Targeting Oxidative Stress in Acute Pancreatitis: A Critical Review of Antioxidant Strategies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Antioxidants in Monotherapy
3.1.1. Vitamins
- 1.
- Alpha-tocopherol
- 2.
- Ascorbic acid
- 3.
- Beta-carotene
- 4.
- Vitamin D
Antioxidant | First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|
Alpha-tocopherol | Firat et al., 2014 [29] | Double-blind placebo-controlled RCT. To investigate the effect of alpha-tocopherol on oxidative stress and inflammation in AP. | 400 IU/day orally for 7 days | 50 | Significantly lower levels of MDA, CRP, and IL-6 (p < 0.05); significantly increased total antioxidant status (p < 0.05). | None reported 1 |
Ascorbic acid (Vitamin C) | Chooklin et al., 2020 [35] | Prospective case–control. To investigate the effect of high-dose ascorbic acid on outcomes in severe necrotizing AP. | 4 g/day for 7–8 days | 181 | Positive impact on organ dysfunction; significantly reduced incidence of infected necrosis (p = 0.001) and mortality rate (18.6% vs. 10.6%; p = 0.27). | None reported |
Gao et al., 2021 [33] 2 studies evaluating combined therapy (ascorbic acid + other antioxidants) were included | Systematic review and meta-analysis of 4 clinical studies. To investigate the effect of ascorbic acid on AP outcomes. | Ranging from 500 mg orally to 10 g with IV within 72 to 96 h from AP onset for 5 days to 2 weeks | 219 | Significantly reduced LoHS (p < 0.001); no impact on survival and organ failure. | None reported | |
Du et al., 2003 2 [34] | Prospective randomized case–control. To investigate the effect of high-dose ascorbic acid on AP. | 10 g/day of IV for 5 days in the treatment group vs. 1 g/day of IV for 5 days in controls | 84 | Significant positive impact on symptom resolution, cure rate (30 vs. 18%), and LoHS (9.34 vs. 13.45 d) (all p < 0.05); significant decrease in serum cytokines (p < 0.05) and non-significant decrease in CRP; significant improvement in antioxidant status (p < 0.05). | None reported | |
Beta-carotene | Lavy et al., 2004 [38] | Double-blind placebo-controlled RCT. To investigate the effect of beta-carotene supplementation in the prevention of post-ERCP AP. | Single-dose 2 g oral beta-carotene 12 h prior to ERCP | 321 | No impact on the incidence of post-ERCP AP; significant positive impact on the severity of AP—lower incidence of severe AP in the treatment group (p < 0.01). | None reported |
3.1.2. Amino Acids and Derivatives
- 1.
- L-carnitine
- 2.
- Glutamine
- 3.
- Glutathione precursors
- 4.
- Melatonin
- 5.
- Agomelatine
Antioxidant | First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|
L-carnitine | No human studies. | Significant impact on reducing oxidative stress and increasing antioxidant function in experimentally induced AP. | ||||
Glutamine | Zhong et al., 2013 [65] | Meta-analysis of 4 RCTs. To evaluate the efficacy of IV Gln in severe AP. | Gln dipeptide ranging from 0.4 g/kg to 20 g/day IV for ≥ 7 days | 190 | Decreased mortality (p = 0.01), LoHS (p < 0.001), and complication rate (p = 0.006). | No significant adverse effects |
Jiang et al., 2020 [68] | Meta-analysis of 7 RCTs. To assess if Gln-supported EEN has therapeutic benefits in severe AP. | 0.1 to 0.5 g/kg/day for 5 to 14 days | 433 (EEN group: 218 patients; Gln + EEN group: 215 patients) | Higher serum albumin (p < 0.01), lower serum hsCRP (p < 0.01), lower risk of mortality, and shorter LoHS (p < 0.01). No significant impact on APACHE II scores, incidence of infection-related complications, or surgical interventions. | None reported 1 | |
Dong et al., 2022 [69] | Meta-analysis of 30 RCTs. To evaluate the efficacy of Gln supplementation in severe AP. | 0.4 g/kg parenterally or enterally | 1 201 | Pooled data showed decreased mortality in PN group (p = 0.001), but not in EN group (p = 0.25); LoHS and complications were significantly reduced (both p < 0.001); significantly increased serum albumin and IgG (both p < 0.00001) and decreased serum creatinine (p = 0.008), CRP (p < 0.0001), IL-6, and Il-8 (both p < 0.00001), and decreased bloating recovery time (p < 0.00001). | None reported | |
Glutamine + Ulinastatin | Zhao et al., 2022 [70] | To investigate if Gln and ulinastatin supplementation can reduce inflammation and enhance liver function in patients suffering from severe AP. | In total, 500 mL of 5% glucose injection with ulinastatin (twice daily; 100 mL: 5 g). Gln (100 mL: 20 g) once a day via intravenous drip at a dose of 20 g each. | 78 | Quicker recovery of bowel sounds, first defecation, bloating, and abdominal pain; higher levels of IgM, IgA, and IgG (all p < 0.05). Significantly lower levels of IL-6, TNF-α, and hsCRP (all p < 0.05). | None reported |
N-ACC | Katsinelos et al., 2005 [76] | Double-blind placebo-controlled. To assess the efficacy of N-ACC in the prevention of post-ERCP AP. | IV loading dose: 70 mg/kg 2 h before ERCP and 35 mg/kg at 4 h intervals for 24 h after ERCP. | 249 | No beneficial effects on AP incidence and severity. | None reported |
Milewski et al., 2006 [77] | RCT. To assess the efficacy of N-ACC in the prevention of post-ERCP AP. | In total, 600 mg orally at 24 and 12 h before ERCP and 600 mg of IV b.i.d for 48 h after ERCP. | 55 | No beneficial effects on AP incidence. No impact on baseline and post-ERCP serum and urine amylase. | None reported | |
Alavi Nejad et al., 2013 [79] | Double-blind, placebo-controlled RCT. To assess the impact of N-ACC on post-ERCP AP incidence and LoHS. | 1200 mg orally 2 h before ERCP. | 100 | Significantly reduced incidence of AP (10% vs. 28% for placebo, p = 0.02); no significant impact on LoHS (p = 0.8). | None reported | |
Pavel et al., 2019 [78] | Single-blinded RCT. To assess the efficacy of indomethacin in various doses with or without N-ACC for the prevention of post-ERCP AP. | Group 1: 600 mg of N-ACC IV 15 min before ERCP + indomethacin 50 mg IR before and after ERCP. Group 2: indomethacin alone 50 mg IR before and after ERCP. Group 3 (standard regimen): indomethacin 100 mg IR after ERCP. | 186 | No beneficial effects of N-ACC supplementation; no significant difference in AP incidence btw. the 3 groups (p = 0.24); similar efficacy of split dose vs. standard regimen. | No adverse effects | |
Sivakumar et al., 2024 [80] | Prospective observational study. To evaluate the impact of N-ACC supplementation on AP resolution and LoHS. | IV infusion 1 g/5 mL + 25 mL of normal saline, followed by oral tablet 600 mg b.i.d.; evaluation at 24 and 48 h. | 65 | Significantly reduced serum amylase at 24 h (p = 0.01); no impact on serum lipase (p = 0.1). No significant difference in Ranson score (p = 0.4); significant impact on APACHE II score at 24 h (p = 0.04) and 48 h (p = 0.01). No impact on LoHS (p = 0.4). | None reported | |
SAMe + N-ACC | Sharer et al., 1995 [83] | RCT. To assess the effect of antioxidants on clinical outcomes in mild and severe AP. | SAMe 43 mg/kg + N-ACC 300 mg/kg within 24 h from admission (within or after 15 h from symptom onset). | 79 | No impact on complication rate, LoHS, or mortality. | None reported |
Melatonin | Sadeghi et al., 2019 [99] | Double-blind placebo-controlled RCT. To determine whether melatonin reduces the rate of post-ERCP AP. | In total, 3 mg orally + indomethacin 100 mg IR 1 h before ERCP. | 411 | Significantly decreased post-ERCP AP rate (9.3% vs. 15% for placebo, p = 0.042); lower levels of lipase/amylase (p = 0.032 and p = 0.041, respectively). | No adverse effects |
3.1.3. Phytonutrients and Selenium
- 1.
- Organosulfur compounds
- 2.
- Resveratrol
- 3.
- Lycopene
- 4.
- Quercetin
- 5.
- Curcumin
- 6.
- Selenium
Antioxidant | First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|
Resveratrol, Lycopene, Quercetin | No human studies. | Significant anti-inflammatory and antioxidant effects in experimentally induced AP. | ||||
Curcumin | Durgaprasad et al., 2005 [153] | Single-blind placebo-controlled RCT. To evaluate the effect of curcumin on pain and markers of oxidative stress in tropical pancreatitis. | In total, 500 mg of curcumin + 5 mg of piperine orally for 6 weeks. | 20 | Significant reduction in erythrocyte MDA and significant increase in GSH levels; no improvement in pain. | None reported 1 |
Chegini et al., 2023 [154] | Double-blind, parallel-arm RCT. To determine if individuals with mild-to-moderate AP respond well to nano-curcumin as an anti-inflammatory medication. LoHS was the primary endpoint. | Two doses of nano-curcumin (40 mg) or placebo, daily for two weeks. | 42 | It improved the overall appetite score (p = 0.049), significantly decreased LoHS (p = 0.006), and decreased the requirement for analgesics over time (p = 0.001). | No adverse effects | |
Selenium (Se) | Wollschläger et al., 1997 [166] | Single-arm clinical study. To investigate the effect of high-dose Se on oxidative status in AP. | Day 1: 2000 µg (1000 µg IV bolus + 1000 µg prolonged infusion over 10 h). Days 2–5: 1000 µg/day continuous infusion. Days 6–8: 1000 µg orally t.i.d. | 16 | Significant increase in serum Se; moderate increase in Gpx activity, significant decrease in MDA activity; SOD remained unchanged. | None reported |
Wollschläger et al., 1999 [167] | Prospective RCT. To investigate the effect of prophylactic Se on clinical and biological outcomes of post-ERCP AP. | Day before ERCP: 1000 µg IV bolus + 1000 µg prolonged infusion over 5 h. Day of ERCP: 1000 µg prolonged infusion over 5 h. | 40 | No impact on symptoms and need for analgesics; no significant impact on AP incidence or antioxidant status (GPx and MDA serum levels). | None reported | |
Lindner et al., 2004 [165] | Double-blind placebo-controlled RCT. To investigate the effect of Se on clinical and paraclinical parameters of AP. | Day 1: 2000 µg IV. Days 2–5: 1000 µg IV. Day 6 until discharge: 300 µg IV. | 67 | No significant effect on clinical course of AP; median LoHS24 days for treatment group vs. 26 days for controls; no significant impact on oxidative status. | None reported | |
Kočan et al., 2010 [159] | Case report. To investigate the impact of selenium supplementation inflammation and antioxidant markers in severe AP with septic shock. | Continuous infusion of 750 mg/24 h during the next six days after septic shock; 100 mL of alanyl-Gln/day was also added. | Case report | Glutathione peroxidase activity, an antioxidant enzyme, and other inflammatory indicators decreased. | None reported |
3.1.4. Omega-3 Polyunsaturated Fatty Acids (PUFAs)
First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|
Lei et al., 2015 [181] | Meta-analysis of 8 RCTs. To investigate the impact of omega-3 supplementation on mortality, infectious complications, LoHS and ICU stay in severe AP. | Doses varied from 0.15 to 0.2 g/kg/day in 4 studies (PN) to 2.84 g/day in 1 study (EN). One study administered omega-3 enterally in combination with Gln and arginine. Duration: 3–15 days. | 364 | Pooled data from 6 RCTs (n = 264) showed that omega-3 significantly reduced mortality (RR 0.35; 95% CI 0.16 to 0.75, p < 0.05). In a subgroup analysis, the beneficial effect was statistically significant only in the PN group (RR 0.37; 95% CI 0.16 to 0.86; p < 0.05), while the EN group had no significant benefit (RR 0.28; 95% CI 0.05 to 1.61; p > 0.05). Pooled data from 5 RCTs (n = 219) revealed a significant reduction in infectious complications compared to controls (RR 0.54; 95% CI 0.34 to 0.85; p < 0.05), with similarly different results for PN (RR 0.50; 95% CI 0.28 to 0.9; p < 0.05) vs. EN (RR 0.62; 95% CI 0.3 to 1.28; p > 0.05). Pooled data from 5 RCTs (n = 203) showed a significant reduction in LoHS compared with controls (MD −6.50; 95% CI −9.54 to −3.46, p < 0.05), with similarly different results for PN (MD −8.13; 95% CI −10.39 to −5.87, p < 0.05) vs. EN (MD −0.82; 95% CI −12.44 to 10.79, p > 0.05) in the subgroup analysis. Pooled analysis of 3 RCTs (n = 116) showed no significant effect on ICU stay until exclusion of EN-supplemented patients (MD, −4.40; 95% CI −6.13 to −2.66, p < 0.05). | None reported. 1 |
Wolbrink et al., 2020 [180] | Meta-analysis of 5 RCTs. To evaluate the safety and efficacy of omega-3 supplementation in moderate and severe AP within 48 h of admission. Primary outcome: in-hospital mortality. Secondary outcomes: rate of new-onset organ failure and infectious complications. | EN (1 study): 3.3 g/day vs. SMC. PN (4 studies): 0.2 g/kg/day (up to 10 g/day) vs. SMC or soybean oil. Duration: 5–7 days. | 229 | Pooled data from 4 RCTs (n = 169) showed a non-significant reduction in mortality compared to controls (OR 0.37, 95% CI 0.09–1.56, p = 0.18). Based on 2 RCTs (n = 85), there was a lower risk for new-onset organ failure in the omega-3 group (OR 0.33, 95% CI 0.11–0.93, p = 0.04), and a trend towards a lower risk of infectious complications based on pooled data from 4 RCTs (n = 169) (OR 0.53, 95%CI 0.27–1.03, p = 0.13). In 3 RCTs, CRP showed a mean decrease of 43% from baseline at 7 days in the omega-3 group, compared to 20% in controls. In 2 RCTs, IL-10 had a mean increase of 47% in the omega-3 group compared to 18% in controls, suggesting an anti-inflammatory response. | Only one study reported a mild skin rash as an adverse event; otherwise, no adverse events were reported. |
Jadhav et al., 2024 [185] | RCT. To investigate the comparative effect of omega-3 vs. octreotide infusion in AP within 48 h of onset. | Omega-3 1.5 g/kg daily intravenous infusion over 4 h for 7 consecutive days or until discharge. Octreotide dose not mentioned. | 220 | Significantly lower CRP levels in the omega-3 group by day 7 (50.2 ± 20.5 mg/L) compared to the octreotide group (75.4 ± 25.7 mg/L, p < 0.001). Significantly lower infection rate (7.3% vs. 15.5%, p = 0.03) and pancreatic necrosis (10.9% vs. 19.1%, p = 0.05) in the omega-3 group. Lower but not statistically significant organ failure rate (4.5% vs. 8.2%, p = 0.22) and mortality rate (2.7% vs. 6.4%, p = 0.18) in the omega-3 group. | None reported. |
3.1.5. Anti-Ischemic Agents with Antioxidant Properties
- 1.
- Trimetazidine
- 2.
- Pentoxifylline
Antioxidant | First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|
Trimetazidine | No human studies. | Significant anti-inflammatory effects, and significant impact on histopathologic changes in experimentally induced AP. | ||||
Pentoxifylline | Kapetanos et al., 2007 [207] | Randomized case–control. To assess the efficacy of pentoxifylline in the prevention of post-ERCP AP. | 400 mg orally the day before ERCP (2 and 10 pm) until the night after (6 am and 2 and 10 pm). | 320 | No impact on post-ERCP AP or hyperamylasemia. | Hemorrhage more prevalent in controls vs. treatment group (4.3% vs. 1.2%, respectively). |
Vege et al., 2015 [205] | Double-blind placebo-controlled RCT. To assess the efficacy of pentoxifylline in predicted severe AP. | 400 mg t.i.d. for 72 h. | 28 | Fewer ICU admissions and shorter ICU and LoHS > 4 days (p = 0.03 and 0.046, respectively). No significant impact on serum inflammatory markers and SIRS or APACHE II score at day 3. | No adverse effects | |
Wanichagool et al., 2019 [208] | Case–control. To evaluate the effects of pentoxifylline on clinical outcomes, the APACHE II score, and inflammatory markers in AP. | Administered for 72 h and within 48 h of AP onset. | 54 | No significant reduction in APACHE II score; (p = 0.27); significantly lower incidence of SIRS in treatment group (p = 0.048). | None reported 1 | |
Vege et al., 2020 [206] | Double-blind placebo-controlled RCT. To assess the efficacy of pentoxifylline on PCO (mortality, pancreatic necrosis, persistent OF, SIRS) in AP. | 400 mg orally at enrollment followed by 400 mg t.i.d. for 72 h. | 83 | No significant impact on PCO (p = 0.06); pentoxifylline group associated with significantly longer LoHS (p = 0.04) and higher readmission rates (p = 0.047). | Not significant btw. the 2 groups. |
3.2. Combined Antioxidant Therapy
Antioxidant | First Author, Year | Study Design and Aim | Dose and Duration of Supplementation | No. of Participants | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|
Selenium (Se) + beta-carotene + ascorbic acid + alpha-tocopherol + methionine | Uden et al., 1990 [211] | Double-blind, placebo-controlled RCT. To assess the effect of antioxidants on recurrent AP and CP pain. | Daily oral total doses of Se 600 µg + beta-carotene 9000 IU + ascorbic acid 540 mg + alpha-tocopherol 270 IU + methionine 2 g for 20 weeks. | 20 | Significantly reduced incidence of recurrent AP (0 vs. 6 pts., p = 0.032); significant positive impact on chronic pancreatic pain compared to baseline (p < 0.001) and placebo (p = 0.049). | No adverse effects |
Selenium + N-ACC + ascorbic acid + beta-carotene + alpha-tocopherol | Virlos et al., 2003 [170] | Prospective case–control. To assess the impact of antioxidants on outcomes in severe AP—antioxidant levels, morbidity and mortality, observed survival compared to predicted survival derived from logistic organ dysfunction score. | Day 1 and onwards: beta-carotene 9 mg + alpha-tocopherol 100 mg b.i.d. via NG tube. + IV continuous infusion. Day 1: N-ACC 300 mg/kg, Se 1000 µg, ascorbic acid 2 g. Day 2: N-ACC 150 mg/kg, Se 400 µg, ascorbic acid 2 g. Day 3 and onwards: N-ACC 75 mg/kg, Se 200 µg, ascorbic acid 1 g. Median duration of treatment: 18 (6–38) days. | 46 | Significant improvement in serum ascorbic acid (p = 0.003) and Se (p = 0.028); no significant impact on serum beta-carotene, alpha-tocopherol, and GSH; no benefit regarding survival. | No adverse effects |
Selenium + ascorbic acid + N-ACC | Siriwardena et al., 2007 [171] | Double-blind placebo-controlled RCT. To assess the effect of antioxidants on clinical outcomes and antioxidant status in predicted severe AP (APACHE II score ≥ 8 on admission). | Se + N-ACC + ascorbic acid administered IV via continuous infusion. Day 1: N-ACC 300 mg/kg, Se 1000 µg, ascorbic acid 2 g. Day 2: N-ACC 150 mg/kg, Se 400 µg, ascorbic acid 2 g. Days 3–7: N-ACC 75 mg/kg, Se 200 µg, ascorbic acid 1 g. | 43 | No significant impact at 7 days on organ dysfunction (p = 0.33); higher MODS incidence at day 7 (p = 0.093); higher mortality rate (4 vs. 0), and longer LoHS vs. placebo (p = 0.34); significantly higher serum antioxidant levels (ascorbic acid and Se) and lower markers of oxidative stress (CRP and GSH) in the treatment group. | None directly attributable to antioxidant therapy |
Ascorbic acid + N-ACC + Antoxyl forte—oral supplement containing vitamins (A, E, B6, C), Zn, Mg, Mn, Cu, Cr, Se, alpha lipoic acid, spirulina, lutein, zeaxanthin, L-cysteine, L-glutamic acid, and glycine | Sateesh et al., 2009 [209] | Placebo-controlled RCT. To investigate the impact of antioxidants on LoHS, complication rate, and biochemical markers of oxidative stress in early AP at days 1, 3, and 7. | Ascorbic acid 500 mg + N-ACC 200 mg every 8 h + Antoxyl forte 1 cps. Hourly for 7 days. | 53 | Non-significantly shorter LoHS in the treatment group vs. placebo (10.3 vs. 7.2 days, p = 0.07); similar complication rate; significantly reduced markers of oxidative stress in the treatment group (p = 0.03). | None reported 1 |
Ascorbic acid + alpha-tocopherol + beta-carotene | Bansal et al., 2011 [210] | Prospective RCT with blinded endpoint assessment. To assess the impact of vitamin supplementation on AP outcomes. | Ascorbic acid 1 g IV + alpha-tocopherol 200 mg orally + beta-carotene 10,000 IU IM b.i.d. for 14 days, followed by oral administration for all as soon as tolerated. | 39 | No impact on organ dysfunction/MODS at 7 days (p = 1.0 and 0.8, respectively); no significant impact on LoHS (p = 0.29); no significant impact on serum MDA, SOD, and GSH (p = 6.4, 0.74, and 0.68, respectively). | No adverse effects attributable to antioxidant therapy |
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALA | alpha-linolenic acid |
AP | acute pancreatitis |
ATP | adenosine triphosphate |
BID | twice a day |
CCT | controlled clinical trial |
CG | controlled group |
CP | chronic pancreatitis |
CRP | C reactive protein |
DAMPs | damage-associated molecular patterns |
DHA | docosahexaenoic acid |
DNA | deoxyribonucleic acid |
EEN | early enteral nutrition |
EN | enteral nutrition |
EPA | eicosapentaenoic acid |
ER stress | endoplasmic reticulum stress |
ERCP | endoscopic retrograde cholangiopancreatography |
ESPEN | European Society for Parenteral and Enteral Nutrition |
GPx | glutathione peroxidase |
GSH | reduced glutathione |
HS-CRP | High-Sensitivity C reactive protein |
ICU | intensive care unit |
IL | interleukin |
IM | intramuscular |
IR | intrarectal |
IU | international units |
LoHS | length of hospital stay |
LPS | lipopolysaccharide |
MAPK | Mitogen-Activated Protein Kinase |
MDA | malondialdehyde |
MOSF | Multiple Organ Dysfunction Syndrome |
MPO | myeloperoxidase |
N-ACC | N-acetylcysteine |
NF-κB | Nuclear Factor κB |
NG | naso-gastric |
NO | nitric oxide |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
OF | organ failure |
PCO | primary composite outcome |
PN | parenteral nutrition |
PUFAs | polyunsaturated fatty acids |
RCT | randomized controlled trials |
ROS | reactive oxygen species |
SAMe | S-adenosyl methionine |
SAP | severe acute pancreatitis |
SARS-CoV2 | severe acute respiratory syndrome coronavirus 2 |
SIRS | systemic inflammatory response syndrome |
SMC | standard medical care |
SOD | superoxide dismutase |
TNF | tumor necrosis factor |
TPN | total parenteral nutrition |
WON | walled-off necrosis |
References
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Jensen, E.T.; Kim, H.P.; Egberg, M.D.; Lund, J.L.; Moon, A.M.; Pate, V.; Barnes, E.L.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2021. Gastroenterology 2022, 162, 621–644. [Google Scholar] [CrossRef]
- Biczó, G.; Hegyi, P.; Dósa, S.; Shalbuyeva, N.; Berczi, S.; Sinervirta, R.; Hracskó, Z.; Siska, A.; Kukor, Z.; Jármay, K.; et al. The Crucial Role of Early Mitochondrial Injury in L-Lysine-Induced Acute Pancreatitis. Antioxid. Redox Signal. 2011, 15, 2669–2681. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, R.; Hu, B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2025, 24, 76–83. [Google Scholar] [CrossRef]
- Mukherjee, R.; Criddle, D.N.; Gukovskaya, A.; Pandol, S.; Petersen, O.H.; Sutton, R. Mitochondrial injury in pancreatitis. Cell Calcium 2008, 44, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ferdek, P.E.; Jakubowska, M.A.; Gerasimenko, J.V.; Gerasimenko, O.V.; Petersen, O.H. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J. Physiol. 2016, 594, 6147–6164. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, P.; Gerle, C.; Halestrap, A.P.; Jonas, E.A.; Karch, J.; Mnatsakanyan, N.; Pavlov, E.; Sheu, S.S.; Soukas, A.A. Identity, structure, and function of the mitochondrial permeability transition pore: Controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023, 30, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Maléth, J.; Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: Translational overview. Philos. Trans. R Soc. Lond. B Biol. Sci. 2016, 371, 20150425. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.H.; Sutton, R. Ca2+ signalling and pancreatitis: Effects of alcohol, bile and coffee. Trends Pharmacol. Sci. 2006, 27, 113–120. [Google Scholar] [CrossRef]
- Sah, R.P.; Dawra, R.K.; Saluja, A.K. New insights into the pathogenesis of pancreatitis. Curr. Opin. Gastroenterol. 2013, 29, 523–530. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Gu, X.; Huang, Z.; Ying, X.; Liu, X.; Ruan, K.; Hua, S.; Zhang, X.; Jin, H.; Liu, Q.; Yang, J. Ferroptosis exacerbates hyperlipidemic acute pancreatitis by enhancing lipid peroxidation and modulating the immune microenvironment. Cell Death Discov. 2024, 10, 242. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Zhang, L.; Zhao, J.; Li, P. Ferroptosis and its emerging roles in acute pancreatitis. Chin. Med. J. 2022, 135, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Pădureanu, V.; Florescu, D.; Pădureanu, R.; Ghenea, A.; Gheonea, D.; Oancea, C. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp. Ther. Med. 2022, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Kim, J.Y.; Choi, G.H.; Kim, K.S.; Choi, J.S.; Lee, W.J.; Kim, B.R. The Use of Adjusted Preoperative CA 19-9 to Predict the Recurrence of Resectable Pancreatic Cancer. J. Surg. Research. 2007, 140, 31–35. [Google Scholar] [CrossRef] [PubMed]
- The Role of Cytokines and Inflammation in the Genesis of Experimental Pancreatitis. Available online: http://pancreapedia.org/?q=node/9490 (accessed on 26 February 2024).
- Curran, F.J.; Sattar, N.; Talwar, D.; Baxter, J.N.; Imrie, C.W. Relationship of carotenoid and vitamins A and E with the acute inflammatory response in acute pancreatitis. Br. J. Surg. 2000, 87, 301–305. [Google Scholar] [CrossRef]
- Thareja, S.; Bhardwaj, P.; Sateesh, J.; Saraya, A. Variations in the levels of oxidative stress and antioxidants during early acute pancreatitis. Trop. Gastroenterol. 2009, 30, 26–31. [Google Scholar]
- Hernández, V.; Miranda, M.; Pascual, I.; Sanchiz, V.; Almela, P.; Añón, R.; Cuadrado, E.; Sanz, M.I.; Mínguez, M.; Mora, F.; et al. Malondialdehyde in early phase of acute pancreatitis. Rev. Esp. Enferm. Dig. 2011, 103, 563–569. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Zhu, Y.; Huang, X.; Zhang, Y.; Yu, B.; He, W.; Lv, N. Superoxide Dismutase Predicts Persistent Circulation Failure and Mortality in the Early Stage of Acute Pancreatitis. Dig. Dis. Sci. 2020, 65, 3551–3557. [Google Scholar] [CrossRef]
- Rojek, L.; Hebanowska, A.; Stojek, M.; Jagielski, M.; Goyke, E.; Szrok-Jurga, S.; Smoczynski, M.; Swierczynski, J.; Sledzinski, T.; Adrych, K. High levels of reactive oxygen species in pancreatic necrotic fluid of patients with walled-off pancreatic necrosis. Prz. Gastroenterol. 2021, 16, 56–61. [Google Scholar] [CrossRef]
- Márta, K.; Szabó, A.N.; Pécsi, D.; Varjú, P.; Bajor, J.; Gódi, S.; Sarlós, P.; Mikó, A.; Szemes, K.; Papp, M.; et al. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): Protocol of a multicentre randomised double-blind clinical trial. BMJ Open 2017, 7, e015874. [Google Scholar] [CrossRef]
- Petrov, M.S.; van Santvoort, H.C.; Besselink, M.G.H.; van der Heijden, G.J.M.G.; Windsor, J.A.; Gooszen, H.G. Enteral nutrition and the risk of mortality and infectious complications in patients with severe acute pancreatitis: A meta-analysis of randomized trials. Arch. Surg. 2008, 143, 1111–1117. [Google Scholar] [CrossRef]
- Tenner, S.; Vege, S.S.; Sheth, S.G.; Sauer, B.; Yang, A.; Conwell, D.L.; Yadlapati, R.H.; Gardner, T.B. American College of Gastroenterology Guidelines: Management of Acute Pancreatitis. Am. J. Gastroenterol. 2024, 119, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.A.; Molero, X.; Vaquero, E.; Alonso, A.; Salas, A.; Malagelada, J.R. Vitamin E attenuates biochemical and morphological features associated with development of chronic pancreatitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2004, 287, G162–169. [Google Scholar] [CrossRef]
- Li, X.C.; Lu, X.L.; Chen, H.H. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology 2011, 11, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashem, F.; Abd Ellatif, M.; ShamsEldeen, A.M.; Kamar, S.S.; Al-Ani, B.; Haidara, M.A. Vitamin E protects against the modulation of TNF-α-AMPK axis and inhibits pancreas injury in a rat model of L-arginine-induced acute necrotising pancreatitis. Arch. Physiol. Biochem. 2023, 129, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Özgül, H.; Tatar, C.; Özer, B.; Aydın, H.; Sarı, S.; Özer, S.P. Effects of alpha-tocopherol on acute pancreatitis in rat. Ulus. Travma Acil Cerrahi Derg. 2019, 25, 1–6. [Google Scholar]
- Tazeoğlu, D.; Akyüz, C.; Gökçeimam, M.; Harman Kamalı, G.; Özsoy, A.; Karahan, S.R. Effect of alpha-tocopherol and dose sensitivity on pancreatitis formation in rats with experimental pancreatitis. Ulus. Travma Acil Cerrahi Derg. 2021, 27, 605–612. [Google Scholar]
- Firat, K.; Ozcan, N.; Celenk, F.G.; Oztezcan, S.; Akbulut, G.; Poyrazoglu, O.K.; Ozdenkaya, Y. The effect of vitamin E supplementation on oxidative stress and inflammation in acute pancreatitis: A randomized, double-blind, placebo-controlled trial. Pancreatology 2014, 14, 125–130. [Google Scholar]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Bonham, M.J.; Abu-Zidan, F.M.; Simovic, M.O.; Sluis, K.B.; Wilkinson, A.; Winterbourn, C.C.; Windsor, J.A. Early ascorbic acid depletion is related to the severity of acute pancreatitis. Br. J. Surg. 1999, 86, 1296–1301. [Google Scholar] [CrossRef]
- Scott, P.; Bruce, C.; Schofield, D.; Shiel, N.; Braganza, J.M.; McCloy, R.F. Vitamin C status in patients with acute pancreatitis. Br. J. Surg. 1993, 80, 750–754. [Google Scholar] [CrossRef]
- Gao, L.; Chong, E.; Pendharkar, S.; Phillips, A.; Ke, L.; Li, W.; Windsor, J.A. The Challenges and Effects of Ascorbic Acid Treatment of Acute Pancreatitis: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Front Nutr. 2021, 8, 734558. [Google Scholar] [CrossRef]
- Du, W.D.; Yuan, Z.R.; Sun, J.; Tang, J.X.; Cheng, A.Q.; Shen, D.M.; Huang, C.J.; Song, X.H.; Yu, X.F.; Zheng, S.B. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J. Gastroenterol. 2003, 9, 2565–2569. [Google Scholar] [CrossRef]
- Chooklin, S.; Chuklin, S.; Shershen, G. High doses vitamin C treatment in severe acute pancreatitis. Pancreatology 2020, 20, S64–65. [Google Scholar] [CrossRef]
- Everett, S.A.; Kundu, S.C.; Maddix, S.; Willson, R.L. Mechanisms of free-radical scavenging by the nutritional antioxidant beta-carotene. Biochem. Soc. Trans. 1995, 23, 230S. [Google Scholar] [CrossRef] [PubMed]
- Burzyński, J.; Fichna, J.; Tarasiuk, A. Putative molecular targets for vitamin A in neutralizing oxidative stress in acute and chronic pancreatitis—A systematic review. Naunyn-Schmiedeberg‘s Arch. Pharmacol. 2023, 396, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Lavy, A.; Karban, A.; Suissa, A.; Yassin, K.; Hermesh, I.; Ben-Amotz, A. Natural beta-carotene for the prevention of post-ERCP pancreatitis. Pancreas 2004, 29, e45–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Zhou, J.; Qiu, S.; Cai, T.; Li, H.; Shen, Z.; Hu, Y.; Ding, B.; Luo, M.; et al. Vitamin A and Its Multi-Effects on Pancreas: Recent Advances and Prospects. Front Endocrinol. 2021, 12, 620941. [Google Scholar] [CrossRef]
- Sandoval, C.; Vera, A.; Birditt, K.; Godoy, K.; Carmine, F.; Caamaño, J.; Farías, J. β-Carotene Supplementation Improves Pancreas Function during Moderate Ethanol Consumption: Initial Characterization from a Morphological Overview. Int. J. Mol. Sci. 2024, 25, 1219. [Google Scholar] [CrossRef]
- Peng, H.C.; Chen, Y.L.; Yang, S.Y.; Ho, P.Y.; Yang, S.S.; Hu, J.T.; Yang, S.C. The antiapoptotic effects of different doses of β-carotene in chronic ethanol-fed rats. Hepatobiliary Surg. Nutr. 2013, 2, 132–141. [Google Scholar]
- Golpour, A.; Bereswill, S.; Heimesaat, M.M. Antimicrobial and immune-modulatory effects of vitamin D provide promising antibiotics-independent approaches to tackle bacterial infections—lessons learnt from a literature survey. Eur. J. Microbiol. Immunol. 2019, 9, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Janjusevic, M.; Fluca, A.L.; Gagno, G.; Pierri, A.; Padoan, L.; Sorrentino, A.; Beltrami, A.P.; Sinagra, G.; Aleksova, A. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 2336. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Jin, S.; Huang, S.; Liu, Y. Vitamin D3 attenuates cisplatin-induced intestinal injury by inhibiting ferroptosis, oxidative stress, and ROS-mediated excessive mitochondrial fission. Food Funct. 2022, 13, 10210–10224. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Kim, J.W.; Lee, K.J. Vitamin D deficiency predicts severe acute pancreatitis. United Eur. Gastroenterol. J. 2019, 7, 90–95. [Google Scholar] [CrossRef]
- Abou Saleh, M.; Alkhayyat, M.; Mansoor, E.; Khoudari, G.; Simons-Linares, C.R.; Vargo, J.; Chahal, P.; Stevens, T. The Risk of Vitamin D Deficiency, Osteoporosis, and Fractures in Acute Pancreatitis. Pancreas 2020, 49, 629–633. [Google Scholar] [CrossRef]
- Ocal, S.; Cerci, K.; Buldukoglu, O.C.; Atar, G.E.; Harmandar, F.A.; Cekin, A.H. Effect of serum vitamin D levels on the severity of acute pancreatitis: A prospective study. Pancreatology 2024, 24, 206–210. [Google Scholar] [CrossRef]
- Kohli, A.; Chawla, A.; Arora, S.; Kalra, S.; Vitamin, D. Toxicity Masquerading as Acute Pancreatitis. Cureus. 2023. Available online: https://www.cureus.com/articles/157560-vitamin-d-toxicity-masquerading-as-acute-pancreatitis (accessed on 10 May 2025).
- Singh, R.; Balwani, M.R.; Godhani, U.; Ghule, P.; Tolani, P.; Kute, V. Iatrogenic vitamin D overdose resulting in acute pancreatitis with acute kidney injury. J. Parathyr. Dis. 2017, 6, 29–31. [Google Scholar] [CrossRef]
- Calabrese, V.; Giuffrida Stella, A.M.; Calvani, M.; Butterfield, D.A. Acetylcarnitine and cellular stress response: Roles in nutritional redox homeostasis and regulation of longevity genes. J. Nutr. Biochem. 2006, 17, 73–88. [Google Scholar] [CrossRef]
- Esrefoglu, M. Experimental and clinical evidence of antioxidant therapy in acute pancreatitis. World J. Gastroenterol. 2012, 18, 5533–5541. [Google Scholar] [CrossRef]
- Li, J.L.; Wang, Q.Y.; Luan, H.Y.; Kang, Z.C.; Wang, C.B. Effects of L-carnitine against oxidative stress in human hepatocytes: Involvement of peroxisome proliferator-activated receptor alpha. J. Biomed. Sci. 2012, 19, 32. [Google Scholar] [CrossRef]
- Hasan, M.; Bakr, A.; Shalkami, A.G. Modulation of L-arginine-induced acute pancreatitis by meloxicam and/or L-carnitine in rats. Int. J. Basic Clin. Pharmacol. 2017, 1247–1253. [Google Scholar] [CrossRef]
- Arafa, H.M.M.; Hemeida, R.A.M.; Hassan, M.I.A.; Abdel-Wahab, M.H.; Badary, O.A.; Hamada, F.M.A. Acetyl-L-carnitine ameliorates caerulein-induced acute pancreatitis in rats. Basic Clin. Pharmacol. Toxicol. 2009, 105, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Walaa Ibrahim, M.D.G.; Abdallah, M.D.H. Therapeutic Effect of L-Carnitine on Acute Pancreatitis Induced by L-Arginine in Rats: Possible Role of Beclin Gene and Inducible Nitric Oxide Synthase. Med. J. Cairo Univ. 2019, 87, 1793–1803. [Google Scholar] [CrossRef]
- McIlwrath, S.L.; Starr, M.E.; High, A.E.; Saito, H.; Westlund, K.N. Effect of acetyl-L-carnitine on hypersensitivity in acute recurrent caerulein-induced pancreatitis and microglial activation along the brain’s pain circuitry. World J. Gastroenterol. 2021, 27, 794–814. [Google Scholar] [CrossRef]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, S.; Li, S.; Liu, H. Glutamine on critical-ill patients: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 1503–1520. [Google Scholar] [CrossRef]
- Stehle, P.; Kuhn, K.S. Glutamine: An obligatory parenteral nutrition substrate in critical care therapy. Biomed. Res Int. 2015, 2015, 545467. [Google Scholar] [CrossRef]
- Arvanitakis, M.; Ockenga, J.; Bezmarevic, M.; Gianotti, L.; Krznarić, Ž.; Lobo, D.N.; Löser, C.; Madl, C.; Meier, R.; Phillips, M.; et al. ESPEN practical guideline on clinical nutrition in acute and chronic pancreatitis. Clin. Nutr. 2024, 43, 395–412. [Google Scholar] [CrossRef]
- Xue, P.; Deng, L.H.; Xia, Q.; Zhang, Z.D.; Hu, W.M.; Yang, X.N.; Song, B.; Huang, Z.W. Impact of alanyl-glutamine dipeptide on severe acute pancreatitis in early stage. World J. Gastroenterol. 2008, 14, 474–478. [Google Scholar] [CrossRef]
- Ockenga, J.; Borchert, K.; Rifai, K.; Manns, M.P.; Bischoff, S.C. Effect of glutamine-enriched total parenteral nutrition in patients with acute pancreatitis. Clin. Nutr. 2002, 21, 409–416. [Google Scholar] [CrossRef]
- de Beaux, A.C.; O’Riordain, M.G.; Ross, J.A.; Jodozi, L.; Carter, D.C.; Fearon, K.C. Glutamine-supplemented total parenteral nutrition reduces blood mononuclear cell interleukin-8 release in severe acute pancreatitis. Nutrition 1998, 14, 261–265. [Google Scholar] [CrossRef]
- McRae, M.P. Therapeutic benefits of glutamine: An umbrella review of meta-analyses. Biomed. Rep. 2017, 6, 576–584. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, C.P.; Gong, S. Intravenous glutamine for severe acute pancreatitis: A meta-analysis. World J. Crit. Care Med. 2013, 2, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Asrani, V.; Chang, W.K.; Dong, Z.; Hardy, G.; Windsor, J.A.; Petrov, M.S. Glutamine supplementation in acute pancreatitis: A meta-analysis of randomized controlled trials. Pancreatology 2013, 13, 468–474. [Google Scholar] [CrossRef]
- Arutla, M.; Raghunath, M.; Deepika, G.; Jakkampudi, A.; Murthy, H.V.V.; Rao, G.V.; Reddy, D.N.; Talukdar, R. Efficacy of enteral glutamine supplementation in patients with severe and predicted severe acute pancreatitis—A randomized controlled trial. Indian J. Gastroenterol. 2019, 38, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Pei, L.-Y.; Guo, W.-X.; Qi, X.; Lu, X.-G. Glutamine supported early enteral therapy for severe acute pancreatitis: A systematic review and meta-analysis. Asian Pac. J. Clin. Nutr. 2020, 29, 253–261. [Google Scholar]
- Dong, S.; Zhao, Z.; Li, X.; Chen, Z.; Jiang, W.; Zhou, W. Efficacy of Glutamine in Treating Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Front Nutr. 2022, 9, 865102. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Y.; Li, Q.; Wang, Y. Ulinastatin combined with glutamine improves liver function and inflammatory response in patients with severe acute pancreatitis. Am. J. Transl. Res. 2022, 14, 918–926. [Google Scholar]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Ramudo, L.; Manso, M.A. N-acetylcysteine in acute pancreatitis. World J. Gastrointest. Pharmacol. Ther. 2010, 1, 21–26. [Google Scholar] [CrossRef]
- Yagci, G.; Gul, H.; Simsek, A.; Buyukdogan, V.; Onguru, O.; Zeybek, N.; Aydin, A.; Balkan, M.; Yildiz, O.; Sen, D.; et al. Beneficial effects of N-acetylcysteine on sodium taurocholate-induced pancreatitis in rats. J. Gastroenterol. 2004, 39, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, S.; Usta, A.; Cekic, A.B.; Alhan, E.; Kural, B.V.; Ercin, C. N-acetylcysteine amid reduces pancreatic damage in a rat model of acute necrotizing pancreatitis. J. Surg. Res. 2016, 203, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Demols, A.; Van Laethem, J.L.; Quertinmont, E.; Legros, F.; Louis, H.; Le Moine, O.; Jacques, D. N-acetylcysteine decreases severity of acute pancreatitis in mice. Pancreas 2000, 20, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Katsinelos, P.; Kountouras, J.; Paroutoglou, G.; Beltsis, A.; Mimidis, K.; Zavos, C. Intravenous N-acetylcysteine does not prevent post-ERCP pancreatitis. Gastrointest. Endosc. 2005, 62, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Milewski, J.; Rydzewska, G.; Degowska, M.; Kierzkiewicz, M.; Rydzewski, A. N-acetylcysteine does not prevent post-endoscopic retrograde cholangiopancreatography hyperamylasemia and acute pancreatitis. World J. Gastroenterol. 2006, 12, 3751–3755. [Google Scholar] [CrossRef]
- Pavel, L.; Bălan, G.G.; Nicorescu, A.; Gîlcă-Blanariu, G.E.; Sfarti, C.; Chiriac, Ș.; Diaconescu, S.; Drug, V.L.; Bălan, G.; Ștefănescu, G. Split-dose or hybrid nonsteroidal anti-inflammatory drugs and N-acetylcysteine therapy for prevention of post-retrograde cholangiopancreatography pancreatitis. World J. Clin. Cases. 2019, 7, 300–310. [Google Scholar] [CrossRef]
- Alavi Nejad, P.; Hajiani, E.; Hashemi, J.; Masjedizadeh, A.R.; Shayesteh, A.A.; Sebghatollahi, V. Evaluation of N-acetyl Cysteine for the Prevention of Post-endoscopic Retrograde Cholangiopancreatography Pancreatitis: A Prospective Double Blind Randomized Pilot Study. Middle East J. Dig. Dis. 2013, 5, 17–21. [Google Scholar]
- Velusamy, S.; Parthiban, D.; Jayakumar, J.; Narayanan, A. Assessment of Add-On Therapy of N-Acetylcysteine in the Management of Acute Pancreatitis. J. Health Allied Sci. NU 2024, 3, s-0044-1791274. [Google Scholar] [CrossRef]
- Mahmoudinezhad, M.; Abbaszadeh, F.; Zarezadeh, M.; Bahreini, N.; Jamilian, P.; Jamilian, P.; Ostadrahimi, A. N-acetylecysteine, a powerful agent in the reinforcement of anti-oxidant profile: A systematic review and dose-response meta-analysis of controlled clinical trials. Clin. Nutr. ESPEN 2023, 54, 227–238. [Google Scholar] [CrossRef]
- Braganza, J.M.; Scott, P.; Bilton, D.; Schofield, D.; Chaloner, C.; Shiel, N.; Hunt, L.P.; Bottiglieri, T. Evidence for early oxidative stress in acute pancreatitis. Clues for correction. Int. J. Pancreatol. 1995, 17, 69–81. [Google Scholar] [CrossRef]
- Sharer, N.M.; Scott, P.D.; Deardon, D.J.; Lee, S.H.; Taylor, P.M.; Braganza, J.M. Clinical Trial of 24 Hours’ Treatment with Glutathione Precursors in Acute Pancreatitis. Clin. Drug Investig. 1995, 10, 147–157. [Google Scholar] [CrossRef]
- Jaworek, J.; Leja-Szpak, A.; Nawrot-Porąbka, K.; Szklarczyk, J.; Kot, M.; Pierzchalski, P.; Góralska, M.; Ceranowicz, P.; Warzecha, Z.; Dembinski, A.; et al. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis. Int. J. Mol. Sci. 2017, 18, 1014. [Google Scholar] [CrossRef]
- Jaworek, J.; Szklarczyk, J.; Bonior, J.; Kot, M.; Goralska, M.; Pierzchalski, P.; Reiter, R.J.; Czech, U.; Tomaszewska, R. Melatonin metabolite, N(1)-acetyl-N(1)-formyl-5-methoxykynuramine (AFMK), attenuates acute pancreatitis in the rat: In vivo and in vitro studies. J. Physiol. Pharmacol. 2016, 67, 411–421. [Google Scholar]
- Leja-Szpak, A.; Jaworek, J.; Tomaszewska, R.; Nawrot, K.; Bonior, J.; Kot, M.; Palonek, M.; Stachura, J.; Czupryna, A.; Konturek, S.J. Melatonin precursor; L-tryptophan protects the pancreas from development of acute pancreatitis through the central site of action. J. Physiol. Pharmacol. 2004, 55, 239–254. [Google Scholar]
- Jaworek, J.; Leja-Szpak, A.; Bonior, J.; Nawrot, K.; Tomaszewska, R.; Stachura, J.; Sendur, R.; Pawlik, W.; Brzozowski, T.; Konturek, S.J. Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J. Pineal Res. 2003, 34, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, C.; Marchena, A.M.; Holguín-Arévalo, M.S.; Martín-Partido, G.; Rodríguez, A.B.; Paredes, S.D.; Pariente, J.A. Anti-inflammatory effects of melatonin in a rat model of caerulein-induced acute pancreatitis. Cell Biochem. Funct. 2013, 31, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, J.; Zwirska-Korczala, K.; Szklarczyk, J.; Nawrot-Porąbka, K.; Leja-Szpak, A.; Jaworek, A.K.; Tomaszewska, R. Pinealectomy aggravates acute pancreatitis in the rat. Pharmacol. Rep. 2010, 62, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Col, C.; Dinler, K.; Hasdemir, O.; Buyukasik, O.; Bugdayci, G. Oxidative stress and lipid peroxidation products: Effect of pinealectomy or exogenous melatonin injections on biomarkers of tissue damage during acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2010, 9, 78–82. [Google Scholar]
- Grupp, K.; Erbes, J.; Poppe, A.; Wodack, K.; Gocht, A.; Trepte, C.; Havel, J.; Mann, O.; Izbicki, J.R.; Bachmann, K. Melatonin treatment of pigs with acute pancreatitis reduces inflammatory reaction of pancreatic tissue and enhances fitness score of pigs: Experimental research. World J. Emerg. Surg. 2019, 14, 18. [Google Scholar] [CrossRef]
- Muñoz-Casares, F.C.; Padillo, F.J.; Briceño, J.; Collado, J.A.; Muñoz-Castañeda, J.R.; Ortega, R.; Cruz, A.; Túnez, I.; Montilla, P.; Pera, C.; et al. Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J. Pineal Res. 2006, 40, 195–203. [Google Scholar] [CrossRef]
- Sun, X.; Shao, Y.; Jin, Y.; Huai, J.; Zhou, Q.; Huang, Z.; Wu, J. Melatonin reduces bacterial translocation by preventing damage to the intestinal mucosa in an experimental severe acute pancreatitis rat model. Exp. Ther. Med. 2013, 6, 1343–1349. [Google Scholar] [CrossRef]
- Eşrefoğlu, M.; Gül, M.; Ateş, B.; Selimoğlu, M.A. Ultrastructural clues for the protective effect of melatonin against oxidative damage in cerulein-induced pancreatitis. J. Pineal Res. 2006, 40, 92–97. [Google Scholar] [CrossRef]
- Jaworek, J.; Szklarczyk, J.; Jaworek, A.K.; Nawrot-Porąbka, K.; Leja-Szpak, A.; Bonior, J.; Kot, M. Protective effect of melatonin on acute pancreatitis. Int. J. Inflam. 2012, 2012, 173675. [Google Scholar] [CrossRef]
- Zhang, D.; Jia, X.; Lin, D.; Ma, J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem. Pharmacol. 2023, 218, 115909. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, C.J.; Dong, L.M.; Chen, M.J.; Zhou, Q.; Wu, J.S. Clinical significance of melatonin concentrations in predicting the severity of acute pancreatitis. World J. Gastroenterol. 2013, 19, 4066–4071. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, O.; Herzog, T.; Munding, J.; Bolik, B.; Vosschulte, A.; Uhl, W.; Müller, C.A. Protective role of endogenous melatonin in the early course of human acute pancreatitis. J. Pineal Res. 2011, 50, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Abbasinazari, M.; Asadzadeh Aghdaei, H.; Abdi, S.; Hatami, B.; Rasoolinezhad, M.; Jamshidzadeh, S.; Saadati, S. Does melatonin addition to indomethacin decrease post endoscopic retrograde cholangiopancreatography pancreatitis? A randomized double-blind controlled trial. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, J.; Leja-Szpak, A.; Kot, M.; Jaworek, A.; Nawrot-Porbka, K.; Bonior, J.; Szklarczyk, J. The role of melatonin in pancreatic protection: Could melatonin be used in the treatment of acute pancreatitis? Curr. Pharm. Des. 2014, 20, 4834–4840. [Google Scholar] [CrossRef]
- Alruhaimi, R.S.; Hassanein, E.H.M.; Abd El-Aziz, M.K.; Siddiq Abduh, M.; Bin-Ammar, A.; Kamel, E.M.; Mahmoud, A.M. The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int. Immunopharmacol. 2023, 124, 110833. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, M.; Liu, Z. Phytochemicals with protective effects against acute pancreatitis: A review of recent literature. Pharm. Biol. 2022, 60, 479–490. [Google Scholar] [CrossRef]
- Gaman, L.; Dragos, D.; Vlad, A.; Robu, G.C.; Radoi, M.P.; Stroica, L.; Badea, M.; Gilca, M. Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. Evid. Based Complement Altern. Med. 2018, 2018, 5264592. [Google Scholar] [CrossRef]
- Orján, E.M.; Kormányos, E.S.; Fűr, G.M.; Dombi, Á.; Bálint, E.R.; Balla, Z.; Balog, B.A.; Dágó, Á.; Totonji, A.; Bátai, Z.I.; et al. The anti-inflammatory effect of dimethyl trisulfide in experimental acute pancreatitis. Sci. Rep. 2023, 13, 16813. [Google Scholar] [CrossRef]
- Marimuthu, M.K.; Moorthy, A.; Ramasamy, T. Diallyl Disulfide Attenuates STAT3 and NF-κB Pathway Through PPAR-γ Activation in Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Inflammation 2022, 45, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Shang, H.; Chen, Y.Q.; Pan, L.L.; Bhatia, M.; Sun, J. Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway. Oxid Med. Cell. Longev. 2016, 2016, 7864150. [Google Scholar] [CrossRef] [PubMed]
- Agah, S.; Akbari, A.; Sadeghi, E.; Morvaridzadeh, M.; Basharat, Z.; Palmowski, A.; Heshmati, J. Resveratrol supplementation and acute pancreatitis: A comprehensive review. Biomed. Pharmacother. 2021, 137, 111268. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, C.; Holguín-Arévalo, M.S.; Martín-Partido, G.; Rodríguez, A.B.; Pariente, J.A. Chemopreventive effects of resveratrol in a rat model of cerulein-induced acute pancreatitis. Mol. Cell. Biochem. 2014, 387, 217–225. [Google Scholar] [CrossRef]
- Ren, Z.N.; Yang, J.; Zhang, M.Y.; Huang, Y.W.; Song, D.X.; Sun, X.; Pan, L.L.; Sun, J. A novel resveratrol analog upregulates sirtuin 1 and inhibits inflammatory cell infiltration in acute pancreatitis. Acta Pharmacol. Sin. 2022, 43, 1264–1273. [Google Scholar] [CrossRef]
- Tsang, S.W.; Guan, Y.F.; Wang, J.; Bian, Z.X.; Zhang, H.J. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: Implication for treatment of acute pancreatitis. Sci. Rep. 2016, 6, 22859. [Google Scholar] [CrossRef]
- Lee, Y.E.; Kim, J.W.; Lee, E.M.; Ahn, Y.B.; Song, K.H.; Yoon, K.H.; Kim, H.W.; Park, C.W.; Li, G.; Liu, Z.; et al. Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice. PLoS ONE. 2012, 7, e50412. [Google Scholar] [CrossRef]
- Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa, B.; activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 2000, 164, 6509–6519. [Google Scholar] [CrossRef]
- Keshtkar, S.; Kaviani, M.; Jabbarpour, Z.; Al-Abdullah, I.H.; Aghdaei, M.H.; Nikeghbalian, S.; Shamsaeefar, A.; Geramizadeh, B.; Azarpira, N.; Ghahremani, M.H. Significant reduction of apoptosis induced via hypoxia and oxidative stress in isolated human islet by resveratrol. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1216–1226. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, Q.Y.; Kou, X.P.; Xu, J. Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis. World J. Gastroenterol. 2005, 11, 525–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Yang, G.; Chen, Y.; Mu, Z.; Zhou, H.; Zhang, L. Resveratrol pre-treatment alleviated caerulein-induced acute pancreatitis in high-fat diet-feeding mice via suppressing the NF-κB proinflammatory signaling and improving the gut microbiota. BMC Complement Med. Ther. 2022, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Gezer, A.; Üstündağ, H.; Özkaraca, M.; Sari, E.K.; Gür, C. Therapeutic effects of resveratrol and β-carotene on L-arginine-induced acute pancreatitis through oxidative stress and inflammatory pathways in rats. Sci Rep. 2024, 14, 32068. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.S.; Ku, C.F.; Guan, Y.F.; Xiao, H.T.; Shi, X.K.; Wang, H.Q.; Bian, Z.X.; Tsang, S.W.; Zhang, H.J. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis. Phytother. Res. 2016, 30, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, Z.; Wang, W.; Liu, S.; Li, Y.; Sun, X.; Sutton, R.; Deng, L.; Liu, T.; Xia, Q.; et al. Resveratrol in animal models of pancreatitis and pancreatic cancer: A systematic review with machine learning. Phytomedicine 2025, 139, 156538. [Google Scholar] [CrossRef]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–218. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.S. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in human health. LWT 2020, 127, 109323. [Google Scholar] [CrossRef]
- Qu, M.; Jiang, Z.; Liao, Y.; Song, Z.; Nan, X. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons. Neurochem. Res. 2016, 41, 1354–1364. [Google Scholar] [CrossRef]
- Joshi, B.; Kar, S.K.; Yadav, P.K.; Yadav, S.; Shrestha, L.; Bera, T.K. Therapeutic and medicinal uses of lycopene: A systematic review. Int. J. Res. Med. Sci. 2020, 8, 1195. [Google Scholar] [CrossRef]
- Durairajanayagam, D.; Agarwal, A.; Ong, C.; Prashast, P. Lycopene and male infertility. Asian J. Androl. 2014, 16, 420. [Google Scholar] [PubMed]
- Black, H.S.; Boehm, F.; Edge, R.; Truscott, T.G. The Benefits and Risks of Certain Dietary Carotenoids that Exhibit both Anti- and Pro-Oxidative Mechanisms—A Comprehensive Review. Antioxidants 2020, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lim, J.W.; Kim, H. Lycopene Inhibits IL-6 Expression by Upregulating NQO1 and HO-1 via Activation of Nrf2 in Ethanol/Lipopolysaccharide-Stimulated Pancreatic Acinar Cells. Antioxidants 2022, 11, 519. [Google Scholar] [CrossRef]
- Kang, M.; Park, K.S.; Seo, J.Y.; Kim, H. Lycopene inhibits IL-6 expression in cerulein-stimulated pancreatic acinar cells. Genes Nutr. 2011, 6, 117–123. [Google Scholar] [CrossRef]
- Ozkan, E.; Akyüz, C.; Dulundu, E.; Topaloğlu, U.; Sehirli, A.Ö.; Ercan, F.; Sener, G. Protective effects of lycopene on cerulein-induced experimental acute pancreatitis in rats. J. Surg. Res. 2012, 176, 232–238. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Hamada, O.B. Suppression of inducible nitric oxide synthase and tumor necrosis factor-alpha level by lycopene is comparable to methylprednisolone in acute pancreatitis. Dig. Liver Dis. 2018, 50, 601–607. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, H.; Gross, M.; Liu, N.; Carlson, H.; Wood, A.; Hoffman, K.; Petrosino, J.; Pankratz, N.; Thyagarajan, B.; et al. Progressive reduction in circulating levels of carotenoids and other micronutrients in patients with chronic pancreatitis. Pancreatology 2022, 22, 1126–1133. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef]
- Shohan, M.; Nashibi, R.; Mahmoudian-Sani, M.R.; Abolnezhadian, F.; Ghafourian, M.; Alavi, S.M.; Sharhani, A.; Khodadadi, A. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur. J. Pharmacol. 2022, 914, 174615. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Iqtadar, S.; Khan, A.; Ullah Mumtaz, S.; Masud Chaudhry, M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; et al. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int. J. Gen. Med. 2021, 14, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Önal, H.; Arslan, B.; Üçüncü Ergun, N.; Topuz, Ş.; Yilmaz Semerci, S.; Kurnaz, M.E.; Bozkurt, M.A.; Süner, N.; Kocataş, A. Treatment of COVID-19 patients with quercetin: A prospective, single center, randomized, controlled trial. Turk. J. Biol. 2021, 45, 518–529. [Google Scholar] [CrossRef]
- Carvalho, K.M.M.B.; Morais, T.C.; de Melo, T.S.; de Castro Brito, G.A.; de Andrade, G.M.; Rao, V.S.; Santos, F.A. The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice. Biol. Pharm. Bull. 2010, 33, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, J.; Chen, J.; Liu, J.; Lu, Y.; Huang, C.; Hu, G.; Wang, X.; Zeng, Y. Therapeutic effects of quercetin on early inflammation in hypertriglyceridemia-related acute pancreatitis and its mechanism. Pancreatology 2016, 16, 200–210. [Google Scholar] [CrossRef]
- Kahraman, A.; Vurmaz, A.; Koca, H.B.; Uyar, H.; Çat, A.; Tokyol, Ç.; Polat, C.; Köken, T. The Effect of Quercetin on Cerulein-Induced Acute Pancreatitis. Med. Express 2017, 4. [Google Scholar] [CrossRef]
- Sheng, B.; Zhao, L.; Zang, X.; Zhen, J.; Liu, Y.; Bian, W.; Chen, W. Quercetin inhibits caerulein-induced acute pancreatitis through regulating miR-216b by targeting MAP2K6 and NEAT1. Inflammopharmacology 2021, 29, 549–559. [Google Scholar] [CrossRef]
- Rotimi, S.; Rotimi, O.; Iyanda-Joel, W.; Adelani, I.; Oguamanam, N.; Ohamobi, O. Effects of Quercetin on L-Arginine-Induced Acute Pancreatitis in Rats. FASEB J. 2015, 29, 856.4. [Google Scholar] [CrossRef]
- Seo, J.Y.; Pandey, R.P.; Lee, J.; Sohng, J.K.; Namkung, W.; Park, Y.I. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. Phytomedicine 2019, 55, 40–49. [Google Scholar] [CrossRef]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, M.C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2015, 18, 898–909. [Google Scholar] [CrossRef]
- Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res. 2016, 107, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Tazeoglu, A.; Ozdenkaya, Y.; Kamali, G.H.; Tazeoglu, D. Anti-inflammatory activity of curcumin in a model of L-arginine-induced acute pancreatitis in rats. Ann. Ital. Chir. 2023, 12, S2239253X2303880X. [Google Scholar] [CrossRef]
- Zhong, K. Curcumin Mediates a Protective Effect Via TLR-4/NF-κB Signaling Pathway in Rat Model of Severe Acute Pancreatitis. Cell Biochem. Biophys. 2015, 73, 175–180. [Google Scholar] [CrossRef]
- Gulcubuk, A.; Haktanir, D.; Cakiris, A.; Ustek, D.; Guzel, O.; Erturk, M.; Karabagli, M.; Akyazi, I.; Cicekci, H.; Altunatmaz, K.; et al. Effects of curcumin on proinflammatory cytokines and tissue injury in the early and late phases of experimental acute pancreatitis. Pancreatology 2013, 13, 347–354. [Google Scholar] [CrossRef]
- Wang, Y.; Bu, C.; Wu, K.; Wang, R.; Wang, J. Curcumin protects the pancreas from acute pancreatitis via the mitogen-activated protein kinase signaling pathway. Mol. Med. Rep. 2019, 20, 3027–3034. [Google Scholar] [CrossRef]
- Siriviriyakul, P.; Chingchit, T.; Klaikeaw, N.; Chayanupatkul, M.; Werawatganon, D. Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon 2019, 5, e02222. [Google Scholar] [CrossRef]
- Durgaprasad, S.; Pai, C.G.; Null, A.; Alvres, J.F.; Namitha, S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J. Med. Res. 2005, 122, 315–318. [Google Scholar]
- Chegini, M.; Sadeghi, A.; Zaeri, F.; Zamani, M.; Hekmatdoost, A. Nano-curcumin supplementation in patients with mild and moderate acute pancreatitis: A randomized, placebo-controlled trial. Phytother. Res. 2023, 37, 5279–5288. [Google Scholar] [CrossRef]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; Karunasinghe, N.; Zhu, S.; Wang, A.H. Selenium and its’ role in the maintenance of genomic stability. Mutat. Res. 2012, 733, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Vaona, B.; Stanzial, A.M.; Talamini, G.; Bovo, P.; Corrocher, R.; Cavallini, G. Serum selenium concentrations in chronic pancreatitis and controls. Dig. Liver Dis. 2005, 37, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Wereszczynska-Siemiatkowska, U.; Mroczko, B.; Siemiatkowski, A.; Szmitkowski, M.; Borawska, M.; Kosel, J. The importance of interleukin 18, glutathione peroxidase, and selenium concentration changes in acute pancreatitis. Dig. Dis. Sci. 2004, 49, 642–650. [Google Scholar] [CrossRef]
- Kocan, L.; Firment, J.; Simonová, J.; Vasková, J.; Guzy, J. Selenium supplementation in patients with severe acute pancreatitis. Rozhl. Chir. 2010, 89, 518–521. [Google Scholar]
- Mahmoodpoor, A.; Faramarzi, E.; Reyhanifard, A.; Shamekh, A.; Nikanfar, S.; Azizi-Zeinalhajlou, A.; Sanaie, S. The effects of selenium supplementation on inflammatory markers in critically ill patients. SN Appl. Sci. 2022, 4, 326. [Google Scholar] [CrossRef]
- Valenta, J.; Brodska, H.; Drabek, T.; Hendl, J.; Kazda, A. High-dose selenium substitution in sepsis: A prospective randomized clinical trial. Intensive Care Med. 2011, 37, 808–815. [Google Scholar] [CrossRef]
- Brodska, H.; Valenta, J.; Malickova, K.; Kohout, P.; Kazda, A.; Drabek, T. Biomarkers in critically ill patients with systemic inflammatory response syndrome or sepsis supplemented with high-dose selenium. J. Trace Elem. Med. Biol. 2015, 31, 25–32. [Google Scholar] [CrossRef]
- Mishra, V.; Baines, M.; Perry, S.E.; McLaughlin, P.J.; Carson, J.; Wenstone, R.; Shenkin, A. Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin. Nutr. 2007, 26, 41–50. [Google Scholar] [CrossRef]
- Manzanares, W.; Lemieux, M.; Elke, G.; Langlois, P.L.; Bloos, F.; Heyland, D.K. High-dose intravenous selenium does not improve clinical outcomes in the critically ill: A systematic review and meta-analysis. Crit. Care. 2016, 20, 356. [Google Scholar] [CrossRef]
- Lindner, D.; Lindner, J.; Baumann, G.; Dawczynski, H.; Bauch, K. Untersuchung zur antioxidativen Therapie mit Natriumselenit bei akuter Pankreatitis: Eine prospektive, randomisierte Blindstudie. Med. Klin. 2004, 99, 708–712. [Google Scholar] [CrossRef]
- Wollschläger, S.; Ludwig, K.; Meissner, D.; Porst, H. Effect of selenium administration on various laboratory parameters in patients with acute pancreatitis. Med. Klin. 1997, 92, 22–24. [Google Scholar] [CrossRef]
- Wollschläger, S.; Pätzold, K.; Bulang, T.; Meissner, D.; Porst, H. Effect of preventive selenium administration on development of ERCP-induced acute pancreatitis. Med. Klin. 1999, 94, 81–83. [Google Scholar] [CrossRef]
- Abdel-Hakeem, E.A.; Abdel-Hamid, H.A.; Abdel Hafez, S.M.N. The possible protective effect of Nano-Selenium on the endocrine and exocrine pancreatic functions in a rat model of acute pancreatitis. J. Trace Elem. Med. Biol. 2020, 60, 126480. [Google Scholar] [CrossRef]
- Swetha, K.; Indumathi, M.C.; Kishan, R.; Siddappa, S.; Chen, C.H.; Marathe, G.K. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol. Trace Elem. Res. 2025. Available online: https://link.springer.com/article/10.1007/s12011-025-04531-2 (accessed on 14 May 2025). [CrossRef]
- Virlos, I.T.; Mason, J.; Schofield, D.; McCloy, R.F.; Eddleston, J.M.; Siriwardena, A.K. Intravenous n-acetylcysteine, ascorbic acid and selenium-based anti-oxidant therapy in severe acute pancreatitis. Scand. J. Gastroenterol. 2003, 38, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Siriwardena, A.K.; Mason, J.M.; Balachandra, S.; Bagul, A.; Galloway, S.; Formela, L.; Hardman, J.G.; Jamdar, S. Randomised, double blind, placebo controlled trial of intravenous antioxidant (n-acetylcysteine, selenium, vitamin C) therapy in severe acute pancreatitis. Gut 2007, 56, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.X.; Weylandt, K.H. Modulation of Inflammatory Cytokines by Omega-3 Fatty Acids. In Lipids in Health and Disease; Quinn, P.J., Wang, X., Eds.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2008; Volume 49, pp. 133–143. Available online: http://link.springer.com/10.1007/978-1-4020-8831-5_5 (accessed on 14 May 2025).
- Adili, R.; Hawley, M.; Holinstat, M. Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018, 139, 10–18. [Google Scholar] [CrossRef]
- Koutsaliaris, I.K.; Pantazi, D.; Tsouka, A.N.; Argyropoulou, O.; Tellis, C.C.; Tselepis, A.D. Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro. Int. J. Mol. Sci. 2024, 25, 10136. [Google Scholar] [CrossRef]
- Foitzik, T.; Eibl, G.; Schneider, P.; Wenger, F.; Jacobi, C.; Buhr, H. Omega-3 fatty acid supplementation increases anti-inflammatory cytokines and attenuates systemic disease sequelae in experimental pancreatitis. J. Parenter. Enteral. Nutr. 2002, 26, 351–356. [Google Scholar] [CrossRef]
- Garla, P.; Garib, R.; Torrinhas, R.S.; Machado, M.C.C.; Calder, P.C.; Waitzberg, D.L. Effect of parenteral infusion of fish oil-based lipid emulsion on systemic inflammatory cytokines and lung eicosanoid levels in experimental acute pancreatitis. Clin. Nutr. 2017, 36, 302–308. [Google Scholar] [CrossRef]
- Sharif, S.; Broman, M.; Babcock, T.; Ong, E.; Jho, D.; Rudnicki, M.; Helton, W.S.; Espat, N.J. A priori dietary omega-3 lipid supplementation results in local pancreatic macrophage and pulmonary inflammatory response attenuation in a model of experimental acute edematous pancreatitis (AEP). JPEN J. Parenter. Enteral. Nutr. 2006, 30, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Kilian, M.; Heukamp, I.; Gregor, J.I.; Bretthauer, C.; Walz, M.K.; Jacobi, C.A.; Lochs, H.; Schimke, I.; Guski, H.; Wenger, F.A. n-3, n-6, and n-9 polyunsaturated fatty acids—which composition in parenteral nutrition decreases severity of acute hemorrhagic necrotizing pancreatitis in rats? Int. J. Colorectal Dis. 2006, 21, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Gao, X.; Bi, J.; Tian, F.; Wang, X. Use of n-3 PUFAs can decrease the mortality in patients with systemic inflammatory response syndrome: A systematic review and meta-analysis. Lipids Health Dis. 2015, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Wolbrink, D.R.J.; Grundsell, J.R.; Witteman, B.; van de Poll, M.; van Santvoort, H.C.; Issa, E.; Dennison, A.; Goor, H.V.; Besselink, M.G.; Bouwense, S.A.W. Are omega-3 fatty acids safe and effective in acute pancreatitis or sepsis? A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2686–2894. [Google Scholar]
- Lei, Q.C.; Wang, X.Y.; Xia, X.F.; Zheng, H.Z.; Bi, J.C.; Tian, F.; Li, N. The role of omega-3 fatty acids in acute pancreatitis: A meta-analysis of randomized controlled trials. Nutrients 2015, 7, 2261–2273. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Zhang, F.; Pan, L.; Li, N.; Li, J. Fish oil-supplemented parenteral nutrition in severe acute pancreatitis patients and effects on immune function and infectious risk: A randomized controlled trial. Inflammation 2009, 32, 304–309. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, N.; Li, J. Omega-3 fatty acids-supplemented parenteral nutrition decreases hyperinflammatory response and attenuates systemic disease sequelae in severe acute pancreatitis: A randomized and controlled study. JPEN J. Parenter. Enteral. Nutr. 2008, 32, 236–241. [Google Scholar] [CrossRef]
- Al-Leswas, D.; Eltweri, A.M.; Chung, W.Y.; Arshad, A.; Stephenson, J.A.; Al-Taan, O.; Pollard, C.; Fisk, H.L.; Calder, P.C.; Garcea, G.; et al. Intravenous omega-3 fatty acids are associated with better clinical outcome and less inflammation in patients with predicted severe acute pancreatitis: A randomised double blind controlled trial. Clin. Nutr. 2020, 39, 2711–2719. [Google Scholar] [CrossRef]
- Jadhav, D.L.; Kannavar, S.; Rudramuri, K.; Abhilash Aditya, G.; Vijay Kumar, H. Comparative study between Omega 3 fatty acid infusion versus octreotide infusion in acute pancreatitis. J. Popul. Ther. Clin. Pharmacol. 2024, 31. [Google Scholar]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clinical Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clinical Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.D.; Ross, J.A.; Voss, A.C.; Tisdale, M.J.; Fearon, K.C.H. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br. J. Cancer 1999, 81, 80–86. [Google Scholar] [CrossRef]
- Pires, L.; Salaroli, L.; Podesta, O.; Haraguchi, F.; Lopes-Júnior, L. Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients 2024, 16, 4036. [Google Scholar] [CrossRef]
- Durkin, L.A.; Childs, C.E.; Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium—A Review. Foods 2021, 10, 199. [Google Scholar] [CrossRef]
- Singer, P.; Bendavid, I.; Mesilati-Stahy, R.; Green, P.; Rigler, M.; Lev, S.; Schif-Zuck, S.; Amiram, A.; Theilla, M.; Kagan, I. Enteral and supplemental parenteral nutrition enriched with omega-3 polyunsaturated fatty acids in intensive care patients—A randomized, controlled, double-blind clinical trial. Clinical Nutr. 2021, 40, 2544–2554. [Google Scholar] [CrossRef]
- Haines, K.L.; Ohnuma, T.; Trujillo, C.; Osamudiamen, O.; Krishnamoorthy, V.; Raghunathan, K.; Wischmeyer, P.E. Hospital change to mixed lipid emulsion from soybean oil-based lipid emulsion for parenteral nutrition in hospitalized and critically ill adults improves outcomes: A pre–post-comparative study. Crit. Care. 2022, 26, 317. [Google Scholar] [CrossRef]
- Stoppe, C.; Martindale, R.G.; Klek, S.; Calder, P.C.; Wischmeyer, P.E.; Patel, J.J. The role of lipid emulsions containing omega-3 fatty acids for medical and surgical critical care patients. Crit. Care 2024, 28, 271. [Google Scholar] [CrossRef]
- Ramanathan, M.; Aadam, A.A. Nutrition Management in Acute Pancreatitis. Nut Clin. Prac. 2019, 34, S7–S12. Available online: https://aspenjournals.onlinelibrary.wiley.com/doi/10.1002/ncp.10386 (accessed on 14 May 2025). [CrossRef]
- Kallistratos, M.S.; Poulimenos, L.E.; Giannitsi, S.; Tsinivizov, P.; Manolis, A.J. Trimetazidine in the Prevention of Tissue Ischemic Conditions. Angiology 2019, 70, 291–298. [Google Scholar] [CrossRef]
- Tikhaze, A.K.; Lankin, V.Z.; Zharova, E.A.; Kolycheva, S.V. Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med. 2000, 130, 951–953. [Google Scholar] [CrossRef]
- Bayram, E.; Atalay, C.; Kocatürk, H.; Yücel, O. Effects of trimetazidine on lipid peroxidation, antioxidant enzyme activities and plasma brain natriuretic peptide levels in patients with chronic cor pulmonale. J. Int. Med. Res. 2005, 33, 612–619. [Google Scholar] [CrossRef]
- Argaud, L.; Gomez, L.; Gateau-Roesch, O.; Couture-Lepetit, E.; Loufouat, J.; Robert, D.; Ovize, M. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J. Mol. Cell. Cardiol 2005, 39, 893–899. [Google Scholar] [CrossRef]
- Işık, S.; Şengül, N.; Töre, F.; Aydın, C.; Aslan, A.; Uçar, G.; Fırat, T.; Kukner, A.; Bayram, P.; Demirbağ, A.E.; et al. Trimetazidine Increases Cell Survival and Inhibits the Activation of Inflammatory Response in Sodium Taurocholate–Induced Acute Pancreatitis. Int. Surg. 2017, 102, 542–551. [Google Scholar] [CrossRef]
- Ergücük, H.; Işık, S.; İflazoğlu, N.; Kayaalp, C.; Saraç, M.; Gürsul, S. The effect of trimethazidine on mortality in an experimental acute pancreatitis model1. Turk. J. Gastroenterol. 2020, 31, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Yenicerioglu, A.; Cetinkaya, Z.; Girgin, M.; Ustundag, B.; Ozercan, I.H.; Ayten, R.; Kanat, B.H. Effects of trimetazidine in acute pancreatitis induced by L-arginine. Can. J. Surg. 2013, 56, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Tanoglu, A.; Yazgan, Y.; Kaplan, M.; Berber, U.; Kara, M.; Demırel, D.; Ipcioglu, O.M. Trimetazidine significantly reduces cerulein-induced pancreatic apoptosis. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 145–150. [Google Scholar] [CrossRef]
- Chen, Y.M.; Tu, C.J.; Hung, K.Y.; Wu, K.D.; Tsai, T.J.; Hsieh, B.S. Inhibition by pentoxifylline of TNF-alpha-stimulated fractalkine production in vascular smooth muscle cells: Evidence for mediation by NF-kappa B down-regulation. Br. J. Pharmacol. 2003, 138, 950–958. [Google Scholar] [CrossRef]
- González-Espinoza, L.; Rojas-Campos, E.; Medina-Pérez, M.; Peña-Quintero, P.; Gómez-Navarro, B.; Cueto-Manzano, A.M. Pentoxifylline decreases serum levels of tumor necrosis factor alpha, interleukin 6 and C-reactive protein in hemodialysis patients: Results of a randomized double-blind, controlled clinical trial. Nephrol. Dial. Transpl. 2012, 27, 2023–2028. [Google Scholar] [CrossRef]
- Vege, S.S.; Atwal, T.; Bi, Y.; Chari, S.T.; Clemens, M.A.; Enders, F.T. Pentoxifylline Treatment in Severe Acute Pancreatitis: A Pilot, Double-Blind, Placebo-Controlled, Randomized Trial. Gastroenterology 2015, 149, 318–320.e3. [Google Scholar] [CrossRef]
- Vege, S.S.; Horibe, M.; Chari, S.T.; Clemens, M.A.; Loftus, C.G.; Enders, F.T. A single center randomized double blind controlled trial of pentoxifylline in acute pancreatitis: Challenges and opportunities. Pancreatology 2020, 20, 1592–1597. [Google Scholar] [CrossRef]
- Kapetanos, D.; Kokozidis, G.; Christodoulou, D.; Mistakidis, K.; Sigounas, D.; Dimakopoulos, K.; Kitis, G.; Tsianos, E.V. A randomized controlled trial of pentoxifylline for the prevention of post-ERCP pancreatitis. Gastrointest. Endosc. 2007, 66, 513–518. [Google Scholar] [CrossRef]
- Wanichagool, D.; Techathuvanan, K. IDDF2019-ABS-0022 The efficacy of pentoxifylline on acute pancreatitis. In Clinical Gastroenterology; BMJ Publishing Group Ltd. A: London, UK; British Society of Gastroenterology B: London, UK, 2019; pp. A63.3–A63. Available online: https://gut.bmj.com/lookup/doi/10.1136/gutjnl-2019-IDDFAbstracts.119 (accessed on 26 February 2024).
- Sateesh, J.; Bhardwaj, P.; Singh, N.; Saraya, A. Effect of antioxidant therapy on hospital stay and complications in patients with early acute pancreatitis: A randomised controlled trial. Trop. Gastroenterol. 2009, 30, 201–206. [Google Scholar] [PubMed]
- Bansal, D.; Bhalla, A.; Bhasin, D.K.; Pandhi, P.; Sharma, N.; Rana, S.; Malhotra, S. Safety and efficacy of vitamin-based antioxidant therapy in patients with severe acute pancreatitis: A randomized controlled trial. Saudi. J. Gastroenterol. 2011, 17, 174–179. [Google Scholar] [PubMed]
- Uden, S.; Bilton, D.; Nathan, L.; Hunt, L.P.; Main, C.; Braganza, J.M. Antioxidant therapy for recurrent pancreatitis: Placebo-controlled trial. Aliment. Pharmacol. Ther. 1990, 4, 357–371. [Google Scholar] [CrossRef]
- Uden, S.; Schofield, D.; Miller, P.F.; Day, J.P.; Bottiglier, T.; Braganza, J.M. Antioxidant therapy for recurrent pancreatitis: Biochemical profiles in a placebo-controlled trial. Aliment. Pharmacol. Ther. 1992, 6, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Mohseni Salehi Monfared, S.S.; Vahidi, H.; Abdolghaffari, A.H.; Nikfar, S.; Abdollahi, M. Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis: A systematic review. World J. Gastroenterol. 2009, 15, 4481. [Google Scholar] [CrossRef]
- Fuentes-Orozco, C.; Dávalos-Cobián, C.; García-Correa, J.; Ambriz-González, G.; Macías-Amezcua, M.D.; García-Rentería, J.; Rendón-Félix, J.; Chávez-Tostado, M.; Cuesta-Márquez, L.A.; Alvarez-Villaseñor, A.S.; et al. Antioxidant drugs to prevent post-endoscopic retrograde cholangiopancreatography pancreatitis: What does evidence suggest? World J. Gastroenterol. 2015, 21, 6745–6753. [Google Scholar] [CrossRef]
- Chen, F.; Xu, K.; Han, Y.; Ding, J.; Ren, J.; Wang, Y.; Ma, Z.; Cao, F. Mitochondrial dysfunction in pancreatic acinar cells: Mechanisms and therapeutic strategies in acute pancreatitis. Front. Immunol. 2024, 15, 1503087. [Google Scholar] [CrossRef]
- Musil, F.; Zadák, Z.; Solichová, D.; Hyšpler, R.; Kaška, M.; Sobotka, L.; Manák, J. Dynamics of antioxidants in patients with acute pancreatitis and in patients operated for colorectal cancer: A clinical study. Nutrition 2005, 21, 118–124. [Google Scholar] [CrossRef]
- Kňazovický, M.; Roškovičová, V.; Gajdzik, T.; Hildebrand, T.; Kaťuchová, J. Natural Antioxidants: New Possibilities For The Treatment and Prevention of Acute Pancreatitis. Bratisl. Med. J. 2025, 126, 114–126. [Google Scholar] [CrossRef]
- Walker, B.C.; Mittal, S. Antitumor Activity of Curcumin in Glioblastoma. Int. J. Mol. Sci. 2020, 21, 9435. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Fernandes, J.L.; de Oliveira, R.T.D.; Mamoni, R.L.; Coelho, O.R.; Nicolau, J.C.; Blotta, M.H.S.L.; Serrano, C.V., Jr. Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory activity in patients with coronary artery disease--a randomized placebo-controlled study. Atherosclerosis 2008, 196, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wu, Y.; Rong, J.; Xia, Q.; Du, D. Unveiling the Emerging Role of Xanthine Oxidase in Acute Pancreatitis: Beyond Reactive Oxygen Species. Antioxidants 2025, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Weniger, M.; Reinelt, L.; Neumann, J.; Holdt, L.; Ilmer, M.; Renz, B.; Hartwig, W.; Werner, J.; Bazhin, A.V.; D‘Haese, J.G. The Analgesic Effect of the Mitochondria-Targeted Antioxidant SkQ1 in Pancreatic Inflammation. Oxid Med. Cell. Longev. 2016, 2016, 4650489. [Google Scholar] [CrossRef] [PubMed]
- de-Madaria, E.; Buxbaum, J.L.; Maisonneuve, P.; García García De Paredes, A.; Zapater, P.; Guilabert, L.; Vaillo-Rocamora, A.; Rodríguez-Gandía, M.Á.; Donate-Ortega, J.; Lozada-Hernández, E.E.; et al. Aggressive or Moderate Fluid Resuscitation in Acute Pancreatitis. N. Engl. J. Med. 2022, 387, 989–1000. [Google Scholar] [CrossRef]
- Czapári, D.; Váradi, A.; Farkas, N.; Nyári, G.; Márta, K.; Váncsa, S.; Nagy, R.; Teutsch, B.; Bunduc, S.; Erőss, B.; et al. Detailed Characteristics of Post-discharge Mortality in Acute Pancreatitis. Gastroenterology 2023, 165, 682–695. [Google Scholar] [CrossRef]
Antioxidant (Type) | Proposed Mechanism of Action | Key Findings |
---|---|---|
Vitamin E (α-tocopherol) | Fat-soluble chain-breaking antioxidant; scavenges lipid peroxyl radicals and protects cell membranes. | Supplementation (400 IU/day) improved oxidative stress markers (↓ MDA, ↑ total antioxidant capacity). Clinical impact on AP severity not clearly demonstrated due to small sample. |
Vitamin C (ascorbic acid) | Water-soluble antioxidant; cofactor for enzymatic reactions, regenerates other antioxidants, and may modulate immune function. | High-dose IV vitamin C (up to 10 g IV/day) showed improved antioxidant status and shorter hospital stay. Meta-analysis indicates reduced hospital stay but no clear impact on mortality or organ failure. Optimal dose/timing remains unclear; overall survival benefit not proven. |
β-carotene (provitamin A carotenoid) | Lipid-soluble antioxidant; quenching of singlet oxygen and free radicals. Modulates immune responses and pancreatic β-cell function. | No reduction in overall post-ERCP AP incidence, but severe cases were fewer with β-carotene supplementation. AP patients have lower β-carotene levels, correlating with severity, suggesting a potential role in more severe cases. |
Glutamine (amino acid; immunonutrient) | Precursor for glutathione; supports gut barrier and modulates immune response; indirect antioxidant. | Parenteral/enteral glutamine supplementation (0.3–0.5 g/kg) reduced infectious complications and mortality in several studies. Meta-analyses show significant reductions in hospital stay and multi-organ dysfunction with glutamine-enriched feeding. Now recommended as part of nutritional therapy in severe AP. |
N-acetylcysteine (N-ACC) (glutathione precursor) | Restores intracellular glutathione; scavenges free radicals; inhibits NF-κB activation in acinar cells. | Despite strong rationale, clinical results are inconsistent. Prophylactic N-ACC did not significantly prevent post-ERCP AP in most trials. In AP, N-ACC improved biochemical markers (e.g., reduced MDA), but showed no confirmed benefit on clinical outcomes or length of hospital stay. |
S-adenosyl methionine (SAMe) | Methyl donor that boosts trans-sulfuration to replenish glutathione; mitigates oxidative injury in the liver. | A 24 h infusion of SAMe+N-ACC showed no significant improvement in outcomes. The short duration and timing may have limited its efficacy; no clear evidence to support SAMe in AP at present. |
Selenium (trace element) | Cofactor for glutathione peroxidase and other antioxidant enzymes; has anti-inflammatory and immune effects. | Selenium levels drop in severe AP, but supplementation trials yielded no significant clinical benefit. High-dose selenium did not reduce organ failure or mortality in severe AP. One study noted improved redox markers (↑GPx, ↓MDA), but without outcome improvements. |
Omega-3 fatty acids (e.g., fish oil) | Anti-inflammatory and antioxidant effects via resolvins/protectins; reduces neutrophil ROS generation and modulates eicosanoids. Improves gut barrier function and immune regulation. | Supplementation with omega-3 IV lipid emulsion significantly lowered inflammatory markers and organ failure rate in AP. Meta-analysis of omega-3 in severe AP showed reduced infectious complications and a trend toward lower mortality. Patients receiving omega-3 had shorter ICU stays and improved immune status (higher IL-10) in some trials. |
Melatonin (endogenous hormone) | Powerful free radical scavenger; inhibits NF-κB and inflammasome activation; stabilizes mitochondrial function. | Significantly reduced post-ERCP AP incidence. Endogenous melatonin levels correlate with milder AP; low serum melatonin is associated with severe AP. No therapeutic trial in established AP yet, but melatonin shows promise as adjunct prophylaxis. |
Curcumin (turmeric polyphenol) | Multi-target antioxidant: scavenges ROS; inhibits NF-κB and MAPK signaling; up-regulates Nrf2/HO-1 pathway. | In chronic/tropical pancreatitis, curcumin (500 mg) lowered lipid peroxidation (MDA) and raised glutathione levels. In AP, nano-curcumin was associated with faster symptom resolution and shorter hospital stays, though larger studies are needed. |
Pentoxifylline (methylxanthine) | Inhibits TNF-α and inflammatory cytokines; preserves glutathione and improves microcirculation. | Mixed results: initial small trial suggested fewer ICU admissions, but a larger RCT showed no improvement in organ failure or outcomes. No benefit in preventing post-ERCP AP. |
Combined antioxidant cocktails (multiple micronutrients) | Various combinations aimed at broad antioxidant coverage (e.g., selenium + vitamin C + N-ACC; or vitamins A, C, E + selenium + methionine). | Mixed outcomes: In chronic/recurrent AP, long-term oral antioxidant therapy eliminated acute flares and improved pain over 20 weeks. However, in severe AP, early high-dose combination therapy failed to improve organ failure or mortality. Some trials even noted longer hospital stays with aggressive antioxidant use. The optimal combination, timing, and indication remain uncertain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, L.I.; Balaban, D.V.; Dumbravă, B.F.; Păunescu, H.; Marin, R.-C.; Costescu, M.; Dima, L.; Jinga, M.; Coman, O.A. Targeting Oxidative Stress in Acute Pancreatitis: A Critical Review of Antioxidant Strategies. Nutrients 2025, 17, 2390. https://doi.org/10.3390/nu17152390
Coman LI, Balaban DV, Dumbravă BF, Păunescu H, Marin R-C, Costescu M, Dima L, Jinga M, Coman OA. Targeting Oxidative Stress in Acute Pancreatitis: A Critical Review of Antioxidant Strategies. Nutrients. 2025; 17(15):2390. https://doi.org/10.3390/nu17152390
Chicago/Turabian StyleComan, Laura Ioana, Daniel Vasile Balaban, Bogdan Florin Dumbravă, Horia Păunescu, Ruxandra-Cristina Marin, Mihnea Costescu, Lorena Dima, Mariana Jinga, and Oana Andreia Coman. 2025. "Targeting Oxidative Stress in Acute Pancreatitis: A Critical Review of Antioxidant Strategies" Nutrients 17, no. 15: 2390. https://doi.org/10.3390/nu17152390
APA StyleComan, L. I., Balaban, D. V., Dumbravă, B. F., Păunescu, H., Marin, R.-C., Costescu, M., Dima, L., Jinga, M., & Coman, O. A. (2025). Targeting Oxidative Stress in Acute Pancreatitis: A Critical Review of Antioxidant Strategies. Nutrients, 17(15), 2390. https://doi.org/10.3390/nu17152390