cross-Sectional Study. BMC Geriatr. 2021, 21, 185. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyère, O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, Y.; Vijayageetha, M.; Kumar, S.G.; Rajaa, S.; Rehman, T. Prevalence of Malnutrition and Its Associated Factors among Elderly Population in Rural Puducherry Using Mini-Nutritional Assessment Questionnaire. J. Fam. Med. Prim. Care 2018, 7, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Althaiban, M.; Aljefree, N.; Almoraie, N.; Shatwan, I. Malnutrition Is Associated with Increased Disease Risk in Older People in the Makkah Region of Saudi Arabia: A Cross-Sectional Study. Front. Public Health 2023, 11, 1149739. [Google Scholar] [CrossRef]
- Alzahrani, S.H.; Abdelmoneim El Sayed, I.; Alshamrani, S.M. Prevalence and Factors Associated with Geriatric Malnutrition in an Outpatient Clinic of a Teaching Hospital in Jeddah, Saudi Arabia. Ann. Saudi Med. 2016, 36, 346–351. [Google Scholar] [CrossRef]
- Alhamadan, A.A.; Bindawas, S.M.; Alshammari, S.A.; Al-Amoud, M.M.; Al-Orf, S.M.; Al-Muammar, M.N.; Calder, P.C. Prevalence of Malnutrition and Its Association with Activities of Daily Living in Older Adults Attending Primary Health Care Centers: A Multistage Cross-Sectional Study. Prog. Nutr. 2019, 21, 1011–1018. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand Grip Strength: Outcome Predictor and Marker of Nutritional Status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Bindawas, S.M.; Vennu, V.; Al-Orf, S.M.; Alshammari, S.A.; Al-Amoud, M.M.; Calder, P.C.; Al-Muammar, M.N.; Alhamdan, A.A. Normative Data for Handgrip Strength in Saudi Older Adults Visiting Primary Health Care Centers. Medicina 2019, 55, 251. [Google Scholar] [CrossRef] [PubMed]
- Chilima, D.M.; Ismail, S.J. Nutrition and Handgrip Strength of Older Adults in Rural Malawi. Public. Health Nutr. 2001, 4, 11–17. [Google Scholar] [CrossRef]
- Riviati, N.; Setiati, S.; Laksmi, P.W.; Abdullah, M. Factors Related with Handgrip Strength in Elderly Patients. Acta Med. Indones-Indones. J. Intern. Med. 2017, 49, 215–219. [Google Scholar]
- Alhamdan, A.A.; Al-Muammar, M.N.; Bindawas, S.M.; Alshammari, S.A.; Al-Amoud, M.M.; Calder, P.C. Body Composition Analysis by Bioelectrical Impedance and Its Relationship with Nutritional Status in Older Adults: A Cross-Sectional Descriptive Study. Prog. Nutr. 2021, 23, e2021082. [Google Scholar] [CrossRef]
- Villars, H.; Soto, M.; Morley, J.E. Overview of the MNA-Its History and Challenges. J. Nutr. Health Aging 2005, 10, 456–465. [Google Scholar]
- Ottenbacher, K.J.; Branch, L.G.; Ray, L.; Gonzales, V.A.; Peek, M.K.; Hinman, M.R. The Reliability of Upper- and Lower-Extremity Strength Testing in a Community Survey of Older Adults. Arch. Phys. Med. Rehabil. 2002, 83, 1423–1427. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamada, S.; Inamura, A.; Omori, Y.; Kirimoto, H.; Sugimura, S.; Miyamoto, M. Reliability and Validity of Measurements of Knee Extension Strength Obtained from Nursing Home Residents with Dementia. Am. J. Phys. Med. Rehabil. 2009, 88, 924–933. [Google Scholar] [CrossRef]
- Abizanda, P.; Navarro, J.L.; García-Tomás, M.I.; López-Jiménez, E.; Martínez-Sánchez, E.; Paterna, G. Validity and Usefulness of Hand-Held Dynamometry for Measuring Muscle Strength in Community-Dwelling Older Persons. Arch. Gerontol. Geriatr. 2012, 54, 21–27. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.H.; Williams, G.P.; Clark, R.A. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef]
- Schoene, D.; Wu, S.M.S.; Mikolaizak, A.S.; Menant, J.C.; Smith, S.T.; Delbaere, K.; Lord, S.R. Discriminative Ability and Predictive Validity of the Timed up and Go Test in Identifying Older People Who Fall: Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2013, 61, 202–208. [Google Scholar] [CrossRef]
- Fatyga-Kotula, P.; Wizner, B.; Fedyk-łukasik, M.; Grodzicki, T.; Skalska, A. New Insights on the Link between Body Composition, Nutritional Status and Physical Performance in Elderly Outpatients. Folia Med. Cracov. 2022, 62, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.A.; Meskers, C.G.M.; Trappenburg, M.C.; Verlaan, S.; Reijnierse, E.M.; Whittaker, A.C.; Maier, A.B. Malnutrition Is Associated with Dynamic Physical Performance. Aging Clin. Exp. Res. 2020, 32, 1085–1092. [Google Scholar] [CrossRef]
- van Rijssen, N.M.; Rojer, A.G.M.; Trappenburg, M.C.; Reijnierse, E.M.; Meskers, C.G.M.; Maier, A.B.; de van der Schueren, M.A.E. Is Being Malnourished According to the ESPEN Definition for Malnutrition Associated with Clinically Relevant Outcome Measures in Geriatric Outpatients? Eur. Geriatr. Med. 2018, 9, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.V.; Krznarić, Ž. Nutritional Issues and Considerations in the Elderly: An Update. Croat. Med. J. 2020, 61, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Dionyssiotis, Y.; Prokopidis, K.; Trovas, G.; Papadatou, M.C.; Ananidis, N.; Tragoulias, V.; Lazarou, E.; Christaki, E.; Domazou, M.; Galanos, A.; et al. Sarcopenic Obesity in Individuals with Neurodisabilities: The SarcObeNDS Study. Front. Endocrinol. 2022, 13, 868298. [Google Scholar] [CrossRef]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index with Body Mass Index and Association with Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef]
- Bunout, D.; Barrera, G.; De La Maza, T.; Avendano, M.; Gattas, V.; Petermann, M.; Hirsch, S. Lean and Fat Mass as Determinants of Muscle Strength and Insulin Sensitivity in Chilean Elderly Subjects. J. Nutr. Health Aging 2004, 8, 374–378. [Google Scholar]
- Yokoyama, Y.; Nishi, M.; Murayama, H.; Amano, H.; Taniguchi, Y.; Nofuji, Y.; Narita, M.; Matsuo, E.; Seino, S.; Kawano, Y.; et al. Dietary Variety and Decline in Lean Mass and Physical Performance in Community-Dwelling Older Japanese: A 4-Year Follow-Up Study. J. Nutr. Health Aging 2017, 21, 11–16. [Google Scholar] [CrossRef]
- Liu, C.; Wong, P.Y.; Tong, X.; Chow, S.K.H.; Hung, V.W.Y.; Cheung, W.H.; Qin, L.; Law, S.W.; Wong, R.M.Y. Muscle Plays a More Superior Role than Fat in Bone Homeostasis: A Cross-Sectional Study of Old Asian People. Front. Endocrinol. 2023, 13, 990442. [Google Scholar] [CrossRef]
- Villa, P.; Cipolla, C.; Amar, I.; Sodero, G.; Celeste Pane, L.; Ingravalle, F.; Pontecorvi, A.; Scambia, G. Bone Mineral Density and Body Mass Composition Measurements in Premenopausal Anorexic Patients: The Impact of Lean Body Mass. J. Bone Min. Metab. 2024, 42, 134–141. [Google Scholar] [CrossRef]
- Mendes, J.; Amaral, T.F.; Borges, N.; Santos, A.; Padrão, P.; Moreira, P.; Afonso, C.; Negrão, R. Handgrip Strength Values of Portuguese Older Adults: A Population Based Study. BMC Geriatr 2017, 17, 191. [Google Scholar] [CrossRef]
- Steemburgo, T.; Averbuch, N.C.; Belin, C.H.S.; Behling, E.B. Hand Grip Strength and Nutritional Status in Hospitalized Oncological Patients. Rev. Nutr. 2018, 31, 489–499. [Google Scholar] [CrossRef]
- O’connell, M.L.; Coppinger, T.; Lacey, S.; Arsenic, T.; McCarthy, A.L. The Gender-Specific Relationship between Nutritional Status, Physical Activity and Functional Mobility in Irish Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 8427. [Google Scholar] [CrossRef]
- Guadalupe-Grau, A.; Carnicero, J.A.; Gómez-Cabello, A.; Avila, G.G.; Humanes, S.; Alegre, L.M.; Castro, M.; Rodríguez-Mañas, L.; García-García, F.J. Association of Regional Muscle Strength with Mortality and Hospitalisation in Older People. Age Ageing 2015, 44, 790–795. [Google Scholar] [CrossRef]
MNA | ||||||
---|---|---|---|---|---|---|
Variable | Gender | Well-Nourished | p-Value * | At Risk of Malnutrition or Malnourished | p-Value * | p-Value ** |
Shoulder abduction at 0° (kg) | Male | 8 (4) | 0.001 | 6 (2.5) | 0.002 | 0.001 |
Female | 6.10 (3.90) | 5.30 (2.40) | 0.001 | |||
Shoulder abduction at 90° (kg) | Male | 6.80 (3.40) | 0.001 | 5.80 (2.60) | 0.004 | 0.001 |
Female | 5.50 (1.90) | 5.20 (2.30) | 0.001 | |||
HGS (kg) | Male | 30 (9) | 0.001 | 27 (11) | 0.001 | 0.001 |
Female | 20 (8) | 18 (12) | 0.001 |
MNA | ||||||
---|---|---|---|---|---|---|
Variable | Gender | Well-Nourished | p-Value * | At Risk of Malnutrition or Malnourished | p-Value * | p-Value ** |
KES (kg) | Male | 10.10 (5.90) | 0.001 | 6.20 (5.60) | 0.001 | 0.001 |
Female | 6.50 (3.80) | 5.30 (3.50) | 0.001 | |||
Hip abduction (kg) | Male | 8.10 (3.85) | 0.001 | 6 (2.20) | 0.001 | 0.001 |
Female | 5.90 (3.05) | 5.30 (1.60) | 0.001 | |||
Hip flexion (kg) | Male | 8.20 (3.80) | 0.001 | 6.30 (3.10) | 0.001 | 0.001 |
Female | 6 (3.15) | 5.40 (2.30) | 0.001 |
Variable | MNA Scores | Shoulder Abduction at 0° | Shoulder Abduction at 90° | HGS | KES | Hip Abduction | Hip Flexion | TUG |
---|---|---|---|---|---|---|---|---|
MNA scores | - | 0.367 b | 0.272 b | 0.187 b | 0.484 b | 0.473 b | 0.439 b | −0.003 |
Shoulder abduction at 0° | - | - | 0.834 b | 0.291 b | 0.687 b | 0.777 b | 0.746 b | 0.005 |
Shoulder abduction at 90° | - | - | - | 0.303 b | 0.561 b | 0.705 b | 0.657 b | 0.035 |
HGS | - | - | - | - | 0.135 b | 0.187 b | 0.187 b | −0.090 a |
KES | - | - | - | - | - | 0.826 b | 0.828 b | 0.047 |
Hip abduction | - | - | - | - | - | - | 0.874 b | 0.039 |
Hip flexion | - | - | - | - | - | - | - | 0.045 |
Variable | MNA Scores | Shoulder Abduction at 0° | Shoulder Abduction at 90° | HGS | KES | Hip Abduction | Hip Flexion | TUG |
---|---|---|---|---|---|---|---|---|
MNA scores | - | 0.185 b | 0.151 b | 0.045 | 0.218 b | 0.190 b | 0.188 b | −0.140 b |
Shoulder abduction at 0° | - | - | 0.794 b | 0.075 | 0.744 b | 0.832 b | 0.838 b | −0.069 |
Shoulder abduction at 90° | - | - | - | −0.015 | 0.685 b | 0.791 b | 0.784 b | 0.030 |
HGS | - | - | - | - | 0.099 b | 0.017 | 0.025 | −0.136 b |
KES | - | - | - | - | - | 0.755 b | 0.744 b | −0.006 |
Hip abduction | - | - | - | - | - | - | 0.878 b | −0.045 |
Hip flexion | - | −0.020 |
Variable | OR a (95% CI) | p-Value | OR b (95% CI) | p-Value |
---|---|---|---|---|
Shoulder abduction at 0° | 0.781 (0.741–0.822) | 0.001 | 0.836 (0.789–0.887) | 0.001 |
Shoulder abduction at 90° | 0.795 (0.750–0.843) | 0.001 | 0.862 (0.814–0.914) | 0.001 |
HGS | 0.941 (0.927–0.954) | 0.001 | 0.953 (0.934–0.971) | 0.001 |
KES | 0.831 (0.799–0.864 | 0.001 | 0.843 (0.804–0.884) | 0.001 |
Hip abduction | 0.799 (0.760–0.841) | 0.001 | 0.834 (0.787–0.883) | 0.001 |
Hip flexion | 0.809 (0.770–0.849) | 0.001 | 0.843 (0.796–0.892) | 0.001 |
TUG | 1.155 (1.117–1.193) | 0.001 | 1.098 (1.057–1.140) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melebari, A.; Aldisi, D.; Abulmeaty, M.M.A.; Alhamdan, A. The Association Between Nutritional Status and Muscle Strength of Shoulder, Hip, and Knee, and the Timed Up and Go Test in Older Adults. Nutrients 2025, 17, 2850. https://doi.org/10.3390/nu17172850
Melebari A, Aldisi D, Abulmeaty MMA, Alhamdan A. The Association Between Nutritional Status and Muscle Strength of Shoulder, Hip, and Knee, and the Timed Up and Go Test in Older Adults. Nutrients. 2025; 17(17):2850. https://doi.org/10.3390/nu17172850
Chicago/Turabian StyleMelebari, Abrar, Dara Aldisi, Mahmoud M. A. Abulmeaty, and Adel Alhamdan. 2025. "The Association Between Nutritional Status and Muscle Strength of Shoulder, Hip, and Knee, and the Timed Up and Go Test in Older Adults" Nutrients 17, no. 17: 2850. https://doi.org/10.3390/nu17172850
APA StyleMelebari, A., Aldisi, D., Abulmeaty, M. M. A., & Alhamdan, A. (2025). The Association Between Nutritional Status and Muscle Strength of Shoulder, Hip, and Knee, and the Timed Up and Go Test in Older Adults. Nutrients, 17(17), 2850. https://doi.org/10.3390/nu17172850