Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric Measurements
2.3. Biochemical Measurements
2.4. Dietary Added Sugar Consumption
2.5. RT-qPCR
2.6. Statistical Analysis
3. Results
3.1. Description of Study Subjects
3.2. Expression of Genes Involved in Lipid Metabolism in Children with Obesity
3.3. Associations Between lncRNA MEG3 and Gene Expression and Biochemical Parameters
3.4. Association Between Added Sugar Intake and Molecular and Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACACA | Acetyl-CoA Carboxylase ALPHA |
ATF4 | Activating Transcription Factor 4 |
BAM | Mexican Food Composition Table |
BMI | Body Mass Index |
CHO | Cholesterol |
ENSANUT | Mexican National Health and Nutrition Survey |
FASN | Fatty Acid Synthase |
FFQ | Food Frequency Questionnaire |
FTO | Fat Mass and Obesity-Associated Gene |
HDL-C | High-Density Lipoprotein Cholesterol |
HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
IR | Insulin Resistance |
LDL-C | Low-Density Lipoprotein Cholesterol |
lncRNA | Long non-coding RNA |
MEG3 | Maternally Expressed Gene 3 |
PBMCs | Peripheral Blood Mononuclear Cells |
PPARγ | Peroxisome Proliferator-Activated Receptor γ |
SREBP1 | Sterol Regulatory Element-Binding Protein 1 |
T2D | Type 2 Diabetes |
TG | Triglycerides |
References
- Kerr, J.A.; Patton, G.C.; Cini, K.I.; Abate, Y.H.; Abbas, N.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abd-Elsalam, S.; Abdollahi, A.; Abdoun, M.; et al. Global, Regional, and National Prevalence of Child and Adolescent Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Gaona-Pineda, E.B.; Cuevas-Nasu, L.; Morales-Ruan, C.; Valenzuela-Bravo, D.G.; Humarán, I.M.G.; Ávila-Arcos, M.A. Prevalencias de Sobrepeso y Obesidad En Población Escolar y Adolescente de México. Ensanut Continua 2020–2022. Salud Publica Mex. 2023, 65, s218–s224. [Google Scholar] [CrossRef]
- Mercado-Mercado, G. Childhood Obesity in Mexico: A Constant Struggle and Reflection for Its Prevention on the Influence of Family and Social Habits. Obes. Med. 2023, 44, 100521. [Google Scholar] [CrossRef]
- Rasool, A.; Mahmoud, T.; Mathyk, B.; Kaneko-Tarui, T.; Roncari, D.; White, K.O.; O’Tierney-Ginn, P. Obesity Downregulates Lipid Metabolism Genes in First Trimester Placenta. Sci. Rep. 2022, 12, 19368. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular Functions of Long Noncoding RNAs. Nat. Cell Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science 2010, 329, 689–693. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, X.; Cui, B.; Xiong, X.; Wu, A.; Lin, C.; Zhang, Y. Decoding the Regulatory Roles of Non-Coding RNAs in Cellular Metabolism and Disease. Mol. Ther. 2023, 31, 1562–1576. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 Noncoding RNA: A Tumor Suppressor. J. Mol. Endocrinol. 2012, 48, R45–R53. [Google Scholar] [CrossRef]
- Zavhorodnia, N.Y. The Clinical and Pathogenetic Role of LncRNA MEG3 and MiRNA-421 in Obese Children with Non-Alcoholic Fatty Liver Disease. Zaporozhye Med. J. 2022, 24, 293–300. [Google Scholar] [CrossRef]
- Parvar, S.N.; Mirzaei, A.; Zare, A.; Doustimotlagh, A.H.; Nikooei, S.; Arya, A.; Alipoor, B. Effect of Metformin on the Long Non-Coding RNA Expression Levels in Type 2 Diabetes: An in Vitro and Clinical Trial Study. Pharmacol. Rep. 2023, 75, 189–198. [Google Scholar] [CrossRef]
- Heydari, N.; Sharifi, R.; Nourbakhsh, M.; Golpour, P.; Nourbakhsh, M. Long Non-Coding RNAs TUG1 and MEG3 in Patients with Type 2 Diabetes and Their Association with Endoplasmic Reticulum Stress Markers. J. Endocrinol. Investig. 2023, 46, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Long, M.; Yue, N.; Li, Q.; Chen, J.; Zhao, H.; Deng, W. LncRNA MEG3 Restrains Hepatic Lipogenesis via the FOXO1 Signaling Pathway in HepG2 Cells. Cell Biochem. Biophys. 2024, 82, 1253–1259. [Google Scholar] [CrossRef]
- Huang, P.; Huang, F.; Liu, H.; Zhang, T.; Yang, M.; Sun, C. LncRNA MEG3 Functions as a CeRNA in Regulating Hepatic Lipogenesis by Competitively Binding to MiR-21 with LRP6. Metabolism 2019, 94, 1–8. [Google Scholar] [CrossRef]
- Lu, Y.; Qie, D.; Yang, F.; Wu, J. LncRNA MEG3 Aggravates Adipocyte Inflammation and Insulin Resistance by Targeting IGF2BP2 to Activate TLR4/NF-ΚB Signaling Pathway. Int. Immunopharmacol. 2023, 121, 110467. [Google Scholar] [CrossRef]
- Shettigar, V.K.; Garikipati, V.N.S. Role of LncRNAs in Pathophysiology of Obesity. Curr. Opin. Physiol. 2025, 44, 100832. [Google Scholar] [CrossRef]
- Endy, E.J.; Yi, S.-Y.; Steffen, B.T.; Shikany, J.M.; Jacobs, D.R.; Goins, R.K.; Steffen, L.M. Added Sugar Intake Is Associated with Weight Gain and Risk of Developing Obesity over 30 Years: The CARDIA Study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 466–474. [Google Scholar] [CrossRef]
- Magriplis, E.; Michas, G.; Petridi, E.; Chrousos, G.P.; Roma, E.; Benetou, V.; Cholopoulos, N.; Micha, R.; Panagiotakos, D.; Zampelas, A. Dietary Sugar Intake and Its Association with Obesity in Children and Adolescents. Children 2021, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Guo, Q.; Chang, Y.; Zhong, Y.; Cheng, L.; Wei, W. Effects of Maternal High-Fructose Diet on Long Non-Coding RNAs and Anxiety-like Behaviors in Offspring. Int. J. Mol. Sci. 2023, 24, 4460. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.E.; Katzmarzyk, P.T. Ethnic and Sex Differences in Body Fat and Visceral and Subcutaneous Adiposity in Children and Adolescents. Int. J. Obes. 2012, 36, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Koenigsberg, J.; Boyd, G.S.; Gidding, S.S.; Hassink, S.G.; Falkner, B. Association of Age and Sex With Cardiovascular Risk Factors and Insulin Sensitivity in Overweight Children and Adolescents. J. Cardiometab Syndr. 2006, 1, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Ballerini, M.G.; Bergadá, I.; E Rodríguez, M.; Keselman, A.; Bengolea, V.S.; Pipman, V.; Domené, H.M.; Jasper, H.G.; Ropelato, M.G. Insulin Level and Insulin Sensitivity Indices among Healthy Children and Adolescents. Arch. Argent. Pediatr. 2016, 114, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Doaei, S.; Kalantari, N.; Izadi, P.; Salonurmi, T.; Mosavi Jarrahi, A.; Rafieifar, S.; Azizi Tabesh, G.; Rahimzadeh, G.; Gholamalizadeh, M.; Goodarzi, M.O. Changes in FTO and IRX3 Gene Expression in Obese and Overweight Male Adolescents Undergoing an Intensive Lifestyle Intervention and the Role of FTO Genotype in This Interaction. J. Transl. Med. 2019, 17, 1–8. [Google Scholar] [CrossRef]
- Anderson, W.D.; Soh, J.Y.; Innis, S.E.; Dimanche, A.; Ma, L.; Langefeld, C.D.; Comeau, M.E.; Das, S.K.; Schadt, E.E.; Björkegren, J.L.M.; et al. Sex Differences in Human Adipose Tissue Gene Expression and Genetic Regulation Involve Adipogenesis. Genome Res. 2020, 30, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, Z.; Du, Y.; Cheng, Y.; Chen, S.; Guo, F. ATF4 Regulates Lipid Metabolism and Thermogenesis. Cell Res. 2010, 20, 174–184. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, T.; Yu, S.; Lee, S.; Calabuig-Navarro, V.; Yamauchi, J.; Ringquist, S.; Dong, H.H. ATF4 Protein Deficiency Protects against High Fructose-Induced Hypertriglyceridemia in Mice. J. Biol. Chem. 2013, 288, 25350–25361. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chen, X.; Cheng, S.; Shu, L.; Yan, M.; Yao, L.; Wang, B.; Huang, S.; Zhou, L.; Yang, Z.; et al. FTO Promotes SREBP1c Maturation and Enhances CIDEC Transcription during Lipid Accumulation in HepG2 Cells. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2018, 1863, 538–548. [Google Scholar] [CrossRef]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int J Mol Sci 2022, 23, 11005. [Google Scholar] [CrossRef]
- World Health Organization Application Tools. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/application-tools (accessed on 20 July 2025).
- Gaona-Pineda, E.B.; Mejía-Rodríguez, F.; Cuevas-Nasu, L.; Gómez-Acosta, L.M.; Rangel-Baltazar, E.; Flores-Aldana, M.E. Dietary Intake and Adequacy of Energy and Nutrients in Mexican Adolescents: Results from Ensanut 2012. Salud Publica Mex. 2018, 60, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Silva, I.; Barragán-Vázquez, S.; Mongue-Urrea, A.; Mejía-Rodríguez, F.; Rodríguez-Ramírez, S.; Rivera-Dommarco, J. Base de Alimentos de México 2012 (BAM): Compilación de La Composición de Los Alimentos Frecuentemente Consumidos En El País. Versión 18.1.2 2023. Available online: https://insp.mx/informacion-relevante/bam-bienvenida (accessed on 31 January 2024).
- Ramírez-Silva, I.; Jiménez-Aguilar, A.; Valenzuela-Bravo, D.; Martinez-Tapia, B.; Rodríguez-Ramírez, S.; Gaona-Pineda, E.B.; Angulo-Estrada, S.; Shamah-Levy, T. Methodology for Estimating Dietary Data from the Semi-Quantitative Food Frequency Questionnaire of the Mexican National Health and Nutrition Survey 2012. Salud Publica Mex. 2016, 58, 629. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, H.; Wang, L.; Wu, W.; Zhao, J.; Li, X.; Xiong, R.; Ding, X.; Yuan, D.; Yuan, C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic Causes of Metabolic Diseases. Curr. Med. Chem. 2024, 31, 6140–6153. [Google Scholar] [CrossRef] [PubMed]
- Daneshmoghadam, J.; Omidifar, A.; Akbari Dilmaghani, N.; Karimi, Z.; Emamgholipour, S.; Shanaki, M. The Gene Expression of Long Non-coding RNAs (LncRNAs): MEG3 and H19 in Adipose Tissues from Obese Women and Its Association with Insulin Resistance and Obesity Indices. J. Clin. Lab. Anal. 2021, 35, e23741. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. LncRNA MEG3 Promotes Hepatic Insulin Resistance by Serving as a Competing Endogenous RNA of MiR-214 to Regulate ATF4 Expression. Int. J. Mol. Med. 2018, 43, 345–357. [Google Scholar] [CrossRef]
- Di, F.; Liu, J.; Li, S.; Hong, Y.; Chen, Z.-J.; Du, Y. Activating Transcriptional Factor 4 Correlated with Obesity and Insulin Resistance in Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2019, 35, 351–355. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, R.; Zhang, Y.; Zhang, X.; Chen, L.; Zhou, X.; Yuan, Z.; Nie, Y.; Li, M.; Mo, D.; et al. ATF4 Regulates SREBP1c Expression to Control Fatty Acids Synthesis in 3T3-L1 Adipocytes Differentiation. Biochim. Et Biophys. Acta (BBA)-Gene Regul. Mech. 2016, 1859, 1459–1469. [Google Scholar] [CrossRef]
- Abdul-Maksoud, R.S.; Zidan, H.E.; Saleh, H.S.; Amer, S.A. Visfatin and SREBP-1c MRNA Expressions and Serum Levels Among Egyptian Women with Polycystic Ovary Syndrome. Genet. Test. Mol. Biomark. 2020, 24, 409–419. [Google Scholar] [CrossRef]
- Szpigel, A.; Hainault, I.; Carlier, A.; Venteclef, N.; Batto, A.F.; Hajduch, E.; Bernard, C.; Ktorza, A.; Gautier, J.F.; Ferré, P.; et al. Lipid Environment Induces ER Stress, TXNIP Expression and Inflammation in Immune Cells of Individuals with Type 2 Diabetes. Diabetologia 2018, 61, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, J.; Liu, B.; Lv, Z.; Xia, T.; Xiao, F.; Chen, S.; Guo, F. Central Activating Transcription Factor 4 (ATF4) Regulates Hepatic Insulin Resistance in Mice via S6K1 Signaling and the Vagus Nerve. Diabetes 2013, 62, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Kitakaze, K.; Oyadomari, M.; Zhang, J.; Hamada, Y.; Takenouchi, Y.; Tsuboi, K.; Inagaki, M.; Tachikawa, M.; Fujitani, Y.; Okamoto, Y.; et al. ATF4-Mediated Transcriptional Regulation Protects against β-Cell Loss during Endoplasmic Reticulum Stress in a Mouse Model. Mol. Metab. 2021, 54, 101338. [Google Scholar] [CrossRef] [PubMed]
- Yagan, M.; Najam, S.; Hu, R.; Wang, Y.; Dickerson, M.; Dadi, P.; Xu, Y.; Simmons, A.J.; Stein, R.; Adams, C.M.; et al. Atf4 Protects Islet β-Cell Identity and Function under Acute Glucose-Induced Stress but Promotes β-Cell Failure in the Presence of Free Fatty Acid. Diabetes 2025, 74, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T. Regulation of Activating Transcription Factor 4 (Atf4) Expression by Fat Mass and Obesity-Associated (Fto) in Mouse Hepatocyte Cells. Acta Endocrinol. (Buchar.) 2021, 17, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Berulava, T.; Horsthemke, B. The Obesity-Associated SNPs in Intron 1 of the FTO Gene Affect Primary Transcript Levels. Eur. J. Human. Genet. 2010, 18, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Doaei, S.; Kalantari, N.; Izadi, P.; Salonurmi, T.; Jarrahi, A.M.; Rafieifar, S.; Azizi Tabesh, G.; Rahimzadeh, G.; Gholamalizadeh, M.; Goodarzi, M.O. Interactions between Macro-Nutrients’ Intake, FTO and IRX3 Gene Expression, and FTO Genotype in Obese and Overweight Male Adolescents. Adipocyte 2019, 8, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; Kolehmainen, M.; Schwab, U.; Pulkkinen, L.; de Mello, V.D.F.; Vaittinen, M.; Laaksonen, D.E.; Poutanen, K.; Uusitupa, M.; Gylling, H. Gene Expression of FTO in Human Subcutaneous Adipose Tissue, Peripheral Blood Mononuclear Cells and Adipocyte Cell Line. Lifestyle Genom. 2010, 3, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Doaei, S.; Kalantari, N.; Keshavarz Mohammadi, N.; Izadi, P.; Gholamalizadeh, M.; Eini-Zinab, H.; Salonurmi, T.; Mosavi Jarrahi, A.; Rafieifar, S.; Najafi, R.; et al. The Role of FTO Genotype in the Association Between FTO Gene Expression and Anthropometric Measures in Obese and Overweight Adolescent Boys. Am. J. Mens. Health 2019, 13, 1557988318808119. [Google Scholar] [CrossRef] [PubMed]
- Yuzbashian, E.; Asghari, G.; Hedayati, M.; Zarkesh, M.; Mirmiran, P.; Khalaj, A. The Association of Dietary Carbohydrate with FTO Gene Expression in Visceral and Subcutaneous Adipose Tissue of Adults without Diabetes. Nutrition 2019, 63–64, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Huang, W.; Rao, J.; Yan, D.; Yuan, J. Demethylase FTO-Mediated M6A Modification of LncRNA MEG3 Activates Neuronal Pyroptosis via NLRP3 Signaling in Cerebral Ischemic Stroke. Mol. Neurobiol. 2024, 61, 1023–1043. [Google Scholar] [CrossRef] [PubMed]
- Bravard, A.; Veilleux, A.; Disse, E.; Laville, M.; Vidal, H.; Tchernof, A.; Rieusset, J. The Expression of FTO in Human Adipose Tissue Is Influenced by Fat Depot, Adiposity, and Insulin Sensitivity. Obesity 2013, 21, 1165–1173. [Google Scholar] [CrossRef]
- Taneera, J.; Khalique, A.; Abdrabh, S.; Mohammed, A.K.; Bouzid, A.; El-Huneidi, W.; Bustanji, Y.; Sulaiman, N.; Albasha, S.; Saber-Ayad, M.; et al. Fat Mass and Obesity-Associated (FTO) Gene Is Essential for Insulin Secretion and β-Cell Function: In Vitro Studies Using INS-1 Cells and Human Pancreatic Islets. Life Sci. 2024, 339, 122421. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 71) | Without Obesity (n = 27) | With Obesity (n = 44) | p-Value |
---|---|---|---|---|
Age (y) | 8.94 ± 1.680 | 9.111 ± 1.740 | 8.84 ± 1.660 | 0.514 a |
Sex, n (%) | ||||
Male | 28 (39.44) | 9 (32.14) | 19 (67.86) | 0.410 b |
Female | 43 (60.56) | 18 (41.86) | 25 (58.14) | |
Waist circumference (cm) | 74.338 ± 13.462 | 60.833 ± 7.302 | 82.625 ± 8.831 | <0.001 a |
Hip circumference (cm) | 82.047 ± 12.037 | 70.940 ± 6.962 | 88.863 ± 9.031 | <0.001 a |
BMI (kg/cm2) | 22.725 (16.405–25.184) | 16.113 (15.527–16.645) | 24.292 (23.787–25.410) | <0.001 c |
BMI percentile | 76.352 ± 30.283 | 41.555 ± 20.905 | 97.704 ± 1.373 | <0.001 a |
Glucose (mg/dL) | 87.288 ± 7.991 | 88.185 ± 6.314 | 86.738 ± 8.890 | 0.463 a |
Insulin (µIU/mL) | 14.430 (8.400–21.400) | 8.400 (7.200–9.550) | 17.880 (15.000–22.100) | <0.001 c |
HOMA-IR | 3.066 (1.767–4.796) | 1.794 (1.596–2.092) | 3.726 (3.123–4.801) | <0.001 c |
≥3, n (%) | 36 (50.70) | 6 (22.22) | 30 (68.18) | <0.001 b |
Total CHO (mg/dL) | 164.253 ± 27.204 | 164.185 ± 31.027 | 164.295 ± 24.953 | 0.986 a |
HDL-C (mg/dL) | 47.983 ± 10.577 | 52.981 ± 8.716 | 44.915 ± 10.529 | <0.001 a |
LDL-C (mg/dL) | 85.982 ± 25.146 | 86.937 ± 28.916 | 85.396 ± 22.866 | 0.804 a |
TG (mg/dL) | 129.7 (89.100–219.300) | 100.600 (85.345–137.136) | 157.050 (123.967–200.893) | 0.009 c |
Added sugar (g) | 73.724 ± 36.195 | 71.751 ± 44.585 | 74.934 ± 30.710 | 0.766 a |
≥50 g, n (%) | 58 (81.69) | 20 (74.07) | 38 (86.36) | 0.194 b |
Total energy intake (Kcal) | 2383.5 (1983–2787) | 2340 (1908–2698) | 2490 (2085–2870) | 0.294 c |
Gene | Adjusted for Sex, Age, and Obesity | |
---|---|---|
β | p-Value | |
SREBP1 | 0.322 | <0.001 |
FASN | 0.178 | 0.002 |
ACACA | 0.180 | 0.030 |
FTO | 0.146 | 0.004 |
ATF4 | 0.149 | 0.001 |
Variable | SREPB1 | FASN | ACACA | FTO | ATF4 | MEG3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Waist circumference (cm) | −0.012 | 0.266 | −0.000 | 0.895 | −0.006 | 0.572 | 0.000 | 0.873 | 0.000 | 0.873 | 0.000 | 0.981 |
Hip circumference (cm) | 0.003 | 0.804 | −0.000 | 0.958 | −0.003 | 0.713 | 0.000 | 0.926 | 0.000 | 0.926 | −0.005 | 0.830 |
Glucose (mg/dL) | −0.020 | 0.026 | 0.007 | 0.211 | −0.011 | 0.099 | −0.007 | 0.079 | −0.007 | 0.079 | 0.010 | 0.576 |
Insulin (µIU/mL) | −0.012 | 0.030 | 0.005 | 0.123 | −0.005 | 0.270 | −0.004 | 0.148 | −0.004 | 0.148 | −0.008 | 0.415 |
HOMA-IR | −0.050 | 0.049 | 0.025 | 0.089 | −0.026 | 0.234 | −0.017 | 0.146 | −0.017 | 0.146 | −0.041 | 0.429 |
Total CHO (mg/dL) | −0.003 | 0.241 | −0.001 | 0.474 | 0.001 | 0.575 | −0.000 | 0.727 | −0.000 | 0.727 | 0.001 | 0.674 |
HDL-C (mg/dL) | 0.001 | 0.880 | −0.008 | 0.037 | 0.006 | 0.397 | 0.002 | 0.443 | 0.002 | 0.443 | 0.007 | 0.592 |
LDL-C (mg/dL) | −0.002 | 0.418 | −0.001 | 0.519 | 0.002 | 0.345 | −0.000 | 0.485 | −0.000 | 0.485 | 0.000 | 0.969 |
TG (mg/dL) | −0.000 | 0.652 | 0.001 | 0.052 | −0.001 | 0.152 | −0.000 | 0.753 | −0.000 | 0.753 | 0.001 | 0.475 |
Gene | Adjusted for Sex and Total Energy Intake | |
---|---|---|
β | p-Value | |
SREBP1 | −0.360 | 0.050 |
FASN | −0.024 | 0.809 |
ACACA | −0.211 | 0.111 |
FTO | −0.221 | 0.032 |
ATF4 | −0.050 | 0.426 |
MEG3 | −0.272 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-DíazCouder, A.; Paz-González, P.J.; Valdez-Garcia, M.; Ramírez-Silva, C.I.; Avila-Soto, K.I.; Pérez-Bautista, A.; Vazquez-Moreno, M.; Nava-Cabrera, A.; Romero-Nava, R.; Huang, F.; et al. Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake. Nutrients 2025, 17, 2546. https://doi.org/10.3390/nu17152546
Hernández-DíazCouder A, Paz-González PJ, Valdez-Garcia M, Ramírez-Silva CI, Avila-Soto KI, Pérez-Bautista A, Vazquez-Moreno M, Nava-Cabrera A, Romero-Nava R, Huang F, et al. Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake. Nutrients. 2025; 17(15):2546. https://doi.org/10.3390/nu17152546
Chicago/Turabian StyleHernández-DíazCouder, Adrián, Pablo J. Paz-González, Maryori Valdez-Garcia, Claudia I. Ramírez-Silva, Karol Iliana Avila-Soto, Araceli Pérez-Bautista, Miguel Vazquez-Moreno, Ana Nava-Cabrera, Rodrigo Romero-Nava, Fengyang Huang, and et al. 2025. "Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake" Nutrients 17, no. 15: 2546. https://doi.org/10.3390/nu17152546
APA StyleHernández-DíazCouder, A., Paz-González, P. J., Valdez-Garcia, M., Ramírez-Silva, C. I., Avila-Soto, K. I., Pérez-Bautista, A., Vazquez-Moreno, M., Nava-Cabrera, A., Romero-Nava, R., Huang, F., & Cruz, M. (2025). Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake. Nutrients, 17(15), 2546. https://doi.org/10.3390/nu17152546