Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measures of Endocrine Parameters
2.3. Morbidities
2.4. Nutrition
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Potential Pathways through Which IGF-I and IGFBP-3 Could Influence the Occurrence of BPD
4.2. Possible Interactions between Nutrition, IGF-I Levels and BPD
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobe, A.H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, T.; Radajewski, S.; Chao, C.M.; Bellusci, S.; Ehrhardt, H. Pathogenesis of bronchopulmonary dysplasia: When inflammation meets organ development. Mol. Cell. Pediatr. 2016, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Thekkeveedu, R.K.; Guaman, M.C.; Shivanna, B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir. Med. 2017, 132, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Mandell, E.W.; Kratimenos, P.; Abman, S.H.; Steinhorn, R.H. Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clin. Perinatol. 2019, 46, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Hallberg, B.; Hansen-Pupp, I.; Dani, C.; Ramenghi, L.A.; Marlow, N.; Beardsall, K.; Bhatti, F.; Dunger, D.; Higginson, J.D.; et al. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J. Pediatr. 2019, 206, 56–65.e58. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, W. Oxidative stress and bronchopulmonary dysplasia. Gene 2018, 678, 177–183. [Google Scholar] [CrossRef]
- Rowland, K.J.; Choi, P.M.; Warner, B.W. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin. Pediatr. Surg. 2013, 22, 101–111. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Sun, R.; Liu, J.; Hong, J.; Li, Q.; Hu, B.; Gong, F. IGF-1 may predict the severity and outcome of patients with sepsis and be associated with microRNA-1 level changes. Exp. Ther. Med. 2017, 14, 797–804. [Google Scholar] [CrossRef]
- Tanner, S.M.; Berryhill, T.F.; Ellenburg, J.L.; Jilling, T.; Cleveland, D.S.; Lorenz, R.G.; Martin, C.A. Pathogenesis of necrotizing enterocolitis: Modeling the innate immune response. Am. J. Pathol. 2015, 185, 4–16. [Google Scholar] [CrossRef]
- Engstrom, E.; Niklasson, A.; Wikland, K.A.; Ewald, U.; Hellstrom, A. The role of maternal factors, postnatal nutrition, weight gain, and gender in regulation of serum IGF-I among preterm infants. Pediatr. Res. 2005, 57, 605–610. [Google Scholar] [CrossRef]
- Yumani, D.F.; Lafeber, H.N.; van Weissenbruch, M. Study Protocol Nutrition in Relation to the Endocrine Regulation of Preterm Growth. Available online: https://onderzoekmetmensen.nl/en/trial/27985 (accessed on 19 March 2024).
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Boyce, C.; Watson, M.; Lazidis, G.; Reeve, S.; Dods, K.; Simmer, K.; McLeod, G. Preterm human milk composition: A systematic literature review. Br. J. Nutr. 2016, 116, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Yumani, D.F.J.; Calor, A.K.; van Weissenbruch, M.M. The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation. Nutrients 2020, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Lofqvist, C.; Hellgren, G.; Niklasson, A.; Engstrom, E.; Ley, D.; Hansen-Pupp, I. Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr. 2012, 101, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Engstrom, E.; Hard, A.L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Lofqvist, C.; Svensson, E.; Holm, S.; Ewald, U.; et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003, 112, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Perez-Munuzuri, A.; Couce-Pico, M.L.; Bana-Souto, A.; Lopez-Suarez, O.; Iglesias-Deus, A.; Blanco-Teijeiro, J.; Fernandez-Lorenzo, J.R.; Fraga-Bermudez, J.M. Preclinical screening for retinopathy of prematurity risk using IGF1 levels at 3 weeks post-partum. PLoS ONE 2014, 9, e88781. [Google Scholar] [CrossRef] [PubMed]
- Gortner, L.; Reiss, I.; Hilgendorff, A. Bronchopulmonary dysplasia and intrauterine growth restriction. Lancet 2006, 368, 28. [Google Scholar] [CrossRef]
- Kurata, H.; Ochiai, M.; Inoue, H.; Kusuda, T.; Fujiyoshi, J.; Ichiyama, M.; Wakata, Y.; Takada, H. Inflammation in the neonatal period and intrauterine growth restriction aggravate bronchopulmonary dysplasia. Pediatr. Neonatol. 2019, 60, 496–503. [Google Scholar] [CrossRef]
- Capoluongo, E.; Ameglio, F.; Zuppi, C. Insulin-like growth factor-I and complications of prematurity: A focus on bronchopulmonary dysplasia. Clin. Chem. Lab. Med. 2008, 46, 1061–1066. [Google Scholar] [CrossRef]
- Jensen, E.A.; Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Klevebro, S.; Hellgren, G.; Hansen-Pupp, I.; Wackernagel, D.; Hallberg, B.; Borg, J.; Pivodic, A.; Smith, L.; Ley, D.; Hellstrom, A. Elevated levels of IL-6 and IGFBP-1 predict low serum IGF-1 levels during continuous infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants. Growth Horm. IGF Res. 2019, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Dammann, C.; Nielsen, H.C.; Volpe, M.V. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front. Pediatr. 2018, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, B.G.; Lima, P.A.; Villela, L.D.; Martins, A.S.; Gomes-Junior, S.C.S.; Moreira, M.E.L.; Meio, M. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur. J. Pediatr. 2021, 180, 1423–1430. [Google Scholar] [CrossRef]
- Kon, I.Y.; Shilina, N.M.; Gmoshinskaya, M.V.; Ivanushkina, T.A. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann. Nutr. Metab. 2014, 65, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Goelz, R.; Hihn, E.; Hamprecht, K.; Dietz, K.; Jahn, G.; Poets, C.; Elmlinger, M. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk. Pediatr. Res. 2009, 65, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Hoeflich, A.; Meyer, Z. Functional analysis of the IGF-system in milk. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Moro, G.E.; Billeaud, C.; Rachel, B.; Calvo, J.; Cavallarin, L.; Christen, L.; Escuder-Vieco, D.; Gaya, A.; Lembo, D.; Wesolowska, A.; et al. Processing of Donor Human Milk: Update and Recommendations From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 49. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Travers, C.P.; Clark, R.H.; Spitzer, A.R.; Das, A.; Garite, T.J.; Carlo, W.A. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: Prospective cohort study. BMJ 2017, 356, j1039. [Google Scholar] [CrossRef] [PubMed]
OMM | OMM + BMF (4.4 g/100 mL) | DHM | DHM + BMF (4.4 g/100 mL) | |
---|---|---|---|---|
Energy (kcal) | 68.5 | 83.8 | 60 | 75 |
Protein (g) | 1.5 | 2.6 | 0.8 | 1.9 |
Carbohydrates (g) | 7.3 | 10.0 | 7.5 | 10.2 |
Fat (g) | 3.3 | 3.3 | 2.9 | 2.9 |
All (n = 86) a | BPD (n = 29) | No BPD (n = 57) | p Value | |
---|---|---|---|---|
Gender, n male (%) | 44 (51.2) | 17 (58.6) | 27 (47.4) | 0.324 b |
Ethnicity, n white (%) | 65 (75.6) | 22 (75.9) | 43 (75.4) | 0.966 b |
Gestational age (weeks), mean (SD) | 29.0 (1.7) | 27.9 (1.7) | 29.6 (1.5) | <0.001 c |
Birthweight (g), mean (SD) | 1217 (312) | 1055 (271) | 1298 (301) | 0.001 c |
Birthweight SDS, mean (SD) | 0.0 (0.7) | 0.0 (0.7) | 0.0 (0.7) | 0.765 c |
Birthweight SDS < −1.3, n (%) | 3 (3.5) | 1 (3.4) | 2 (3.5) | 1.000 d |
Antenatal steroids e, n (%) | 56 (65.1) | 17 (58.6) | 39 (68.4) | 0.473 b |
Postnatal steroids f, n (%) | 8 (9.3) | 5 (17.2) | 3 (5.3) | 0.113 d |
Ventilation days, median (IQR) | 0 (0.0–5.0) | 2.0 (0.0–9.0) | 0.0 (0.0–2.3) | 0.007 g |
IRDS, n (%) | <0.001 b | |||
IRDS stage I–II | 24 (27.9) | 14 (48.3) | 10 (17.5) | |
IRDS stage III–IV | 19 (22.1) | 9 (31.0) | 10 (17.5) | |
ROP, n (%) | 0.532 d | |||
ROP stage I | 4 (4.7) | 1 (3.4) | 3 (5.3) | |
ROP stage III | 1 (1.2) | 1 (3.4) | 0 (0.0) | |
PDA requiring treatment, n (%) | 8 (9.3) | 5 (17.2) | 3 (5.3) | 0.113 d |
NEC, n (%) | 6 (7.0) | 4 (13.8) | 2 (3.5) | 0.173 d |
LOS, n (%) | 30 (34.9) | 14 (48.3) | 16 (28.1) | 0.063 b |
IVH grade ≥ III, n (%) | 3 (3.5) | 3 (10.3) | 0 (0) | 0.036 d |
PHVD, n (%) | 8 (9.3) | 3 (10.3) | 5 (8.8) | 1.000 d |
PVL, n (%) | 3 (3.5) | 1 (3.4) | 2 (3.5) | 1.000 d |
B (SE) | p-Value | Odds Ratio (95% CI) | |
---|---|---|---|
Included variables | |||
Constant | 23.9 (8.0) | 0.003 | |
Change in IGF-I (µg/L per week) | −0.5 (0.2) | 0.018 | 0.63 (0.43–0.92) |
Gestational age at birth (weeks) | −0.8 (0.3) | 0.003 | 0.44 (0.26–0.76) |
Predominantly donor human milk for at least 1 week a | 2.0 (1.0) | 0.035 | 7.6 (1.2–50.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yumani, D.F.J.; Walschot, F.H.; Lafeber, H.N.; van Weissenbruch, M.M. Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients 2024, 16, 957. https://doi.org/10.3390/nu16070957
Yumani DFJ, Walschot FH, Lafeber HN, van Weissenbruch MM. Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients. 2024; 16(7):957. https://doi.org/10.3390/nu16070957
Chicago/Turabian StyleYumani, Dana F. J., Floor H. Walschot, Harrie N. Lafeber, and Mirjam M. van Weissenbruch. 2024. "Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition" Nutrients 16, no. 7: 957. https://doi.org/10.3390/nu16070957
APA StyleYumani, D. F. J., Walschot, F. H., Lafeber, H. N., & van Weissenbruch, M. M. (2024). Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients, 16(7), 957. https://doi.org/10.3390/nu16070957