Post-Exercise Whey Protein Supplementation: Effects on IGF-1, Strength, and Body Composition in Pre-Menopausal Women, a Randomised Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Procedures
2.2.1. Screening
2.2.2. Intervention—Supplementation
2.2.3. Intervention—Resistance Training Protocol
2.2.4. Intervention—Interval Training Protocol
2.3. Measurements
Total IGF-1 Analysis (Primary Outcome)
2.4. Dietary Food Records
2.5. Body Composition
2.6. Strength Testing
2.7. Statistical Analyses
2.7.1. A Priori Sample Size Calculation
2.7.2. Analyses
3. Results
3.1. Participant Screening
3.2. Adherence
3.3. Participant Characteristics
3.4. IGF-1
3.5. Dietary Intake
3.6. Body Composition
3.7. Strength and Training Volume
3.8. Sensitivity Analyses
4. Discussion
4.1. IGF-1
4.2. Diet
4.3. Body Composition
4.4. Strength
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith-Ryan, A.E.; Cabre, H.E.; Moore, S.R. Active Women Across the Lifespan: Nutritional Ingredients to Support Health and Wellness. Sports Med. 2022, 52, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.W.; Sonnier, J.H.; Johnson, E.E.; Hall, A.T.; Osman, A.; Connors, G.M.; Freedman, K.B.; Bishop, M.E. Inequalities in the Evaluation of Male Versus Female Athletes in Sports Medicine Research: A Systematic Review. Am. J. Sports Med. 2023, 51, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Areta, J.; Coffey, V.G.; Stellingwerff, T.; Phillips, S.M.; Burke, L.M.; Cléroux, M.; Godin, J.-P.; Hawley, J.A. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutr. Metab. 2012, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Biolo, G.; Tipton, K.D.; Klein, S.; Wolfe, R.R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol.-Endocrinol. Metab. 1997, 273, E122–E129. [Google Scholar] [CrossRef] [PubMed]
- Kimball, S.R. Integration of signals generated by nutrients, hormones, and exercise in skeletal muscle. Am. J. Clin. Nutr. 2014, 99, 237S–242S. [Google Scholar] [CrossRef]
- Joanisse, S.; McKendry, J.; Lim, C.; Nunes, E.A.; Stokes, T.; McLeod, J.C.; Phillips, S.M. Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. Clin. Nutr. Open Sci. 2021, 36, 56–77. [Google Scholar] [CrossRef]
- Wang, X.; Proud, C.G. The mTOR Pathway in the Control of Protein Synthesis. Physiology 2006, 21, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kanda, A.; Nakayama, K.; Fukasawa, T.; Koga, J.; Kanegae, M.; Kawanaka, K.; Higuchi, M. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. Br. J. Nutr. 2013, 110, 981–987. [Google Scholar] [CrossRef]
- Melick, C.H.; Jewell, J.L. Regulation of mTORC1 by Upstream Stimuli. Genes 2020, 11, 989. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Liu, J.-L.; Fernandez, A.M.; Wu, Y.; Schally, A.V.; Frystyk, J.; Chernausek, S.D.; Mejia, W.; Le Roith, D. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001, 50, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Khalid, K.; Szewczyk, A.; Kiszałkiewicz, J.; Migdalska-Sęk, M.; Domańska-Senderowska, D.; Brzeziański, M.; Lulińska, E.; Jegier, A.; Brzeziańska-Lasota, E. Type of training has a significant influence on the GH/IGF-1 axis but not on regulating miRNAs. Biol. Sport 2020, 37, 217–228. [Google Scholar] [CrossRef]
- Sullivan, B.P.; Weiss, J.A.; Nie, Y.; Garner, R.T.; Drohan, C.J.; Kuang, S.; Stout, J.; Gavin, T.P. Skeletal muscle IGF-1 is lower at rest and after resistance exercise in humans with obesity. Eur. J. Appl. Physiol. 2020, 120, 2835–2846. [Google Scholar] [CrossRef]
- Arazi, H.; Babaei, P.; Moghimi, M.; Asadi, A. Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr. 2021, 21, 50. [Google Scholar] [CrossRef]
- Pierce, J.R.; Martin, B.J.; Rarick, K.R.; Alemany, J.A.; Staab, J.S.; Kraemer, W.J.; Hymer, W.C.; Nindl, B.C. Growth Hormone and Insulin-like Growth Factor-I Molecular Weight Isoform Responses to Resistance Exercise Are Sex-Dependent. Front. Endocrinol 2020, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Lou, K.; Hou, L.; Lu, Y.; Sun, L.; Tan, S.C.; Low, T.Y.; Kord-Varkaneh, H.; Pang, S. The effect of resistance training on serum insulin-like growth factor 1(IGF-1): A systematic review and meta-analysis. Complement. Ther. Med. 2020, 50, 102360. [Google Scholar] [CrossRef] [PubMed]
- Rosendal, L.; Langberg, H.; Flyvbjerg, A.; Frystyk, J.; Ørskov, H.; Kjær, M. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J. Appl. Physiol. 2002, 93, 1669–1675. [Google Scholar] [CrossRef]
- Arnarson, A.; Gudny Geirsdottir, O.; Ramel, A.; Jonsson, P.V.; Thorsdottir, I. Insulin-Like Growth Factor-1 and Resistance Exercise in Community Dwelling Old Adults. J. Nutr. Health Aging 2015, 19, 856–860. [Google Scholar] [CrossRef]
- Fontana, L.; Weiss, E.P.; Villareal, D.T.; Klein, S.; Holloszy, J.O. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008, 7, 681–687. [Google Scholar] [CrossRef]
- Orsatti, F.L.; Nahas, E.A.P.; Maesta, N.; Nahas-Neto, J.; Burini, R.C. Plasma hormones, muscle mass and strength in resistance-trained postmenopausal women. Maturitas 2008, 59, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Matsubara, T.; Tobina, T.; Shindo, M.; Tokuyama, K.; Tanaka, K.; Tanaka, H. Effect of low-intensity aerobic exercise on insulin-like growth factor-I and insulin-like growth factor-binding proteins in healthy men. Int. J. Endocrinol. 2010, 2010, 452820. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xu, Y.; Gong, F.; Shan, G.; Yang, H.; Xu, K.; Zhang, D.; Cheng, X.; Zhang, Z.; Chen, S.; et al. Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS ONE 2017, 12, e0185561. [Google Scholar] [CrossRef] [PubMed]
- Ballard, T.L.P.; Clapper, J.A.; Specker, B.L.; Binkley, T.L.; Vukovich, M.D. Effect of protein supplementation during a 6-mo strength and conditioning program on insulin-like growth factor I and markers of bone turnover in young adults1–3. Am. J. Clin. Nutr. 2005, 81, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.M.; Spiering, B.A.; Alemany, J.A.; Tuckow, A.P.; Rarick, K.R.; Staab, J.S.; Hatfield, D.L.; Kraemer, W.J.; Maresh, C.M.; Nindl, B.C. Exercise-induced insulin-like growth factor I system concentrations after training in women. Med. Sci. Sports Exerc. 2013, 45, 420–428. [Google Scholar] [CrossRef]
- Gunbatar, N.; Kaya, M.S.; Kahraman, T.; Bayiroglu, F. Paradoxical Advantage of Middle Aged Sedentary over Young Sedentary on Starting Exercise in Terms of GH/IGF-1 System. J. Appl. Biol. Sci. 2018, 12, 21–25. [Google Scholar]
- Eliakim, A.; Brasel, J.A.; Mohan, S.; Barstow, T.J.; Berman, N.; Cooper, D.M. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J. Clin. Endocrinol. Metab. 1996, 81, 3986–3992. [Google Scholar] [CrossRef]
- Azadi, B.; BolBoli, L.; Khani, M.; Siyahkohyan, M.; Pourrahim, A. Comparison of the Effect of Eight Weeks of Continuous and High Intensity Interval Training on GH/IGF-1 Serum Indices and Aerobic performance of Active Young Males. J. Sport Biosci. 2022, 14, 101–118. [Google Scholar]
- Avazpour, S.; Kalkhoran, J.F.; Avazpour, K.; Mohseni, F. The effect of two types of high-intensity interval training on serum value of GH and IGF-1 in overweight nurses. Asian J. Sports Med. 2020, 11, e103135. [Google Scholar] [CrossRef]
- Hejazi, S.M. Effects of high intensity interval training on plasma levels of GH and IGF-I. Int. J. Med. Res. Health Sci. 2017, 6, 55–59. [Google Scholar]
- Nijenhuis-Noort, E.C.; Berk, K.A.; Neggers, S.J.; van der Lely, A.J. The Fascinating Interplay between Growth Hormone, Insulin-Like Growth Factor-1, and Insulin. Endocrinol. Metab. 2024, 39, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Brüngger, M.; Hulter, H.N.; Krapf, R. Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: New cause of growth hormone insensitivity in humans. Kidney Int. 1997, 51, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Alemany, J.A.; Tuckow, A.P.; Rarick, K.R.; Staab, J.S.; Kraemer, W.J.; Maresh, C.M.; Spiering, B.A.; Hatfield, D.L.; Flyvbjerg, A. Circulating bioactive and immunoreactive IGF-I remain stable in women, despite physical fitness improvements after 8 weeks of resistance, aerobic, and combined exercise training. J. Appl. Physiol. 2010, 109, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Sporer, B.C.; Wenger, H.A. Effects of aerobic exercise on strength performance following various periods of recovery. J. Strength Cond. Res. 2003, 17, 638–644. [Google Scholar] [PubMed]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Epley, B. Poundage Chart. Boyd Epley Workout; Body Enterprises: Lincoln, NE, USA, 1985; p. 86. [Google Scholar]
- DiStasio, T.J. Validation of the Brzycki and Epley Equations for the 1 Repetition Maximum Back Squat Test in Division I College Football Players. Master’s Thesis, Southern Illinois University, Carbondale, IL, USA, 2014. [Google Scholar]
- Ives, S.J.; Norton, C.; Miller, V.; Minicucci, O.; Robinson, J.; O’Brien, G.; Escudero, D.; Paul, M.; Sheridan, C.; Curran, K.; et al. Multi-modal exercise training and protein-pacing enhances physical performance adaptations independent of growth hormone and BDNF but may be dependent on IGF-1 in exercise-trained men. Growth Horm. IGF Res. 2017, 32, 60–70. [Google Scholar] [CrossRef]
- Georgiev, G. Sample Size Calculator. Available online: https://www.gigacalculator.com/calculators/power-sample-size-calculator.php (accessed on 25 November 2021).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Ben-Shachar, M.S.; Lüdecke, D.; Makowski, D. effectsize: Estimation of Effect Size Indices and Standardized Parameters. J. Open Source Softw. 2020, 5, 2815. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- The R Core Team. R: A Language and Environment for Statistical Computing; The R Core Team: Vienna, Austria, 2025. [Google Scholar]
- O’Connor, K.G.; Tobin, J.D.; Harman, S.M.; Plato, C.C.; Roy, T.A.; Sherman, S.S.; Blackman, M.R. Serum Levels of Insulin-like Growth Factor-I Are Related to Age and Not to Body Composition in Healthy Women and Men. J. Gerontol. Ser. A 1998, 53A, M176–M182. [Google Scholar] [CrossRef]
- Nasir, Y.; Hoseinipouya, M.R.; Eshaghi, H.; Rahimi, M.H. The impact of exercise on growth factors in postmenopausal women: A systematic review and meta-analysis. BMC Womens Health 2024, 24, 396. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Montesanto, A.; Giovannucci, E.; Zand, H.; Barati, M.; Kopchick, J.J.; Mirisola, M.G.; Lagani, V.; Bawadi, H.; Vardavas, R.; et al. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell 2022, 21, e13540. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Johnson, W.D.; Rood, J.; Heaton, A.L.; Greenway, F.L. Increased Human Growth Hormone After Oral Consumption of an Amino Acid Supplement: Results of a Randomized, Placebo-Controlled, Double-Blind, Crossover Study in Healthy Subjects. Am. J. Ther. 2020, 27, e333–e337. [Google Scholar] [CrossRef] [PubMed]
- Iresjö, B.M.; Diep, L.; Lundholm, K. Initiation of muscle protein synthesis was unrelated to simultaneously upregulated local production of IGF-1 by amino acids in non-proliferating L6 muscle cells. PLoS ONE 2022, 17, e0270927. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, J.E.; Wardle, S.L.; O’Leary, T.J.; Greeves, J.P.; Cegielski, J.; Bass, J.; Brook, M.S.; Wilkinson, D.J.; Smith, K.; Atherton, P.J.; et al. Protein dose requirements to maximize skeletal muscle protein synthesis after repeated bouts of resistance exercise in young trained women. Scand. J. Med. Sci. Sports 2023, 33, 2470–2481. [Google Scholar] [CrossRef]
- Nemet, D.; Connolly, P.H.; Pontello-Pescatello, A.M.; Rose-Gottron, C.; Larson, J.K.; Galassetti, P.; Cooper, D.M. Negative energy balance plays a major role in the IGF-I response to exercise training. J. Appl. Physiol. 2004, 96, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Rarick, K.R.; Pikosky, M.A.; Grediagin, A.; Smith, T.J.; Glickman, E.L.; Alemany, J.A.; Staab, J.S.; Young, A.J.; Nindl, B.C. Energy flux, more so than energy balance, protein intake, or fitness level, influences insulin-like growth factor-I system responses during 7 days of increased physical activity. J. Appl. Physiol. 2007, 103, 1613–1621. [Google Scholar] [CrossRef]
- Hida, A.; Hasegawa, Y.; Mekata, Y.; Usuda, M.; Masuda, Y.; Kawano, H.; Kawano, Y. Effects of egg white protein supplementation on muscle strength and serum free amino acid concentrations. Nutrients 2012, 4, 1504–1517. [Google Scholar] [CrossRef]
- Mallard, A.R.; McLay-Cooke, R.T.; Rehrer, N.J. Protein supplements: Do they alter dietary intakes? Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 333–340. [Google Scholar] [CrossRef]
- Hagobian, T.A.; Sharoff, C.G.; Stephens, B.R.; Wade, G.N.; Silva, J.E.; Chipkin, S.R.; Braun, B. Effects of exercise on energy-regulating hormones and appetite in men and women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R233–R242. [Google Scholar] [CrossRef]
- Cornier, M.A.; Salzberg, A.K.; Endly, D.C.; Bessesen, D.H.; Tregellas, J.R. Sex-based differences in the behavioral and neuronal responses to food. Physiol. Behav. 2010, 99, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Horvath, T.L. Cross-talk between estrogen and leptin signaling in the hypothalamus. Am. J. Physiol.-Endocrinol. Metab. 2008, 294, E817–E826. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr. 2008, 87, 1558S–1561S. [Google Scholar] [CrossRef]
- Martens, E.A.; Lemmens, S.G.; Westerterp-Plantenga, M.S. Protein leverage affects energy intake of high-protein diets in humans. Am. J. Clin. Nutr. 2013, 97, 86–93. [Google Scholar] [CrossRef]
- Gosby, A.K.; Conigrave, A.D.; Raubenheimer, D.; Simpson, S.J. Protein leverage and energy intake. Obes. Rev. 2014, 15, 183–191. [Google Scholar] [CrossRef]
- Cermak, N.M.; de Groot, L.C.; Saris, W.H.; Van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The effect of protein timing on muscle strength and hypertrophy: A meta-analysis. J. Int. Soc. Sports Nutr. 2013, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Willingham, B.D.; Marchant, T.; Binkley, T.L.; Specker, B.L.; Vukovich, M.D. Protein supplementation during a 6-month concurrent training program: Effect on body composition and muscular strength in sedentary individuals. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef]
- Arciero, P.J.; Ives, S.J.; Norton, C.; Escudero, D.; Minicucci, O.; O’Brien, G.; Paul, M.; Ormsbee, M.J.; Miller, V.; Sheridan, C. Protein-pacing and multi-component exercise training improves physical performance outcomes in exercise-trained women: The PRISE 3 study. Nutrients 2016, 8, 332. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.L.; Staron, R.S.; Phillips, S.M. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J. Physiol. 2005, 568, 283–290. [Google Scholar] [CrossRef]
- Timmons, J.A. Variability in training-induced skeletal muscle adaptation. J. Appl. Physiol. 2011, 110, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Hagstrom, A.D.; Marshall, P.W.; Halaki, M.; Hackett, D.A. The Effect of Resistance Training in Women on Dynamic Strength and Muscular Hypertrophy: A Systematic Review with Meta-analysis. Sports Med. 2020, 50, 1075–1093. [Google Scholar] [CrossRef]
- Campbell, B.I.; Aguilar, D.; Conlin, L.; Vargas, A.; Schoenfeld, B.J.; Corson, A.; Gai, C.; Best, S.; Galvan, E.; Couvillion, K. Effects of high versus low protein intake on body composition and maximal strength in aspiring female physique athletes engaging in an 8-week resistance training program. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 580–585. [Google Scholar] [CrossRef]
- Lamont, L.S.; Lemon, P.; Bruot, B.C. Menstrual cycle and exercise effects on protein catabolism. Med. Sci. Sports Exerc. 1987, 19, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Kriengsinyos, W.; Wykes, L.J.; Goonewardene, L.A.; Ball, R.O.; Pencharz, P.B. Phase of menstrual cycle affects lysine requirement in healthy women. Am. J. Physiol.-Endocrinol. Metab. 2004, 287, E489–E496. [Google Scholar] [CrossRef]
- Roberts, B.M.; Nuckols, G.; Krieger, J.W. Sex Differences in Resistance Training: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2020, 34, 1448–1460. [Google Scholar] [CrossRef]
- Ravelli, M.N.; Schoeller, D.A. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, P.; Song, Y.-H.; Li, Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 435–444. [Google Scholar] [CrossRef] [PubMed]
CON | PRO | |
---|---|---|
Serving size (g) | 31.1 | 32.0 |
Energy (kJ) | 510.4 | 510.4 |
Protein (g) | 2.7 | 24 |
Carbohydrate (g) | 21.7 | 1.7 |
Fat (g) | 3.4 | 1.8 |
Block 1 | Testing | Block 2 | Testing | Block 3 | |
---|---|---|---|---|---|
Sets | 3 | X | 3 | X | 4 |
Repetitions | 10 | X | 10 | X | 8 |
Load (%1RM) | 75 | X | 75 | X | 80 |
Rest (s) | 150 | X | 150 | X | 180 |
Block | Intervals * | Warm-Up | Work: Rest | Warm-Down | RPE Work: Rest |
---|---|---|---|---|---|
Week 1 & 2 | 6 | 5 min | 60:90 s | 5 min | 10:2 |
Week 3 | 6 | 5 min | 60:60 s | 5 min | 10:2 |
T0 | T12 | Mean Difference | Significance | |||||
---|---|---|---|---|---|---|---|---|
CON (n = 12) | PRO (n = 15) | CON (n = 12) | PRO (n = 15) | T12 | Group | Time | Interaction | |
Age (y) | 32.8 (9.7) | 34.2 (9.1) | ||||||
Height (cm) | 167.3 (2.2) | 163.3 (8.0) | ||||||
Body mass (kg) | 75.3 (7.5) | 64.2 (14.5) | 75.7 (6.9) | 64.4 (13.7) | −0.28 (−1.52, 0.97) | 0.021 | 0.189 | 0.975 |
BMI (kg/m2) | 27.1 (3.1) | 24.0 (3.9) | 27.2 (2.9) | 24.1 (3.8) | −0.07 (−0.48, 0.33) | 0.033 | 0.760 | 0.961 |
Total IGF-1 (µg/L) | 203 (67.9) | 178 (61.1) | 197 (67.4) | 176 (43.0) | 1.38 (−26.6, 29.4) | 0.280 | 0.923 | 0.920 |
T0 | T4–T12 | Mean Difference | Significance | |||||
---|---|---|---|---|---|---|---|---|
LP (n = 11) | HP (n = 13) | LP (n = 11) | HP (n = 13) | Group | Time | Interaction | ||
Energy intake (kJ) | 7742 (1361) | 6868 (1743) | 7867 (1092) | 7205 (1133) | 211 (−1001, 1425) | 0.122 | 0.439 | 0.721 |
Protein intake (g) | 79 (12) | 70 (20) | 84 (12) | 91 (15) | 16 (2, 29) | 0.845 | <0.001 | 0.025 * |
Carbohydrate intake (g) | 176 (65) | 157 (55) | 190 (43) | 155 (56) | −15 (−55, 24) | 0.200 | 0.526 | 0.432 |
Fat intake (g) | 83 (19) | 75 (30) | 83 (23) | 70 (16) | −4 (−24, 16) | 0.209 | 0.570 | 0.670 |
Relative protein intake (g/kg BW) | 1.1 (0.2) | 1.2 (0.4) | 1.1 (0.2) | 1.5 (0.3) | 0.27 (0.07, 0.47) | 0.040 | <0.001 | 0.011 * |
Relative protein intake (g/kg lean) | 1.8 (0.2) | 1.9 (0.6) | 1.9 (0.3) | 2.3 (0.5) | 0.43 (0.09, 0.77) | 0.150 | 0.003 | 0.016 * |
T0 | T12 | Mean Difference | Significance | |||||
---|---|---|---|---|---|---|---|---|
CON (n = 12) | PRO (n = 15) | CON (n = 11) | PRO (n = 15) | Group | Time | Interaction | ||
Lean mass (kg): | ||||||||
Total | 43.3 (3.2) | 40.2 (7.1) | 44.3 (3.1) | 40.7 (6.2) | 0.46 (−0.54, 1.46) | 0.028 | 0.009 | 0.75 |
Upper body | 25.1 (1.9) | 23.2 (4.0) | 25.6 (2.0) | 23.5 (3.6) | 0.39 (−0.17), 0.96) | 0.025 | 0.041 | 0.82 |
Trunk | 20.4 (1.3) | 19.1 (3.4) | 20.7 (1.4) | 19.1 (3.0) | 0.15 (−0.71, 1.02) | 0.041 | 0.339 | 0.834 |
Arm | 4.7 (0.8) | 4.1 (0.7) | 4.9 (0.7) | 4.4 (0.7) | −0.03 (−0.21, 0.14) | 0.017 | <0.001 | 0.913 |
Leg | 15.1 (1.3) | 14.0 (3.0) | 15.6 (1.3) | 14.3 (2.7) | 0.07 (−0.44, 0.57) | 0.048 | 0.001 | 0.659 |
Fat mass (kg): | ||||||||
Total | 28.8 (5.8) | 21.5 (7.8) | 28.4 (5.4) | 21.0 (8.1) | −0.72 (−1.82, 0.39) | 0.007 | 0.269 | 0.609 |
Upper body | 17.2 (4.7) | 16.9 (4.6) | 12.2 (5.1) | 11.9 (5.2) | −0.35 (−1.09, 0.40) | 0.008 | 0.374 | 0.825 |
Trunk | 13.9 (4.1) | 9.8 (4.3) | 13.6 (3.9) | 9.5 (4.2) | −0.17 (−0.92, 0.57) | 0.008 | 0.325 | 0.778 |
Arm | 3.3 (0.7) | 2.4 (0.9) | 3.3 (0.7) | 2.5 (1.0) | −0.03 (−0.28, 0.23) | 0.019 | 0.688 | 0.98 |
Leg | 10.8 (1.6) | 8.4 (2.8) | 10.7 (1.4) | 8.3 (3.0) | −0.36 (−0.87, 0.14) | 0.016 | 0.24 | 0.384 |
Body fat (%) | 38.2 (4.5) | 32.7 (5.8) | 37.4 (4.2) | 31.9 (6.4) | −0.09 (−1.36, 1.18) | 0.012 | 0.016 | 0.885 |
VAT (g) | 471 (317) | 328 (297) | 471 (307) | 316 (308) | −5.3 (−83.8, 73.3) | 0.22 | 0.629 | 0.891 |
Total BMD (g/cm2) | 1.28 (0.01) | 1.19 (0.07) | 1.27 (0.10) | 1.20 (0.07) | 0.01 (−0.01, 0.03) | 0.016 | 0.809 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murray, M.; Vlietstra, L.; Best, A.M.D.; Sims, S.T.; Loehr, J.A.; Rehrer, N.J. Post-Exercise Whey Protein Supplementation: Effects on IGF-1, Strength, and Body Composition in Pre-Menopausal Women, a Randomised Controlled Trial. Nutrients 2025, 17, 2033. https://doi.org/10.3390/nu17122033
Murray M, Vlietstra L, Best AMD, Sims ST, Loehr JA, Rehrer NJ. Post-Exercise Whey Protein Supplementation: Effects on IGF-1, Strength, and Body Composition in Pre-Menopausal Women, a Randomised Controlled Trial. Nutrients. 2025; 17(12):2033. https://doi.org/10.3390/nu17122033
Chicago/Turabian StyleMurray, Marc, Lara Vlietstra, Alyssa M. D. Best, Stacy T. Sims, James A. Loehr, and Nancy J. Rehrer. 2025. "Post-Exercise Whey Protein Supplementation: Effects on IGF-1, Strength, and Body Composition in Pre-Menopausal Women, a Randomised Controlled Trial" Nutrients 17, no. 12: 2033. https://doi.org/10.3390/nu17122033
APA StyleMurray, M., Vlietstra, L., Best, A. M. D., Sims, S. T., Loehr, J. A., & Rehrer, N. J. (2025). Post-Exercise Whey Protein Supplementation: Effects on IGF-1, Strength, and Body Composition in Pre-Menopausal Women, a Randomised Controlled Trial. Nutrients, 17(12), 2033. https://doi.org/10.3390/nu17122033