Recent Research on the Role of Phytochemicals from Ginseng in Management of Osteosarcoma, Osteoporosis, and Osteoarthritis
Abstract
:1. Introduction
1.1. Phytochemicals from Ginseng
1.2. Health Benefits and Pharmacological Activities of the Phytochemicals from Ginseng
1.3. Recent Research on Phytochemicals to Manage Osteosarcoma
1.4. Recent Research on Phytochemicals to Manage Osteoporosis
1.5. Recent Research on Phytochemicals to Manage Osteoarthritis
1.6. Outline of Review
2. Phytochemicals from Ginseng in Management of Osteosarcoma
2.1. Ginsenosides
2.2. Polysaccharides
2.3. Summary
3. Phytochemicals from Ginseng in Management of Osteoporosis
3.1. Ginsenosides
3.2. Extracts
3.3. Summary
4. Phytochemicals from Ginseng in Management of Osteoarthritis
4.1. Ginsenosides
4.2. Summary
5. Current Limitations and Future Direction
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truong, V.-L.; Jeong, W.-S. Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety. J. Ginseng Res. 2022, 46, 214–224. [Google Scholar] [PubMed]
- Jung, J.; Lee, N.-K.; Paik, H.-D. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci. Biotechnol. 2017, 26, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.S. Chinese ginseng. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 853–864. [Google Scholar]
- Jin, Y.; Kim, Y.-J.; Jeon, J.-N.; Wang, C.; Min, J.-W.; Noh, H.-Y.; Yang, D.-C. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum. Nutr. 2015, 70, 141–145. [Google Scholar] [PubMed]
- Wang, H.; Cheng, Y.; Zhang, X.; Wang, Y.; Zhao, H. Comparative analysis of physicochemical properties, ginsenosides content and α-amylase inhibitory effects in white ginseng and red ginseng. Food Sci. Hum. Wellness 2023, 12, 14–27. [Google Scholar]
- Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective effects of ginseng phytochemicals: Recent perspectives. Molecules 2019, 24, 2939. [Google Scholar] [CrossRef]
- Huang, L.; Li, H.-J.; Wu, Y.-C. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem. 2023, 407, 134714. [Google Scholar] [PubMed]
- Li, X.; Liu, J.; Zuo, T.; Hu, Y.; Li, Z.; Xu, X.; Yang, W.; Guo, D. Advances and challenges in ginseng research from 2011 to 2020: The phytochemistry, quality control, metabolism, and biosynthesis. Nat. Prod. Rep. 2022, 39, 875–909. [Google Scholar]
- Kim, J.H.; Yi, Y.-S.; Kim, M.-Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017, 41, 435–443. [Google Scholar]
- Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015, 33, 717–735. [Google Scholar]
- Ji, X.; Hou, C.; Shi, M.; Yan, Y.; Liu, Y. An insight into the research concerning Panax ginseng CA Meyer polysaccharides: A review. Food Rev. Int. 2022, 38, 1149–1165. [Google Scholar] [CrossRef]
- Chung, I.-M.; Lim, J.-J.; Ahn, M.-S.; Jeong, H.-N.; An, T.-J.; Kim, S.-H. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J. Ginseng Res. 2016, 40, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.H.; Kim, S.W.; Seo, H.W.; Youn, S.H.; Kyung, J.S.; Lee, Y.Y.; In, G.; Park, C.-K.; Han, C.-K. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J. Ginseng Res. 2020, 44, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Ru, W.; Wang, D.; Xu, Y.; He, X.; Sun, Y.-E.; Qian, L.; Zhou, X.; Qin, Y. Chemical constituents and bioactivities of Panax ginseng (CA Mey.). Drug Discov. Ther. 2015, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiao, P.; Ouyang, Z.; Li, D.; Zheng, J.; Wang, G.; Wang, F. Ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans. Biogerontology 2022, 23, 485–497. [Google Scholar] [CrossRef]
- Wan, J.-Y.; Fan, Y.; Yu, Q.-T.; Ge, Y.-Z.; Yan, C.-P.; Alolga, R.N.; Li, P.; Ma, Z.-H.; Qi, L.-W. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng. J. Pharm. Biomed. Anal. 2015, 107, 89–97. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Liu, G.-C.; Zhang, J.-X.; Wang, L.-H.; Xu, C.; Yan, Z.-A.; Wang, A.; Su, Y.-F.; Lee, J.-J.; Piao, G.-C. Pharmacological properties of ginsenoside Re. Front. Pharmacol. 2022, 13, 754191. [Google Scholar] [CrossRef]
- Valdés-González, J.A.; Sánchez, M.; Moratilla-Rivera, I.; Iglesias, I.; Gómez-Serranillos, M.P. Immunomodulatory, anti-inflammatory, and anti-cancer properties of ginseng: A pharmacological update. Molecules 2023, 28, 3863. [Google Scholar]
- Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.-O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210. [Google Scholar]
- Silva, T.; Jesus, M.; Cagigal, C.; Silva, C. Food with influence in the sexual and reproductive health. Curr. Pharm. Biotechnol. 2019, 20, 114–122. [Google Scholar]
- Sun, H.Y.; Lee, J.H.; Han, Y.-S.; Yoon, Y.M.; Yun, C.W.; Kim, J.H.; Song, Y.S.; Lee, S.H. Pivotal roles of ginsenoside Rg3 in tumor apoptosis through regulation of reactive oxygen species. Anticancer Res. 2016, 36, 4647–4654. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, H.-D.; Li, B.; Jiang, S.-D.; Jiang, L.-S. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells. Oncol. Rep. 2014, 31, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Shao, S.; Wang, D.; Zhao, D.; Wang, M. Recent progress in polysaccharides from Panax ginseng CA Meyer. Food Funct. 2021, 12, 494–518. [Google Scholar] [PubMed]
- Liu, S.; Liu, F.; Wang, T.; Liu, J.; Hu, C.; Sun, L.; Wang, G. Polysaccharides extracted from Panax ginseng C.A. Mey enhance complement component 4 biosynthesis in human hepatocytes. Front. Pharmacol. 2021, 12, 734394. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Park, C.W.; Lee, S.J.; Park, H.-R.; Kim, S.H.; Son, S.-U.; Park, J.; Shin, K.-S. Anti-cancer effects of Panax ginseng berry polysaccharides via activation of immune-related cells. Front. Pharmacol. 2019, 10, 1411. [Google Scholar] [CrossRef]
- Malathy, R.; Prabakaran, M.; Kalaiselvi, K.; Chung, I.-M.; Kim, S.-H. Comparative polyphenol composition, antioxidant and anticorrosion properties in various parts of Panax ginseng extracted in different solvents. Appl. Sci. 2020, 11, 93. [Google Scholar]
- Beird, H.C.; Bielack, S.S.; Flanagan, A.M.; Gill, J.; Heymann, D.; Janeway, K.A.; Livingston, J.A.; Roberts, R.D.; Strauss, S.J.; Gorlick, R. Osteosarcoma. Nat. Rev. Dis. Primers 2022, 8, 77. [Google Scholar]
- Eaton, B.R.; Schwarz, R.; Vatner, R.; Yeh, B.; Claude, L.; Indelicato, D.J.; Laack, N. Osteosarcoma. Pediatr. Blood Cancer 2021, 68, e28352. [Google Scholar] [PubMed]
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma overview. Rheumatol. Ther. 2017, 4, 25–43. [Google Scholar]
- Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 2021, 18, 609–624. [Google Scholar]
- Sauter, E.R. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev. Clin. Pharmacol. 2020, 13, 265–285. [Google Scholar]
- Shanmugam, H.; Narmadha, R.; Ravikumar, C.; Ariyaperumal, K.; Selvakumar, R.; Mannu, J. Anti-proliferative effect of leaf phytochemicals of soursop (Annona muricata L.) against human osteosarcoma in vitro. Chem. Pap. 2024, 78, 3787–3797. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, X.; Yu, C.; Zhao, G.; Zhou, J.; Zhang, G.; Li, M.; Jiang, D.; Quan, Z.; Zhang, Y. Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts. J. Exp. Clin. Cancer Res. 2018, 37, 251. [Google Scholar] [CrossRef]
- Ferreira de Oliveira, J.M.P.; Remédios, C.; Oliveira, H.; Pinto, P.; Pinho, F.; Pinho, S.; Costa, M.; Santos, C. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: Correlation with cell cycle arrest and apoptosis. Nutr. Cancer 2014, 66, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; He, L.; Shang, J.; Chen, L.; Xu, Y.; Chen, X.; Li, X.; Jiao, Q.; Jin, S.; Hu, X. Carvacrol Suppresses Human Osteosarcoma Cells via the Wnt/β-Catenin Signaling Pathway. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2022, 22, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Homayoonfal, M.; Asemi, Z.; Yousefi, B. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cell. Mol. Biol. Lett. 2022, 27, 21. [Google Scholar] [CrossRef]
- Wu, C.-C.; Cheng, C.-H.; Lee, Y.-H.; Chang, I.-L.; Chen, H.-Y.; Hsieh, C.-P.; Chueh, P.-J. Ursolic acid triggers apoptosis in human osteosarcoma cells via caspase activation and the ERK1/2 MAPK pathway. J. Agric. Food Chem. 2016, 64, 4220–4226. [Google Scholar] [CrossRef]
- Lorentzon, M.; Cummings, S.R. Osteoporosis: The evolution of a diagnosis. J. Intern. Med. 2015, 277, 650–661. [Google Scholar] [CrossRef]
- Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers 2016, 2, 16069. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Lewiecki, E.M. The pathophysiology and treatment of osteoporosis. Clin. Ther. 2015, 37, 1837–1850. [Google Scholar]
- Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 2021, 178, 1891–1906. [Google Scholar]
- Pavone, V.; Testa, G.; Giardina, S.M.; Vescio, A.; Restivo, D.A.; Sessa, G. Pharmacological therapy of osteoporosis: A systematic current review of literature. Front. Pharmacol. 2017, 8, 803. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Negrete, E.V.; Morales-González, Á.; Madrigal-Santillán, E.O.; Sánchez-Reyes, K.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Valadez-Vega, C.; Chamorro-Cevallos, G.; Garcia-Melo, L.F.; Morales-González, J.A. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants 2024, 13, 523. [Google Scholar] [CrossRef]
- Yoo, H.; Park, K. Association between Phytochemical Index and Osteoporosis in Women: A Prospective Cohort Study in Korea. Nutrients 2023, 15, 1605. [Google Scholar] [CrossRef]
- Aly, S.H.; Elbadry, A.M.; El-Shazly, M.; Hwang, T.-L. Exploring the potential role of genus Sophora in the management of osteoporosis: A phytochemical and biological review. Front. Nat. Prod. 2023, 2, 1302371. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Al-Abd, A.M.; Asaad, G.F.; Abdel-Naim, A.B.; El-Halawany, A.M. Isolation of antiosteoporotic compounds from seeds of Sophora japonica. PLoS ONE 2014, 9, e98559. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Prajapati, K.S.; Shuaib, M.; Kushwaha, P.P.; Tuli, H.S.; Singh, A.K. Five-decade update on chemopreventive and other pharmacological potential of Kurarinone: A natural flavanone. Front. Pharmacol. 2021, 12, 737137. [Google Scholar] [CrossRef]
- Allen, K.; Thoma, L.; Golightly, Y. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 2022, 30, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.L.; Hunter, D.J. The epidemiology of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef]
- O’Neill, T.W.; Felson, D.T. Mechanisms of osteoarthritis (OA) pain. Curr. Osteoporos. Rep. 2018, 16, 611–616. [Google Scholar] [CrossRef]
- Magni, A.; Agostoni, P.; Bonezzi, C.; Massazza, G.; Menè, P.; Savarino, V.; Fornasari, D. Management of osteoarthritis: Expert opinion on NSAIDs. Pain Ther. 2021, 10, 783–808. [Google Scholar] [CrossRef]
- de l’Escalopier, N.; Anract, P.; Biau, D. Surgical treatments for osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Guan, V.X.; Mobasheri, A.; Probst, Y.C. A systematic review of osteoarthritis prevention and management with dietary phytochemicals from foods. Maturitas 2019, 122, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, Y.; Kumar, R.; Grewal, J.; Rawat, H.; Mishra, S.K.; Kumar, V.; Shakya, S.K.; Jain, V.; Babu, G.; Sharma, P. Advances in anti-inflammatory medicinal plants and phytochemicals in the management of arthritis: A comprehensive review. Food Chem. Adv. 2022, 1, 100085. [Google Scholar] [CrossRef]
- Sharma, S.; Arif, M.; Nirala, R.K.; Gupta, R.; Thakur, S.C. Cumulative therapeutic effects of phytochemicals in Arnica montana flower extract alleviated collagen-induced arthritis: Inhibition of both pro-inflammatory mediators and oxidative stress. J. Sci. Food Agric. 2016, 96, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, Y. Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF-κB signal pathway. Drug Dev. Res. 2019, 80, 353–359. [Google Scholar] [CrossRef]
- Chen, H.; Yang, H.; Fan, D.; Deng, J. The anticancer activity and mechanisms of ginsenosides: An updated review. eFood 2020, 1, 226–241. [Google Scholar] [CrossRef]
- Shangguan, W.-J.; Li, H.; Zhang, Y.-H. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG-63 cells through the mitochondrial pathway. Oncol. Rep. 2014, 31, 305–313. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J.; Bai, F.; Xiao, Y.; Guo, Y.; Dong, Z. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma. BioMed Res. Int. 2018, 2018, 4306579. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Wang, S. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J. Orthop. Surg. Res. 2021, 16, 724. [Google Scholar] [CrossRef]
- Mao, X.; Jin, Y.; Feng, T.; Wang, H.; Liu, D.; Zhou, Z.; Yan, Q.; Yang, H.; Yang, J.; Yang, J. Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/β-Catenin and EMT signaling pathway. Evid.-Based Complement. Altern. Med. 2020, 2020, 6065124. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Liu, F.; Li, Y.-J.; Yin, J.-N.; Gao, Y.-L.; Wang, X.-Y.; Yang, C.; Liu, J.-G.; Li, H.-J. Ginsenoside Rg5 inhibits human osteosarcoma cell proliferation and induces cell apoptosis through PI3K/Akt/mTORC1-related LC3 autophagy pathway. Oxid. Med. Cell. Longev. 2021, 2021, 5040326. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, D.; Zhao, X.; Zhang, L.; Zhang, Y.; Liu, Z.; Liu, R.; Li, H.; Rong, X.; Gao, Y. Exploration in the Mechanism of Ginsenoside Rg5 for the Treatment of Osteosarcoma by Network Pharmacology and Molecular Docking. Orthop. Surg. 2024, 16, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, H.; Feng, X.; Bi, C.; Zhang, J.; Yin, J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J. Biochem. Mol. Toxicol. 2020, 34, e22597. [Google Scholar] [CrossRef]
- Liu, D.; Wang, H.; Zhou, Z.; Mao, X.; Ye, Z.; Zhang, Z.; Tu, S.; Zhang, Y.; Cai, X.; Lan, X. Integrated bioinformatic analysis and experiment confirmation of the antagonistic effect and molecular mechanism of ginsenoside Rh2 in metastatic osteosarcoma. J. Pharm. Biomed. Anal. 2021, 201, 114088. [Google Scholar] [CrossRef]
- Chen, K.; Jiao, J.; Xue, J.; Chen, T.; Hou, Y.; Jiang, Y.; Qian, L.; Wang, Y.; Ma, Z.; Liang, Z. Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway. Oncol. Rep. 2020, 43, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Ginsenoside Rg1 Drives Stimulations of Timosaponin AIII-Induced Anticancer Effects in Human Osteosarcoma Cells. Evid.-Based Complement. Altern. Med. 2020, 2020, 8980124. [Google Scholar] [CrossRef] [PubMed]
- Jung, O.; Lee, S.Y. Synergistic anticancer effects of timosaponin AIII and ginsenosides in MG63 human osteosarcoma cells. J. Ginseng Res. 2019, 43, 488–495. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, S.; Yang, H.; Jia, M.; Liu, W.; Zhu, W. Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways. J. Pharm. Pharmacol. 2023, 75, 1405–1417. [Google Scholar] [CrossRef]
- Gao, G.; Yuan, L.; Pan, S.; Duan, X.; Lu, Q. Compound K, a metabolite of ginseng saponin, enhances the susceptibility of osteosarcoma cells to cisplatin and induces cell apoptosis via mitochondrion-mediated pathways. Int. J. Clin. Exp. Med. 2018, 11, 9220–9229. [Google Scholar]
- Chen, Z.; Ni, R.; Hu, Y.; Yang, Y.; Tian, Y. A natural protopanaxatriol from Panax notoginseng enhances osteosarcoma sensitivity to ferroptosis via ASCL4 upregulation. J. Funct. Foods 2024, 122, 106488. [Google Scholar] [CrossRef]
- Tao, R.; Lu, K.; Zong, G.; Xia, Y.; Han, H.; Zhao, Y.; Wei, Z.; Lu, Y. Ginseng polysaccharides: Potential antitumor agents. J. Ginseng Res. 2023, 47, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Sun, K.; Zhu, Q.; Song, T.; Liu, Y. Ginseng polysaccharide serves as a potential radiosensitizer through inducing apoptosis and autophagy in the treatment of osteosarcoma. Kaohsiung J. Med. Sci. 2017, 33, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-L.; Wang, Y.-H.; Liu, G.-F.; Wang, L.; Li, Y.; Guo, Z.-Y.; Cheng, C. Graphene oxide nanoparticle–loaded ginsenoside Rg3 improves photodynamic therapy in inhibiting malignant progression and stemness of osteosarcoma. Front. Mol. Biosci. 2021, 8, 663089. [Google Scholar] [CrossRef]
- Ko, S.-Y. Therapeutic Potential of Ginsenosides on Bone Metabolism: A Review of Osteoporosis, Periodontal Disease and Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 5828. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, M.H.; Siddiqi, M.Z.; Ahn, S.; Kang, S.; Kim, Y.-J.; Sathishkumar, N.; Yang, D.-U.; Yang, D.-C. Ginseng saponins and the treatment of osteoporosis: Mini literature review. J. Ginseng Res. 2013, 37, 261. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, C.; Zheng, P.; Miao, L.; Yan, X.; Li, H.; Wang, Z.; Gao, B.; Li, Y. Ginsenoside Rb1 alleviates aluminum chloride-induced rat osteoblasts dysfunction. Toxicology 2016, 368, 183–188. [Google Scholar] [CrossRef]
- Zhang, D.; Du, J.; Yu, M.; Suo, L. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis. Phytomedicine 2022, 104, 154205. [Google Scholar] [CrossRef]
- Bei, J.; Zhang, X.; Wu, J.; Hu, Z.; Xu, B.; Lin, S.; Cui, L.; Wu, T.; Zou, L. Ginsenoside Rb1 does not halt osteoporotic bone loss in ovariectomized rats. PLoS ONE 2018, 13, e0202885. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, B.; Jie, Q.; Wei, B.-Y.; Fan, J.; Zhang, H.-Y.; Zhang, J.-K.; Li, X.-J.; Shi, J.; Luo, Z.-J. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014, 66, 306–314. [Google Scholar] [CrossRef]
- Cong, F.; Liu, J.; Wang, C.; Yuan, Z.; Bi, L.; Liang, J.; Su, K.; Qiu, Y.; Song, T.; Fan, J. Ginsenoside Rb2 inhibits osteoclast differentiation through nuclear factor-kappaB and signal transducer and activator of transcription protein 3 signaling pathway. Biomed. Pharmacother. 2017, 92, 927–934. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, J.; Yang, Z.; Xie, C.; Huang, Y.; Ling, L.; Cao, Y.; Hu, H.; Hua, Y. The ginsenoside exhibits antiosteoporosis effects in ketogenic-diet-induced osteoporosis via rebalancing bone turnover. Front. Pharmacol. 2021, 11, 593820. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Li, L.; Xu, T.; Li, M.; Zhao, Q.; Yu, J.; Wang, J.; Liu, Z. Ginsenoside Rc promotes bone formation in ovariectomy-induced osteoporosis in vivo and osteogenic differentiation in vitro. Int. J. Mol. Sci. 2022, 23, 6187. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, B.; Yin, H.; Hua, Z.; Shao, Y.; Wang, J. Ginsenoside Rc alleviates osteoporosis by the TGF-β/Smad signaling pathway. Cell. Mol. Biol. 2024, 70, 95–101. [Google Scholar] [CrossRef]
- Kim, H.-M.; Kim, D.H.; Han, H.-J.; Park, C.-M.; Ganipisetti, S.R.; Valan Arasu, M.; Kim, Y.O.; Park, C.G.; Kim, B.-Y.; Soung, N.-K. Ginsenoside Re promotes osteoblast differentiation in mouse osteoblast precursor MC3T3-E1 cells and a Zebrafish model. Molecules 2016, 22, 42. [Google Scholar] [CrossRef]
- Park, C.-M.; Kim, H.-M.; Kim, D.H.; Han, H.-J.; Noh, H.; Jang, J.-H.; Park, S.-H.; Chae, H.-J.; Chae, S.-W.; Ryu, E.K. Ginsenoside re inhibits osteoclast differentiation in mouse bone marrow-derived macrophages and zebrafish scale model. Mol. Cells 2016, 39, 855–861. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, J.; Wang, Q.; Fan, W.; Yin, G. Ginsenoside Rg1 promotes osteogenic differentiation of rBMSCs and healing of rat tibial fractures through regulation of GR-dependent BMP-2/SMAD signaling. Sci. Rep. 2016, 6, 25282. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jin, X.; Wang, T.; Bai, R.; Shi, J.; Jiang, Y.; Tan, S.; Wu, R.; Zeng, S.; Zheng, H. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Front. Pharmacol. 2022, 13, 1010937. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Deng, L.; Li, M.; Alonge, E.; Wang, Y.; Wang, Y. Ginsenoside Rg1 modulates PI3K/AKT pathway for enhanced osteogenesis via GPER. Phytomedicine 2024, 124, 155284. [Google Scholar] [CrossRef]
- Siddiqi, M.H.; Siddiqi, M.Z.; Kang, S.; Noh, H.Y.; Ahn, S.; Simu, S.Y.; Aziz, M.A.; Sathishkumar, N.; Jiménez Pérez, Z.E.; Yang, D.C. Inhibition of osteoclast differentiation by ginsenoside Rg3 in RAW264. 7 cells via RANKL, JNK and p38 MAPK pathways through a modulation of cathepsin K: An in silico and in vitro study. Phytother. Res. 2015, 29, 1286–1294. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, K.; Wei, B.; Liu, X.; Lei, Z.; Bai, X. Ginsenosides Rg3 attenuates glucocorticoid-induced osteoporosis through regulating BMP-2/BMPR1A/Runx2 signaling pathway. Chem.-Biol. Interact. 2016, 256, 188–197. [Google Scholar] [CrossRef]
- Song, M.; Jia, F.; Cao, Z.; Zhang, H.; Liu, M.; Gao, L. Ginsenoside Rg3 attenuates aluminum-induced osteoporosis through regulation of oxidative stress and bone metabolism in rats. Biol. Trace Elem. Res. 2020, 198, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, F.; Chen, X.; Wu, X.; Zhu, J. Ginsenoside Rg3 attenuates ovariectomy-induced osteoporosis via AMPK/mTOR signaling pathway. Drug Dev. Res. 2020, 81, 875–884. [Google Scholar] [CrossRef]
- Song, M.; Cui, Y.; Wang, Q.; Zhang, X.; Zhang, J.; Liu, M.; Li, Y. Ginsenoside Rg3 alleviates aluminum chloride-induced bone impairment in rats by activating the TGF-β1/Smad signaling pathway. J. Agric. Food Chem. 2021, 69, 12634–12644. [Google Scholar] [CrossRef]
- Siddiqi, M.H.; Siddiqi, M.Z.; Ahn, S.; Kang, S.; Kim, Y.J.; Veerappan, K.; Yang, D.U.; Yang, D.C. Stimulative effect of ginsenosides Rg5: Rk1 on murine osteoblastic MC3T3-E1 cells. Phytother. Res. 2014, 28, 1447–1455. [Google Scholar] [CrossRef]
- Siddiqi, M.H.; Siddiqi, M.Z.; Ahn, S.; Kim, Y.-J.; Yang, D.C. Ginsenoside Rh1 induces mouse osteoblast growth and differentiation through the bone morphogenetic protein 2/runt-related gene 2 signalling pathway. J. Pharm. Pharmacol. 2014, 66, 1763–1773. [Google Scholar] [CrossRef]
- Ding, L.; Gu, S.; Zhou, B.; Wang, M.; Zhang, Y.; Wu, S.; Zou, H.; Zhao, G.; Gao, Z.; Xu, L. Ginsenoside compound K enhances fracture healing via promoting osteogenesis and angiogenesis. Front. Pharmacol. 2022, 13, 855393. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Gao, Z.; Wu, S.; Chen, C.; Liu, Y.; Wang, M.; Zhang, Y.; Li, L.; Zou, H.; Zhao, G. Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress. Nat. Prod. Bioprospecting 2023, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Kang, K.S.; Chun, K.-H.; Hwang, G.S. Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo. J. Ginseng Res. 2015, 39, 46–53. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Park, S.-H.; Chae, S.-W.; Soung, N.-K.; Oh, M.-J.; Kim, J.S.; Kim, Y.O.; Chae, H.-J. Aqueous ginseng extract has a preventive role in RANKL-induced osteoclast differentiation and estrogen deficiency-induced osteoporosis. J. Funct. Foods 2015, 13, 192–203. [Google Scholar] [CrossRef]
- Lee, H.G.; Hur, J.; Won, J.P.; Seo, H.G. Ginseng (Panax ginseng) leaf extract modulates the expression of heme oxygenase-1 to attenuate osteoclast differentiation. Fitoterapia 2024, 173, 105831. [Google Scholar] [CrossRef]
- Seo, K.; Yoo, J.H.; Kim, J.; Min, S.J.; Heo, D.N.; Kwon, I.K.; Moon, H.-J. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale 2023, 15, 5798–5808. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, M.Z.; Siddiqi, M.H.; Kim, Y.-J.; Jin, Y.; Huq, M.A.; Yang, D.-C. Effect of fermented red ginseng extract enriched in ginsenoside Rg3 on the differentiation and mineralization of preosteoblastic MC3T3-E1 cells. J. Med. Food 2015, 18, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shen, S.; Ma, P.; Fan, D. Biochemical targets and molecular mechanism of ginsenoside compound K in treating osteoporosis based on network pharmacology. Int. J. Mol. Sci. 2022, 23, 13921. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kang, M.-A.; Moon, Y.J.; Jang, K.Y.; Kim, J.R. Metformin coordinates osteoblast/osteoclast differentiation associated with ischemic osteonecrosis. Aging 2020, 12, 4727. [Google Scholar] [CrossRef]
- Yi, Y.-S. Ameliorative effects of ginseng and ginsenosides on rheumatic diseases. J. Ginseng Res. 2019, 43, 335–341. [Google Scholar] [CrossRef]
- Chen, J.; Huang, L.; Liao, X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis. Exp. Ther. Med. 2023, 26, 465. [Google Scholar] [CrossRef]
- Jia, P.; Chen, G.; Li, R.; Rong, X.; Zhou, G.; Zhong, Y. Ginsenoside Rb1 reduces nitric oxide production via inhibition of nuclear factor-κB activation in interleukin-1β-stimulated SW1353 chondrosarcoma cells. Trop. J. Pharm. Res. 2014, 13, 1071–1078. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, L.; Wang, Z.-m.; Zhang, S.; Rong, X.-F.; Li, R.-H. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis. Exp. Biol. Med. 2015, 240, 1614–1621. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, S.; Sun, Y.; Pan, X.; Xiao, L.; Zou, L.; Ho, K.W.; Li, G. Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis. J. Orthop. Transl. 2016, 6, 27–33. [Google Scholar] [CrossRef]
- Aravinthan, A.; Hossain, M.A.; Kim, B.; Kang, C.-W.; Kim, N.S.; Hwang, K.-C.; Kim, J.-H. Ginsenoside Rb1 inhibits monoiodoacetate-induced osteoarthritis in postmenopausal rats through prevention of cartilage degradation. J. Ginseng Res. 2021, 45, 287–294. [Google Scholar] [CrossRef]
- Luan, J.; Che, G.; Man, G.; Xiao, F. Ginsenoside Rb1 from Panax ginseng attenuates monoiodoacetate-induced osteoarthritis by inhibiting miR-21-5p/FGF18-mediated inflammation. J. Food Biochem. 2022, 46, e14340. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Alam, M.J.; Kim, B.; Kang, C.-W.; Kim, J.-H. Ginsenoside-Rb1 prevents bone cartilage destruction through down-regulation of p-Akt, p-P38, and p-P65 signaling in rabbit. Phytomedicine 2022, 100, 154039. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, D.; Fan, W. Protection of ginsenoside Rg1 on chondrocyte from IL-1β-induced mitochondria-activated apoptosis through PI3K/Akt signaling. Mol. Cell. Biochem. 2014, 392, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Jing, J.; Wang, Z.; Wu, D.; Huang, Y. Chondroprotective effects of ginsenoside Rg1 in human osteoarthritis chondrocytes and a rat model of anterior cruciate ligament transection. Nutrients 2017, 9, 263. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Shen, G.; Zou, Y.; Zhang, H.; Yang, K.; Zhu, Y. The protective effect of ginsenoside Rg1 on apoptosis in human ankle joint traumatic arthritis chondrocytes. Evid.-Based Complement. Altern. Med. 2022, 2022, 6798377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Kulyar, M.F.-e.-A.; Ding, Y.; Yao, W.; Mo, Q.; Li, J. Ginsenoside Rg1 regulates thiram-induced chondrocytes’ apoptosis and angiogenesis in broiler chickens. Environ. Sci. Pollut. Res. 2023, 30, 34188–34202. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, T.; Yang, S.; Cai, Y. Ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix improves rabbit temporomandibular joint osteoarthrosis. Biotechnol. Genet. Eng. Rev. 2024, 40, 253–274. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, H.; Shehzad, O.; Kim, Y.S.; Kim, H.P. Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation. Eur. J. Pharmacol. 2014, 724, 145–151. [Google Scholar] [CrossRef]
- Ma, C.-H.; Chou, W.-C.; Wu, C.-H.; Jou, I.-M.; Tu, Y.-K.; Hsieh, P.-L.; Tsai, K.-L. Ginsenoside Rg3 attenuates TNF-α-induced damage in chondrocytes through regulating SIRT1-mediated anti-apoptotic and anti-inflammatory mechanisms. Antioxidants 2021, 10, 1972. [Google Scholar] [CrossRef]
- Zhang, P. Ginsenoside-Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol. Rep. 2017, 37, 1497–1502. [Google Scholar] [CrossRef]
- Park, E.H.; Kim, J.S.; Lee, J.S.; Lee, Y.J.; Song, Y.W.; Lee, E.Y. Compound K inhibits interleukin-1β-induced expression of inflammatory mediators and matrix metalloproteinases by inhibiting mitogen-activated protein kinase activation in chondrocytes. J Rheum. Dis 2018, 25, 188–196. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Zhuo, N. Ginsenoside compound K alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. Exp. Ther. Med. 2023, 26, 406. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Feng, X.; Zhou, Z.; Qin, S.; Chen, S.; Zhao, J.; Hou, J.; Liu, D. Ginsenoside compound K ameliorates osteoarthritis by inhibiting the chondrocyte endoplasmic reticulum stress-mediated IRE1α-TXNIP-NLRP3 axis and pyroptosis. J. Agric. Food Chem. 2023, 71, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, Y.; Liu, W.; Tong, K.L.; Suen, C.-W.W.; Huang, S.; Hou, H.; She, G.; Zhang, H.; Zheng, X. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration. Mater. Sci. Eng. C 2020, 111, 110757. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, R.; Zhou, Z.; Liu, H.; Dai, Y.; Hu, Y. Ginsenoside Rg1-modified PHBV fibrous scaffold reduces interleukin-1 beta-induced dedifferentiation of articular chondrocytes. J. Appl. Polym. Sci. 2020, 137, 48378. [Google Scholar] [CrossRef]
- Yang, J.-H.; Shin, H.H.; Kim, D.; Ryu, J.H.; Jin, E.-J. Adhesive ginsenoside compound K patches for cartilage tissue regeneration. Regen. Biomater. 2023, 10, rbad077. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, H.A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 2015, 16, 26035–26054. [Google Scholar] [CrossRef]
- Xiang, W.; Zheng, Q.; Liu, A.; Huang, S.; Chen, R.; Qiu, J.; Su, Q.; Chen, X.; Wu, J. Recent therapeutic strategies for excessive chondrocyte death in osteoarthritis: A review. Orthop. Surg. 2023, 15, 1437–1453. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef]
- Phillips, R. Targeting articular Mmp13 in OA. Nat. Rev. Rheumatol. 2021, 17, 645. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Berenbaum, F. Emerging targets in osteoarthritis therapy. Curr. Opin. Pharmacol. 2015, 22, 51–63. [Google Scholar] [CrossRef]
- Xu, R.; Wu, J.; Zheng, L.; Zhao, M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res. Rev. 2023, 91, 102080. [Google Scholar] [CrossRef]
- McClurg, O.; Tinson, R.; Troeberg, L. Targeting cartilage degradation in osteoarthritis. Pharmaceuticals 2021, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Jeong, S.; Kim, H.; Kang, D.; Lee, J.; Kang, S.-B.; Kim, J.-H. Disease-modifying therapeutic strategies in osteoarthritis: Current status and future directions. Exp. Mol. Med. 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
- Lugo, J.P.; Saiyed, Z.M.; Lane, N.E. Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: A multicenter randomized, double-blind, placebo-controlled study. Nutr. J. 2015, 15, 14. [Google Scholar] [CrossRef]
- Knights, A.J.; Redding, S.J.; Maerz, T. Inflammation in osteoarthritis: The latest progress and ongoing challenges. Curr. Opin. Rheumatol. 2023, 35, 128–134. [Google Scholar] [CrossRef] [PubMed]
- De Roover, A.; Escribano-Núñez, A.; Monteagudo, S.; Lories, R. Fundamentals of osteoarthritis: Inflammatory mediators in osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1303–1311. [Google Scholar] [CrossRef]
- Woodell-May, J.E.; Sommerfeld, S.D. Role of inflammation and the immune system in the progression of osteoarthritis. J. Orthop. Res. 2020, 38, 253–257. [Google Scholar] [CrossRef]
- Kim, H.I.; Chon, S.J.; Seon, K.E.; Seo, S.K.; Choi, Y.-R. Clinical effects of Korean red ginseng in postmenopausal women with hand osteoarthritis: A double-blind, randomized controlled trial. Front. Pharmacol. 2021, 12, 745568. [Google Scholar] [CrossRef]
- Jung, S.-J.; Oh, M.-R.; Lee, D.Y.; Lee, Y.-S.; Kim, G.-S.; Park, S.-H.; Han, S.-K.; Kim, Y.-O.; Yoon, S.-J.; Chae, S.-W. Effect of ginseng extracts on the improvement of osteopathic and arthritis symptoms in women with osteopenia: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2021, 13, 3352. [Google Scholar] [CrossRef] [PubMed]
- Schlag, E.M.; McIntosh, M.S. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006, 67, 1510–1519. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Qiao, M.-D.; Yu, P.; Zheng, F.; Yue, H.; Liu, S.-Y. Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS. J. Ginseng Res. 2020, 44, 205–214. [Google Scholar] [CrossRef]
- Piao, X.M.; Huo, Y.; Kang, J.P.; Mathiyalagan, R.; Zhang, H.; Yang, D.U.; Kim, M.; Yang, D.C.; Kang, S.C.; Wang, Y.P. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020, 25, 4390. [Google Scholar] [CrossRef] [PubMed]
- Jegal, J.; Jeong, E.J.; Yang, M.H. A review of the different methods applied in ginsenoside extraction from Panax ginseng and Panax quinquefolius roots. Nat. Prod. Commun. 2019, 14, 1934578X19868393. [Google Scholar] [CrossRef]
- Qi, L.-W.; Wang, C.-Z.; Yuan, C.-S. Isolation and analysis of ginseng: Advances and challenges. Nat. Prod. Rep. 2011, 28, 467–495. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-S.; Yoo, M.-H.; Noh, K.-H.; Oh, D.-K. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9–19. [Google Scholar] [CrossRef]
- Wang, K.; Wang, P.-H.; Lee, S.-S. Microbial transformation of protopanaxadiol and protopanaxatriol derivatives with Mycobacterium sp. (NRRL B-3805). J. Nat. Prod. 1997, 60, 1236–1241. [Google Scholar] [CrossRef]
- Saw, C.L.L.; Yang, A.Y.; Cheng, D.C.; Boyanapalli, S.S.-S.; Su, Z.-Y.; Khor, T.O.; Gao, S.; Wang, J.; Jiang, Z.-H.; Kong, A.-N.T. Pharmacodynamics of ginsenosides: Antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem. Res. Toxicol. 2012, 25, 1574–1580. [Google Scholar] [CrossRef]
- Lee, N.-H.; Yoo, S.-R.; Kim, H.-G.; Cho, J.-H.; Son, C.G. Safety and tolerability of Panax ginseng root extract: A randomized, placebo-controlled, clinical trial in healthy Korean volunteers. J. Altern. Complement. Med. 2012, 18, 1061–1069. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Woo, J.-Y.; Han, C.-K.; Chang, I.-M. Safety analysis of Panax ginseng in randomized clinical trials: A systematic review. Medicines 2015, 2, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, J.; Xu, J.-f.; Tang, F.; Chen, L.; Tan, Y.-z.; Rao, C.-l.; Ao, H.; Peng, C. Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects. J. Ginseng Res. 2021, 45, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Wen, W.; Cai, H.; Gao, Y.-T.; Shu, X.-o.; Zheng, W. Prospective cohort study of ginseng consumption in association with cancer risk: Shanghai women’s health study. J. Nutr. 2023, 153, 1170–1177. [Google Scholar] [CrossRef]
- Chargo, N.J.; Kang, H.J.; Das, S.; Jin, Y.; Rockwell, C.; Cho, J.Y.; McCabe, L.R.; Parameswaran, N. Korean red ginseng extract prevents bone loss in an oral model of glucocorticoid induced osteoporosis in mice. Front. Pharmacol. 2024, 15, 1268134. [Google Scholar] [CrossRef]
- Kim, K.-A.; Jung, I.-H.; Park, S.-H.; Ahn, Y.-T.; Huh, C.-S.; Kim, D.-H. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS ONE 2013, 8, e62409. [Google Scholar] [CrossRef]
- Leung, K.W.; Wong, A.S.-T. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010, 5, 20. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Liu, C.; Gu, Y.; Han, G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. Phytomedicine 2024, 129, 155604. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Hwang, J.Y.; Cho, J.Y. Ginsenosides from Panax ginseng as key modulators of NF-κB signaling are powerful anti-inflammatory and anticancer agents. Int. J. Mol. Sci. 2023, 24, 6119. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, S.-h.; Wang, L.; Wang, Z.-l.; Yao, H.; Chen, L.-b.; Wang, Y.-p. Effects of Ginsenoside Rg1 Regulating Wnt/β-Catenin Signaling on Neural Stem Cells to Delay Brain Senescence. Stem Cells Int. 2019, 2019, 5010184. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Zhang, K.; Niu, H.; Li, H.; Wu, W. Ginsenosides Modulate Immunity via TLR4/MyD88/NF-κB Pathway and Gut Microbiota. Phytomedicine 2025, 142, 156763. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Ivanova, S. Comparison between the biological active compounds in plants with adaptogenic properties (Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). Plants 2021, 11, 64. [Google Scholar] [CrossRef]
- Li, F.; Lv, C.; Li, Q.; Wang, J.; Song, D.; Liu, P.; Zhang, D.; Lu, J. Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J. Ginseng Res. 2017, 41, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Luo, H.; Fan, L.; Tian, X.; Tang, A.; Wu, X.; Dong, K.; Su, Z. Potential Immunoregulatory mechanism of Plant saponins: A review. Molecules 2023, 29, 113. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, B.; Liang, D.; Quan, X.; Gu, R.; Meng, Z.; Gan, H.; Wu, Z.; Sun, Y.; Liu, S. Pharmacological effects of astragaloside IV: A review. Molecules 2023, 28, 6118. [Google Scholar] [CrossRef] [PubMed]
- Gerontakos, S.; Taylor, A.; Avdeeva, A.Y.; Shikova, V.A.; Pozharitskaya, O.N.; Casteleijn, D.; Wardle, J.; Shikov, A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021, 278, 114274. [Google Scholar]
- Chen, W.; Li, X.; Chen, Z.; Hao, W.; Yao, P.; Li, M.; Liu, K.; Hu, H.; Wang, S.; Wang, Y. A comprehensive quality analysis of randomized controlled clinical trials of Asian ginseng and American ginseng based on the CONSORT guideline. J. Ginseng Res. 2022, 46, 71–78. [Google Scholar] [CrossRef]
- Suvarna, V.; Sarkar, M.; Chaubey, P.; Khan, T.; Sherje, A.; Patel, K.; Dravyakar, B. Bone health and natural products-an insight. Front. Pharmacol. 2018, 9, 981. [Google Scholar] [CrossRef]
- Chen, W.; Yao, P.; Vong, C.T.; Li, X.; Chen, Z.; Xiao, J.; Wang, S.; Wang, Y. Ginseng: A bibliometric analysis of 40-year journey of global clinical trials. J. Adv. Res. 2021, 34, 187–197. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Z.; Su, H.; Xu, P.; Qi, H.; Zhao, D.; Li, X. Panax ginseng clinical trials: Current status and future perspectives. Biomed. Pharmacother. 2020, 132, 110832. [Google Scholar] [CrossRef]
- He, Y.; Yang, J.; Lv, Y.; Chen, J.; Yin, F.; Huang, J.; Zheng, Q. A review of ginseng clinical trials registered in the WHO international clinical trials registry platform. BioMed Res. Int. 2018, 2018, 1843142. [Google Scholar] [CrossRef]
No. | Phytochemicals | Cell Model | Viability Assay | Dose a, Time | Animal Model | Dose, Time | Mechanism | Year, Ref. |
---|---|---|---|---|---|---|---|---|
1 | Ginsenoside Rf | MG63 | MTT | 11 μM, 24 h | N/A | N/A | Induction of apoptosis | 2014, [58] |
2 | Ginsenoside Rg3 | MG63 | MTT | 150 μM, 24 h | N/A | N/A | Induction of double-strand DNA damage | 2014, [22] |
3 | Ginsenoside Rg3 | MG63 | CCK8 | 2.5 μM, 24 h | N/A | N/A | Induction of apoptosis, inhibition of migration, suppression of PI3K/Akt/mTOR pathway | 2018, [59] |
4 | Ginsenoside Rg3 | MG63 | EDU | 80 μM, 24 h | Xenograft mouse (MG63) | 20 mg/kg, 21 days | Induction of apoptosis, inhibition of migration and invasion, regulation of circ_0003074/miR-516b-5p/KPNA4 axis | 2021, [60] |
5 | Ginsenoside Rg3 | MG63 | MTT | 80 μM, 24 h | N/A | N/A | Inhibition of migration, suppression of Wnt/β-Catenin and EMT pathway | 2020, [61] |
6 | Ginsenoside Rg5 | MG63 | MTT | 0.64 μM, 24 h | N/A | N/A | Induction of apoptosis and autophagy, suppression of PI3K/Akt/mTORC1 pathway | 2021, [62] |
7 | Ginsenoside Rh2 | U2OS | MTT | 8 μM, 48 h | N/A | N/A | Induction of apoptosis, inhibition of migration, suppression of PI3K/Akt/mTOR and NF-κB pathway, activation of MAPK pathway | 2020, [64] |
8 | Ginsenoside Rh2 | MG63 | MTT | 50 μM, 36 h | N/A | N/A | Induction of apoptosis, inhibition of migration and invasion, suppression of PI3K/Akt/mTOR and EMT pathway, activation of MAPK pathway | 2021, [65] |
9 | Ginsenoside CK | MG63 | MTT | 20 μM, 72 h | N/A | N/A | Induction of apoptosis, inhibition of migration and invasion, suppression of PI3K/Akt/mTOR pathway | 2020, [66] |
10 | Ginsenoside Rg1 | MG63 | CCK8 | 250 μM, 24 h with 6 μM Timosaponin AIII | N/A | N/A | Induction of apoptosis, inhibition of migration, suppression of MAPK pathway | 2020, [67] |
11 | Ginsenoside Rb1, Rc | MG63 | CCK8 | 250 μM, 24 h with 6 μM Timosaponin AIII | N/A | N/A | Induction of apoptosis, inhibition of migration, suppression of MAPK pathway | 2019, [68] |
12 | Ginsenoside Rg3 | 143B | Colony formation | 80 μg/mL, 7 days with 0.3125 μg/mL doxorubicin | Xenograft mouse (143B) | 20 mg/kg, 21 days with 2 mg/kg doxorubicin | Inhibition of migration and invasion, suppression of Akt/mTOR, HIF1α/VEGF, and EMT pathway | 2023, [69] |
13 | Ginsenoside CK | 143B | MTT | 10 µM, 72 h with 5 µM cisplatin | Xenograft mouse (143B) | 10 mg/kg, 28 days with 10 mg/kg doxorubicin | Induction of apoptosis | 2018, [70] |
14 | (20S)-Protopanaxatriol | MG63 | MTT | 0.5 μM, 24 h with 1 μM RSL3 | Xenograft mouse (MG63) | 20 mg/kg, 28 days with 20 mg/kg IKE | Increase in sensitivity to ferroptosis, increases in ACSL4 expression | 2024, [71] |
15 | Polysaccharide | MG63 | CCK8 | 20 μM, 24 h | N/A | N/A | Induction of apoptosis and autophagy, suppression of Ak and p38 | 2017, [73] |
No. | Phytochemicals | Cell Model | Assay a | Dose b, Time | Animal Model | Dose, Time | Mechanism | Year, Ref. |
---|---|---|---|---|---|---|---|---|
1 | Ginsenoside Rb1 | Osteoblasts from rat skull | CCK8 | 0.0145 mg/mL, 24 h | N/A | N/A | Increase in osteoblasts viability, upregulation of TGF-β1, BMP-2, IGF-I, and Cbfα1, inhibition of oxidative stress | 2016, [77] |
2 | Ginsenoside Rb1 | Osteoblasts from rat skull | ALP | 0.0145 mg/mL, N/A | Glucocorticoid-induced osteoporosis rats | 6 mg/kg, 12 weeks | Induction of osteoblasts differentiation, regulation of AHR/PRELP/NF-κB pathway | 2022, [78] |
3 | Ginsenoside Rb1 | Mesenchymal stem cells from rat bone marrow | ALP | 10 μM, 7 days | Ovariectomized osteoporosis rats | 6 mg/kg, 12 weeks | Induction of osteoblast differentiation, inhibition of oxidative stress | 2018, [79] |
4 | Ginsenoside Rb2 | MC3T3-E1 | ALP | 10 μM, 48 h | Ovariectomized osteoporosis mice | 18.5 μmol/kg, 12 weeks | Increase in osteoblasts viability, induction of osteoblasts differentiation, inhibition of oxidative stress | 2014, [80] |
5 | Ginsenoside Rb2 | RAW264.7 | TRAP | 10 μM, 72 h | N/A | N/A | Suppression of osteoclast differentiation, suppression of NF-κB and STAT3 pathways | 2017, [81] |
6 | Ginsenoside Rb2 | N/A | N/A | N/A | Ketogenic-diet-induced osteoporosis mice | 20 mg/kg, 12 weeks | Increase in osteoblast activity, reduction in osteoclast activity | 2021, [82] |
7 | Ginsenoside Rc | MC3T3-E1 | ALP | 200 μM, 14 days | Ovariectomized osteoporosis mice | 50 mg/kg, 3 months | Induction of osteoblasts differentiation, activation of Wnt/β-catenin | 2022, [83] |
8 | Ginsenoside Rc | Osteoblasts from human skull | ALP | 10 μM, N/A | Ovariectomized osteoporosis rats | 20 mg/kg, 4 weeks | Induction of osteoblasts differentiation, activation of TGF-β/Smad pathway | 2024, [84] |
9 | Ginsenoside Re | MC3T3-E1 | ALP | 50 μM, 14 days | Zebrafish | 50 μM, 5 weeks | Induction of osteoblasts differentiation | 2016, [85] |
10 | Ginsenoside Re | Macrophages from mouse bone marrow | TRAP | 5 μM, 72 h | Zebrafish | 5 μM, 5 weeks | Suppression of osteoclast differentiation, downregulation of NFATc1, c-Fos, and pErk, suppression of NF-κB pathway | 2016, [86] |
11 | Ginsenoside Rg1 | Mesenchymal stem cells from rat bone marrow | ALP | 1 μM, 14 days | Tibial fractured rats | 20 mg/kg, 3 weeks | Induction of osteoblasts differentiation, activation of BMP-2/Smad pathway | 2016, [87] |
12 | Ginsenoside Rg1 | Osteoprogenitors from rat femur | ALP | 164.8 uM, 7 days | Goto-Kakizaki type 2 diabete rats | 10 mg/kg, 12 weeks | Induction of osteoblasts differentiation, activation of angiogenesis | 2022, [88] |
13 | Ginsenoside Rg1 | MC3T3-E1 | ALP | 50 μM, 7 days | Glucocorticoid-induced osteoporosis Zebrafishes | 50 μM, 10 days | Induction of osteoblasts differentiation, activation of GPER/PI3K/Akt pathway | 2024, [89] |
14 | Ginsenoside Rg3 | RAW264.7 | TRAP | 10 μM, 7 days | N/A | N/A | Suppression of osteoclast differentiation, suppression of NF-κB and MAPK pathways | 2015, [90] |
15 | Ginsenoside Rg3 | Osteoblasts from rat skull | ALP | 10 μM, 14 days | Glucocorticoid-induced osteoporosis rats | 20 mg/kg, 5 weeks | Induction of osteoblasts differentiation, activation of BMP-2/BMPR1A/Runx2 pathway | 2016, [91] |
16 | Ginsenoside Rg3 | N/A | N/A | N/A | AlCl3-induced osteoporosis rats | 20 mg/kg, 1 month | Increase in osteoblast growth factors, inhibition of oxidative stress | 2020, [92] |
17 | Ginsenoside Rg3 | MC3T3-E1 | ALP | 20 μM, 5 days | Ovariectomized osteoporosis rats | 20 mg/kg, 5 weeks | Induction of osteoblasts differentiation, activation of osteoblast autophagy, activation of AMPK pathway, suppression of mTOR pathway | 2020, [93] |
18 | Ginsenoside Rg3 | MC3T3-E1 | ALP | 10 μM, 24 h | AlCl3-induced osteoporosis rats | 20 mg/kg, 1 month | Induction of osteoblasts differentiation, inhibition of osteoblast apoptosis, activation of TGF-β1/Smad pathway | 2021, [94] |
19 | Ginsenosides Rg5 + Ginsenosides Rk1 | MC3T3-E1 | ALP | 20 μg/mL, 12 days | N/A | N/A | Induction of osteoblasts differentiation, activation of BMP-2/Runx2 pathway | 2014, [95] |
20 | Ginsenoside Rh1 | MC3T3-E1 | ALP | 10 μM, 12 days | N/A | N/A | Induction of osteoblasts differentiation, inhibition of oxidative stress, activation of BMP-2/Runx2 pathway | 2014, [96] |
21 | Ginsenoside CK | Mesenchymal stem cells from rat bone marrow | Alizarin Red S | 10 μM, 14 days | Femoral fractured rats | 500 μM, 4 weeks | Induction of osteoblasts differentiation, upregulation of β-catenin and Runx2 | 2022, [97] |
22 | Ginsenoside CK | RAW264.7 | TRAP | 10 μM, 5 days | Ovariectomized osteoporosis mice | 10 mg/kg, 8 weeks | Suppression of osteoclast differentiation, inhibition of oxidative stress, suppression of NF-κB pathway | 2023, [98] |
23 | Red ginseng extract | MC3T3-E1 | ALP | 125 μg/mL, 7 days | Glucocorticoid-induced osteoporosis mice | 500 mg/kg, 5 weeks | Induction of osteoblasts differentiation, upregulation of pAkt, downregulation of pJNK | 2015, [99] |
24 | Ginseng extract | RAW264.7 | TRAP | 50 μg/mL, 5 days | Ovariectomized osteoporosis rats | 300 mg/kg, 8 weeks | Suppression of osteoclast differentiation | 2015, [100] |
25 | Ginseng leaf extract | RAW264.7 | TRAP | 1 mg/mL, 5 days | N/A | N/A | Suppression of osteoclast differentiation, inhibition of oxidative stress, downregulation of HMGB1, upregulation of Nrf2 and HO-1 | 2024, [101] |
26 | Ginseng-derived ginsenosides containing nanovesicles | Macrophages from mouse bone marrow | TRAP | 1 μg/mL, 4 days | Lipopolysaccharide-induced osteoporosis mice | 1 mg/kg, 1 week | Suppression of osteoclast differentiation, suppression of NF-κB and MAPK pathways | 2023, [102] |
No. | Phytochemicals | Cell Model | Assay a | Dose b, Time | Animal Model | Dose, Time | Mechanism | Year, Ref. |
---|---|---|---|---|---|---|---|---|
1 | Ginsenoside Rb1 | SW1353 | Quantification of NO | 80 μM, 24 h | N/A | N/A | Reduction in NO production, downregulation of iNOS, and nuclear p65 | 2014, [108] |
2 | Ginsenoside Rb1 | SW1353 | WB of MMP-13 | 80 μM, 24 h | ACLT osteoarthritis rats | 80 μM, 6 weeks | Upregulation of type II collagen, downregulation of MMP-13, Notch1, and JAG1 | 2015, [109] |
3 | Ginsenoside Rb1 | C5.18 | RT-PCR of MMP-13 | 100 μg/mL, 24 h | ACLT + MCLT osteoarthritis rats | 300 μM, 4 weeks | Downregulation of MMP-13 and type X collagen | 2016, [110] |
4 | Ginsenoside Rb1 | Chondrocytes from each group | RT-PCR of MMP-13 | 10 μg/kg, 4 weeks | MIA-induced and Ovariectomized osteoarthritis rats | 10 μg/kg, 4 weeks | Downregulation of IFN-γ, CCL-2/MCP1, IL-6, IL-1β, MMP-13, Cox-2, TGF-β, CTX-1. and PGE2, upregulation of BMP-2 | 2021, [111] |
5 | Ginsenoside Rb1 | Chondrocytes from healthy rats | CCK8 | 10 μM, 24 h | MIA-induced osteoarthritis rats | 10 mg/kg, 2 weeks | Downregulation of IL-6, IL-1β, TNF-α, and miR-21-5p, upregulation of FGF18 | 2022, [112] |
6 | Ginsenoside Rb1 | N/A | N/A | N/A | Hollow trephine-damaged osteoarthritis rabbits | 100 μg/kg, 10 days | Suppression of chondrocyte apoptosis, reduction in ROS production, upregulation of TIMP-1, downregulation of PGE2, MMP-1, MMP-3, MMP-13, TNF-α, Caspase-3, Bax, pAkt, pP65, and pp38 | 2022, [113] |
7 | Ginsenoside Rg1 | Chondrocytes from healthy rats | MTT | 10 μg/mL, 72 h | N/A | N/A | Suppression of chondrocyte apoptosis, upregulation of pAkt, Bcl2, and TIMP-1, downregulation of Bax and MMP-13 | 2014, [114] |
8 | Ginsenoside Rg1 | Chondrocytes from osteoarthritis patients | RT-PCR of MMP-13 | 10 μg/mL, 24 h | ACLT osteoarthritis rats | 60 mg/kg, 12 weeks | Upregulation of type II collagen and aggrecan, downregulation of MMP-13 and COX-2 | 2017, [115] |
9 | Ginsenoside Rg1 | Chondrocytes from healthy humans | CCK8 | 100 μg/mL, 72 h | N/A | N/A | Suppression of chondrocyte apoptosis, reduction in ROS and MDA production, upregulation of Bcl2, downregulation of Bax, Caspase-3, Caspase-8, Caspase-9, FasL, and AIF | 2022, [116] |
10 | Ginsenoside Rg1 | Chondrocytes from healthy chickens | CCK8 | 40 μM, 24 h | Thiram-induced osteoarthritis chickens | 40 mg/kg, 18 days | Suppression of chondrocyte apoptosis, upregulation of Bcl2, HIF-1α, VEGFA, and VEGFR2, downregulation of Bax and Caspase-3 | 2023, [117] |
11 | Ginsenoside Rg1 | Chondrocytes differentiated from healthy rabbit adipose stem cells | MTT | 40 μM, 5 days | Papain-induced osteoarthritis rabbits | 1:1 (V:V) mixture of hyaluronic acid and adipose stem cells (2 × 107/mL) suspension in 40 μM Rg1, 9 days | Upregulation of TIMP-1, downregulation of MMP-13 | 2024, [118] |
12 | Ginsenoside Rg3 | SW1353, chondrocytes from healthy rabbit | WB of MMP-13, DMMB | 20 μM, 24 h, 2 μM, 3 days | N/A | N/A | Downregulation of MMP-13, inhibition of glycosaminoglycan release | 2014, [119] |
13 | Ginsenoside Rg3 | TC28a2 | WB of SIRT1 | 20 μM, 24 h | N/A | N/A | Suppression of chondrocyte apoptosis, reduction in ROS production, upregulation of Bcl2, downregulation of IL-8, MMP-13, Bax, and pp38, activation of SIRT1/PGC-1α/SIRT3 pathway, suppression of NF-κB pathway | 2021, [120] |
14 | Ginsenosides Rg5 | Chondrocytes from healthy rats | TUNEL | 15 μM, 48 h | MCLT osteoarthritis rats | 15 mg/kg, 1 month | Suppression of chondrocyte apoptosis, reduction in NO production, upregulation of type II collagen and TIMP-1, downregulation of MMP-13, IL-1β, iNOS, and TNF-α | 2017, [121] |
15 | Ginsenoside CK | Chondrocytes from osteoarthritis patients | Quantification of NO | 5 μM, 24 h | N/A | N/A | Reduction in NO production, downregulation of iNOS, MMP-13, pJNK, pp38, and pErk, inhibition of glycosaminoglycan release | 2018, [122] |
16 | Ginsenoside CK | Chondrocytes from healthy mouse | CCK8 | 50 μM, 48 h | MCLT osteoarthritis mouse | 40 mg/kg, 8 weeks | Suppression of chondrocyte pyroptosis, upregulation of type II collagen, downregulation of IL-6, MMP-3, MMP-13, ADAMTS5, NLRP3, GSDMD, cleaved caspase-1, and IL-1β, inhibition of glycosaminoglycan release | 2023, [123] |
17 | Ginsenoside CK | Chondrocytes from healthy rats | WB of MMP-13 | 30 nM, 24 h | MIA-induced osteoarthritis rats | 80 mg/kg, 7 weeks | Suppression of chondrocyte pyroptosis, upregulation of type II collagen, downregulation of MMP-3, MMP-13, ADAMTS4, ADAMTS5, NLRP3, GSDMD, cleaved caspase-1, and IL-1β, | 2023, [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H. Recent Research on the Role of Phytochemicals from Ginseng in Management of Osteosarcoma, Osteoporosis, and Osteoarthritis. Nutrients 2025, 17, 1910. https://doi.org/10.3390/nu17111910
Park S-H. Recent Research on the Role of Phytochemicals from Ginseng in Management of Osteosarcoma, Osteoporosis, and Osteoarthritis. Nutrients. 2025; 17(11):1910. https://doi.org/10.3390/nu17111910
Chicago/Turabian StylePark, See-Hyoung. 2025. "Recent Research on the Role of Phytochemicals from Ginseng in Management of Osteosarcoma, Osteoporosis, and Osteoarthritis" Nutrients 17, no. 11: 1910. https://doi.org/10.3390/nu17111910
APA StylePark, S.-H. (2025). Recent Research on the Role of Phytochemicals from Ginseng in Management of Osteosarcoma, Osteoporosis, and Osteoarthritis. Nutrients, 17(11), 1910. https://doi.org/10.3390/nu17111910