The Application of Bioelectrical Impedance Analysis Phase Angle in Cardiac Surgery
Abstract
:1. Introduction
2. Methods
3. PA Impairment Risk Factors
4. PA in Preoperative Risk Assessment
5. PA in Post-Procedural Monitoring
Limitations of the Available Literature
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
ACC | aortic cross-clamp |
BIA | bioelectrical impedance analysis |
BMI | body mass index |
CABG | coronary artery bypass graft |
CPB | cardiopulmonary bypass |
CRP | C-reactive protein |
ESPEN | european society for clinical nutrition and metabolism |
ECW | extracellular water |
FFMI | fat-free mass index |
HGS | handgrip strength |
ICU | intensive care unit |
LVEF | left ventricle ejection fraction |
LOS | length of stay |
MUAC | mid-upper arm circumference |
PA | phase angle |
SMML | skeletal muscle mass loss |
References
- Langer, R.D.; Larsen, S.C.; Ward, L.C.; Heitmann, B.L. Phase Angle Measured by Bioelectrical Impedance Analysis and the Risk of Cardiovascular Disease among Adult Danes. Nutrition 2021, 89, 111280. [Google Scholar] [CrossRef] [PubMed]
- Portugal, M.R.C.; Canella, D.S.; Curioni, C.C.; Bezerra, F.F.; Faerstein, E.; Neves, M.F.; Koury, J.C. Bioelectrical Impedance Analysis–Derived Phase Angle Is Related to Risk Scores of a First Cardiovascular Event in Adults. Nutrition 2020, 78, 110865. [Google Scholar] [CrossRef]
- Saad, M.A.N.; Jorge, A.J.L.; de Andrade Martins, W.; Cardoso, G.P.; dos Santos, M.M.S.; Rosa, M.L.G.; Lima, G.A.B.; de Moraes, R.Q.; da Cruz Filho, R.A. Phase Angle Measured by Electrical Bioimpedance and Global Cardiovascular Risk in Older Adults. Geriatr. Gerontol. Int. 2018, 18, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Colín-Ramírez, E.; Castillo-Martínez, L.; Orea-Tejeda, A.; Vázquez-Durán, M.; Rodríguez, A.E.; Keirns-Davis, C. Bioelectrical Impedance Phase Angle as a Prognostic Marker in Chronic Heart Failure. Nutrition 2012, 28, 901–905. [Google Scholar] [CrossRef]
- Scicchitano, P.; Ciccone, M.M.; Iacoviello, M.; Guida, P.; De Palo, M.; Potenza, A.; Basile, M.; Sasanelli, P.; Trotta, F.; Sanasi, M.; et al. Respiratory Failure and Bioelectrical Phase Angle Are Independent Predictors for Long-Term Survival in Acute Heart Failure. Scand. Cardiovasc. J. 2022, 56, 28–34. [Google Scholar] [CrossRef]
- Alves, F.D.; Souza, G.C.; Clausell, N.; Biolo, A. Prognostic Role of Phase Angle in Hospitalized Patients with Acute Decompensated Heart Failure. Clin. Nutr. 2016, 35, 1530–1534. [Google Scholar] [CrossRef]
- Queiroz, S.A.; Gonzalez, M.C.; da Silva, A.M.B.; Costa, J.K.D.A.; de Oliveira, C.D.R.; de Sousa, I.M.; Fayh, A.P.T. Is the Standardized Phase Angle a Predictor of Short- and Long-Term Adverse Cardiovascular Events in Patients with Acute Myocardial Infarction? A Cohort Study. Nutrition 2022, 103–104, 111774. [Google Scholar] [CrossRef] [PubMed]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase Angle and Mortality: A Systematic Review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Chrominski, T.; Szczasny, M.; Blaszczak, P. Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures. Nutrients 2024, 16, 843. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Hollings, M.; Blaszczak, P. Nutritional Risk Score Predicts the Length of Stay in Patients Undergoing Coronary Angiography. Nutr. Diet. 2025, early view. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Błaszczak, P. The Impact of Nutritional Risk on the Length of Stay in Patients Undergoing Percutaneous Coronary Interventions. Kardiol. Pol. 2025, early view. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN Practical Guideline: Clinical Nutrition in Surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef]
- Matsui, R.; Rifu, K.; Watanabe, J.; Inaki, N.; Fukunaga, T. Current Status of the Association Between Malnutrition Defined by the GLIM Criteria and Postoperative Outcomes in Gastrointestinal Surgery for Cancer: A Narrative Review. J. Cancer Res. Clin. Oncol. 2022, 149, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization World Health Organization. BMI Classification. Global Database on Body Mass Index. Available online: http://www.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 1 April 2019).
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN Guidelines on Definitions and Terminology of Clinical Nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Kondrup, J.; Ramussen, H.H.; Hamberg, O.; Stanga, Z.; Camilo, M.; Richardson, R.; Elia, M.; Allison, S.; Meier, R.; Plauth, M. Nutritional Risk Screening (NRS 2002): A New Method Based on an Analysis of Controlled Clinical Trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Kim, J.H.; Ryu, S.W.; Moon, J.Y.; Park, J.H.; Park, J.K.; Park, J.H.; Baik, H.W.; Seo, J.M.; Son, M.W.; et al. Prevalence of Malnutrition in Hospitalized Patients: A Multicenter Cross-Sectional Study. J. Korean Med. Sci. 2018, 33, e10. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Szczygiel, K. Bioelectrical Impedance Analysis and Body Composition in Cardiovascular Diseases. Curr. Probl. Cardiol. 2023, 48, 101911. [Google Scholar] [CrossRef]
- Ward, L.C. Bioelectrical Impedance Analysis for Body Composition Assessment: Reflections on Accuracy, Clinical Utility, and Standardisation. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef]
- Popiołek, J.; Teter, M.; Kozak, G.; Powrózek, T.; Mlak, R.; Karakuła-Juchnowicz, H.; Małecka-Massalska, T. Anthropometrical and Bioelectrical Impedance Analysis Parameters in Anorexia Nervosa Patients’ Nutritional Status Assessment. Medicina 2019, 55, 671. [Google Scholar] [CrossRef]
- Małecka-Massalska, T.; Popiołek, J.; Teter, M.; Homa-Mlak, I.; Dec, M.; Makarewicz, A.; Karakuła-Juchnowicz, H. Application of Phase Angle for Evaluation of the Nutrition Status of Patients with Anorexia. Psychiatr. Pol. 2017, 51, 1121–1131. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.-P.; Later, W.; Wiese, S.; Müller, M.J. Phase Angle From Bioelectrical Impedance Analysis: Population Reference Values by Age, Sex, and Body Mass Index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; King, J.; Dahlk, S.L.; Grutsch, J.F.; Lis, C.G. Bioelectrical Impedance Phase Angle as a Prognostic Indicator in Breast Cancer. BMC Cancer 2008, 8, 249. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G.; Dahlk, S.L.; Vashi, P.G.; Grutsch, J.F.; Lammersfeld, C.A. Bioelectrical Impedance Phase Angle as a Prognostic Indicator in Advanced Pancreatic Cancer. Br. J. Nutr. 2004, 92, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Abad, S.; Sotomayor, G.; Vega, A.; Pérez de José, A.; Verdalles, U.; Jofré, R.; López-Gómez, J.M. The Phase Angle of the Electrical Impedance Is a Predictor of Long-Term Survival in Dialysis Patients. Nefrologia 2011, 31, 670–676. [Google Scholar] [CrossRef]
- Oliveira, C.M.C.; Kubrusly, M.; Mota, R.S.; Silva, C.A.B.; Choukroun, G.; Oliveira, V.N. The Phase Angle and Mass Body Cell as Markers of Nutritional Status in Hemodialysis Patients. J. Ren. Nutr. 2010, 20, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Ringaitiene, D.; Gineityte, D.; Vicka, V.; Sabestinaite, A.; Klimasauskas, A.; Gaveliene, E.; Rucinskas, K.; Ivaska, J.; Sipylaite, J. Concordance of the New ESPEN Criteria with Low Phase Angle in Defining Early Stages of Malnutrition in Cardiac Surgery. Clin. Nutr. 2018, 37, 1596–1601. [Google Scholar] [CrossRef]
- Visser, M.; van Venrooij, L.M.W.; Wanders, D.C.M.; de Vos, R.; Wisselink, W.; van Leeuwen, P.A.M.; de Mol, B.A.J.M. The Bioelectrical Impedance Phase Angle as an Indicator of Undernutrition and Adverse Clinical Outcome in Cardiac Surgical Patients. Clin. Nutr. 2012, 31, 981–986. [Google Scholar] [CrossRef]
- Ringaitienė, D.; Gineitytė, D.; Vicka, V.; Žvirblis, T.; Šipylaitė, J.; Irnius, A.; Ivaškevičius, J. Preoperative Risk Factors of Malnutrition for Cardiac Surgery Patients. Acta Medica Litu. 2016, 23, 99–109. [Google Scholar] [CrossRef]
- Mullie, L.; Obrand, A.; Bendayan, M.; Trnkus, A.; Ouimet, M.-C.; Moss, E.; Chen-Tournoux, A.; Rudski, L.G.; Afilalo, J. Phase Angle as a Biomarker for Frailty and Postoperative Mortality: The BICS Study. J. Am. Heart Assoc. 2018, 7, e008721. [Google Scholar] [CrossRef]
- Ringaitiene, D.; Gineityte, D.; Vicka, V.; Zvirblis, T.; Norkiene, I.; Sipylaite, J.; Irnius, A.; Ivaskevicius, J. Malnutrition Assessed by Phase Angle Determines Outcomes in Low-Risk Cardiac Surgery Patients. Clin. Nutr. 2016, 35, 1328–1332. [Google Scholar] [CrossRef]
- Shibata, K.; Kameshima, M.; Adachi, T.; Kito, H.; Tanaka, C.; Sano, T.; Tanaka, M.; Suzuki, Y.; Tamaki, M.; Kitamura, H. Association between Preoperative Phase Angle and All-Cause Mortality after Cardiovascular Surgery: A Retrospective Cohort Study. J. Cachexia Sarcopenia Muscle 2024, 15, 1558–1567. [Google Scholar] [CrossRef] [PubMed]
- Ringaitiene, D.; Puodziukaite, L.; Vicka, V.; Gineityte, D.; Serpytis, M.; Sipylaite, J. Bioelectrical Impedance Phase Angle-Predictor of Blood Transfusion in Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2019, 33, 969–975. [Google Scholar] [CrossRef]
- Ruste, M.; Chabanol, C.; Amaz, C.; Cazenave, L.; Fellahi, J.-L.; Jacquet-Lagrèze, M. Postoperative Phase Angle and Prognosis after Cardiac Surgery: A Historical Cohort Study. Anesthesiology 2024, 141, 405–407. [Google Scholar] [CrossRef]
- Tsaousi, G.; Panagidi, M.; Papakostas, P.; Grosomanidis, V.; Stavrou, G.; Kotzampassi, K. Phase Angle and Handgrip Strength as Complements to Body Composition Analysis for Refining Prognostic Accuracy in Cardiac Surgical Patients. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2424–2431. [Google Scholar] [CrossRef]
- Panagidi, M.; Papazoglou, A.S.; Moysidis, D.V.; Vlachopoulou, E.; Papadakis, M.; Kouidi, E.; Galanos, A.; Tagarakis, G.; Anastasiadis, K. Prognostic Value of Combined Preoperative Phase Angle and Handgrip Strength in Cardiac Surgery. J. Cardiothorac. Surg. 2022, 17, 227. [Google Scholar] [CrossRef]
- Silva, T.K.; Perry, I.D.S.; Brauner, J.S.; Mancuso, A.C.B.; Souza, G.C.; Vieira, S.R.R. Variations in Phase Angle and Handgrip Strength in Patients Undergoing Cardiac Surgery: Prospective Cohort Study. Nutr. Clin. Pract. 2023, 38, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, G.; Tzikos, G.; Menni, A.-E.; Chatziantoniou, G.; Vouchara, A.; Fyntanidou, B.; Grosomanidis, V.; Kotzampassi, K. Endothelial Damage and Muscle Wasting in Cardiac Surgery Patients. Cureus 2022, 14, e30534. [Google Scholar] [CrossRef]
- Marino, L.V.; Meyer, R.; Johnson, M.; Newell, C.; Johnstone, C.; Magee, A.; Sykes, K.; Wootton, S.A.; Pappachan, J.V. Bioimpedance Spectroscopy Measurements of Phase Angle and Height for Age Are Predictive of Outcome in Children Following Surgery for Congenital Heart Disease. Clin. Nutr. 2018, 37, 1430–1436. [Google Scholar] [CrossRef]
- Ryz, S.; Nixdorf, L.; Puchinger, J.; Lassnigg, A.; Wiedemann, D.; Bernardi, M.H. Preoperative Phase Angle as a Risk Indicator in Cardiac Surgery-A Prospective Observational Study. Nutrients 2022, 14, 2491. [Google Scholar] [CrossRef]
- da Silva, T.K.; Perry, I.D.S.; Brauner, J.S.; Wender, O.C.B.; Souza, G.C.; Vieira, S.R.R. Performance Evaluation of Phase Angle and Handgrip Strength in Patients Undergoing Cardiac Surgery: Prospective Cohort Study. Aust. Crit. Care 2018, 31, 284–290. [Google Scholar] [CrossRef]
- Morisawa, T.; Saitoh, M.; Takahashi, T.; Watanabe, H.; Mochizuki, M.; Kitahara, E.; Fujiwara, T.; Fujiwara, K.; Nishitani-Yokoyama, M.; Minamino, T.; et al. Association of Phase Angle with Hospital-Acquired Functional Decline in Older Patients Undergoing Cardiovascular Surgery. Nutrition 2021, 91–92, 111402. [Google Scholar] [CrossRef] [PubMed]
- Sanson, G.; Doriguzzi, L.; Garbari, P.; Ruggiero, M.J.; Valentinuzzo, I.; Mettulio, T.; Stolfa, E.; Fisicaro, M.; Vecchiet, S.; Mazzaro, E.; et al. The Severity of Early Fluid Overload Assessed by Bioelectrical Vector Impedance as an Independent Risk Factor for Longer Patient Care after Cardiac Surgery. Clin. Nutr. 2024, 43, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Marino, L.V.; Griksaitis, M.J.; Pappachan, J.V. Preoperative Bioelectrical Impedance Predicts Intensive Care Length of Stay in Children Following Cardiac Surgery. Cardiol. Young 2018, 28, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Stąpór, M.; Stąpór, A.; Ostrowska-Kaim, E.; Trębacz, J.; Sobczyński, R.; Kleczyński, P.; Konstanty-Kalandyk, J.; Gackowski, A.; Żmudka, K.; Kapelak, B.; et al. Bioelectrical Phase Angle among Individuals after Transcatheter Aortic Valve Implantation. Pol. Heart J. (Kardiol. Pol.) 2024, 82, 996–998. [Google Scholar] [CrossRef]
- Takahashi, H.; Tsushima, E.; Yokota, J.; Takahashi, S.; Seki, T.; Kudo, H.; Honjo, H.; Endo, H.; Oda, K.; Sakurada, Y.; et al. Association between Skeletal Muscle Quality Assessed by Phase Angle, Peak Oxygen Uptake and Anaerobic Threshold in Male Patients with Coronary Artery Disease: A Cross-Sectional Study. Hirosaki Med. J. 2024, 75, 1–10. [Google Scholar] [CrossRef]
Reference | Size Group | PA Association | Study |
---|---|---|---|
Mortality | |||
[34] | A total of 204 patients after cardiac surgery with cardiopulmonary bypass | in-hospital mortality | Retrospective |
[35] | A total of 179 cardiac surgery patients | in-hospital mortality | Prospective |
[30] | A total of 277 patients undergoing major cardiac surgery | higher mortality at 1 month and at 12 months. | Prospective |
[36] | A total of 195 patients undergoing cardiac surgery | higher one-year all-cause mortality | Prospective |
Length of stay | |||
[34] | A total of 204 patients after cardiac surgery with cardiopulmonary bypass | prolonged hospital LOS | Retrospective |
[30] | A total of 277 patients undergoing major cardiac surgery | prolonged hospital LOS | Prospective |
[35] | A total of 179 cardiac surgery patients | prolonged hospital LOS | Prospective |
[28] | A total of 325 cardiac surgical patients | prolonged ICU and hospital LOS | Prospective |
[37] | A total of 272 cardiac surgery patients | prolonged ICU and hospital LOS | Prospective |
[36] | A total of 195 patients undergoing cardiac surgery | prolonged ICU LOS | Prospective |
[38] | A total of 127 well-nourished patients undergoing “on-pump” elective cardiac surgery | prolonged ICU LOS | Prospective |
[39] | A total of 122 children with congenital heart disease following cardiac surgery | prolonged pediatric ICU LOS | Prospective |
Complications | |||
[40] | A total of 168 elective cardiac surgical patients | longer cardiopulmonary bypass times | Prospective |
[31] | A total of 342 low-operative-risk patients | postoperative morbidity | Prospective |
[33] | A total of 642 adult patients undergoing elective cardiac surgery | blood transfusion | Retrospective |
[37] | A total of 272 cardiac surgery patients | decline after procedure restored after 6 months | Prospective |
[35] | A total of 179 cardiac surgery patients | significant impairment 7 days after the procedure | Prospective |
[41] | 50 patients undergoing cardiac surgery | mechanical ventilation | Prospective |
[42] | 114 older patients undergoing elective cardiovascular | predictor of hospital-acquired functional decline risk, undernutrition, and prolonged mechanical ventilation. | Prospective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiolek-Kalisz, J.; Kalisz, G.; Zembala, M. The Application of Bioelectrical Impedance Analysis Phase Angle in Cardiac Surgery. Nutrients 2025, 17, 1914. https://doi.org/10.3390/nu17111914
Popiolek-Kalisz J, Kalisz G, Zembala M. The Application of Bioelectrical Impedance Analysis Phase Angle in Cardiac Surgery. Nutrients. 2025; 17(11):1914. https://doi.org/10.3390/nu17111914
Chicago/Turabian StylePopiolek-Kalisz, Joanna, Grzegorz Kalisz, and Michal Zembala. 2025. "The Application of Bioelectrical Impedance Analysis Phase Angle in Cardiac Surgery" Nutrients 17, no. 11: 1914. https://doi.org/10.3390/nu17111914
APA StylePopiolek-Kalisz, J., Kalisz, G., & Zembala, M. (2025). The Application of Bioelectrical Impedance Analysis Phase Angle in Cardiac Surgery. Nutrients, 17(11), 1914. https://doi.org/10.3390/nu17111914