Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- the general framework of a competitive athlete with T1DM, including their muscular pathophysiology and performance.
- (2)
- the role of carbohydrates (CHO) in managing T1DM in athletes, with a particular focus on insulin, technology, hypoglycemia prevention, and the use of CHO during different phases of training.
- (3)
- the importance of amino acids in the diet of athletes with T1DM.
- (4)
- the role of various micronutrients, such as creatine, selenium, caffeine, and magnesium, in managing T1DM in athletes. The search encompassed two electronic databases, PubMed and Scopus (https://pubmed.ncbi.nlm.nih.gov/ and https://www.scopus.com/search/form.uri?display=basic#basic, both accessed on 1 January 2024), spanning from their inception to January 2024. The exploration utilized the keywords “T1DM”, “Physical Activity”, “Carbohydrates”, “Proteins”, and “Nutritional Supplements”. Inclusion criteria were limited to human studies, while studies not published in English were excluded from consideration.
3. Results
3.1. General Considerations Regarding PA and EXE in People Living with T1DM
3.2. Nutritional Management of People Living with T1DM Undergoing PA: Focus on Carbohydrates
3.2.1. General Carbohydrates Requirements for Performance
3.2.2. Glycemic Management of PA
3.2.3. Glycemic Targets before and during PA
3.2.4. Glycemic Management after PA
3.3. Nutritional Management of People Living with T1DM Engaging in PA: Focus on Proteins and Fats
3.3.1. Effects of Proteins and Fats on Glycaemia in T1DM People
3.3.2. Protein and Fat Consumption in People Living with T1DM Engaging in PA
3.3.3. Protein and Reduction of Hyoglycaemic Risk in T1DM Engaging in PA
3.4. Nutritional Management of People Living with T1DM Engaging in PA: Focus on Nutritional Supplements and Micronutrients
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef]
- Moser, O.; Eckstein, M.L.; Mueller, A.; Birnbaumer, P.; Aberer, F.; Koehler, G.; Sourij, C.; Kojzar, H.; Pferschy, P.; Dietz, P.; et al. Pre-Exercise Blood Glucose Levels Determine the Amount of Orally Administered Carbohydrates during Physical Exercise in Individuals with Type 1 Diabetes-A Randomized Cross-Over Trial. Nutrients 2019, 11, 1287. [Google Scholar] [CrossRef]
- Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013, 309, 2473–2479. [Google Scholar] [CrossRef]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E.; Wang, F.; Colagiuri, S.; de Beaufort, C.; Donaghue, K.C.; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group; Magliano, D.J.; Maniam, J.; et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes 2024. Diabetes Care 2024, 46, S140–S157. [Google Scholar]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Herbst, A.; Kordonuri, O.; Schwab, K.O.; Schmidt, F.; Holl, R.W.; DPV Initative of the German Working Group for Pediatric Diabetology Germany. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: A multicenter study of 23,251 patients. Diabetes Care 2007, 30, 2098–2100. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, R.; Kaplan, V.; Bingisser, R.; Bloch, K.E.; Spinas, G.A. Impact of physical activity on cardiovascular risk factor in IDDM. Diabetes Care 1997, 20, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Peters, A.L. Exercise in adults with type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2023, 19, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Scott, S.N.; Fournier, P.A.; Colberg, S.R.; Gallen, I.W.; Moser, O.; Stettler, C.; Yardley, J.E.; Zaharieva, D.P.; Adolfsson, P. The competitive athlete with type 1 diabetes. Diabetologia 2020, 63, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar]
- Bohn, B.; Herbst, A.; Pfeifer, M.; Krakow, D.; Zimny, S.; Kopp, F.; Melmer, A.; Steinacker, J.M.; Holl, R.W.; DPV Initiative. Impact of Physical Activity on Glycemic Control and Prevalence of Cardiovascular Risk Factors in Adults with Type 1 Diabetes: A Cross-sectional Multicenter Study of 18,028 Patients. Diabetes Care 2015, 38, 1536–1543. [Google Scholar] [CrossRef]
- Carral, F.; Gutiérrez, J.V.; del Carmen Ayala, M.; García, G.; Aguilar, M. Intense physical activity is associated with better metabolic control in patients with type 1 diabetes. Diabetes Res. Clin. Pract. 2013, 101, 45–49. [Google Scholar] [CrossRef]
- Pate, R.R.; Pratt, M.; Blair, S.N.; Haskell, W.L.; Macera, C.A.; Bouchard, C.; Buchner, D.; Ettinger, W.; Heath, G.W.; King, A.C.; et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Conn, V.S.; Hafdahl, A.R.; Lemaster, J.W.; Ruppar, T.M.; Cochran, J.E.; Nielsen, P.J. Meta-analysis of health behavior change interventions in type 1 diabetes. Am. J. Health Behav. 2008, 32, 315–329. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ezzatvar, Y.; Huerta-Uribe, N.; Alonso-Martínez, A.M.; Chueca-Guindulain, M.J.; Berrade-Zubiri, S.; Izquierdo, M.; Ramírez-Vélez, R. Effects of exercise training on glycaemic control in youths with type 1 diabetes: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Sport. Sci. 2023, 23, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Codella, R.; Terruzzi, I.; Luzi, L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol. 2017, 54, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1562. [Google Scholar] [CrossRef] [PubMed]
- Esteves, M.; Gouveia, A.; Rodrigues, R.; Pinheiro, P.; Bras, R.; O’Hara, K.; Duarte, P. Supervised Exercise Patterns among Diabetic and Non-diabetic Portuguese Adults. Ann. Appl. Sport. Sci. 2019, 7, 49–56. [Google Scholar] [CrossRef]
- Nicolucci, A.; Balducci, S.; Cardelli, P.; Zanuso, S.; Pugliese, G.; Italian Diabetes Exercise Study (IDES) Investigators. Improvement of quality of life with supervised exercise training in subjects with type 2 diabetes mellitus. Arch. Intern. Med. 2011, 171, 1951–1953. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Mammalian fuel utilization during sustained exercise. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998, 120, 89–107. [Google Scholar] [CrossRef]
- Monaco, C.M.F.; Hughes, M.C.; Ramos, S.V.; Varah, N.E.; Lamberz, C.; Rahman, F.A.; McGlory, C.; Tarnopolsky, M.A.; Krause, M.P.; Laham, R.; et al. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 2018, 61, 1411–1423. [Google Scholar] [CrossRef]
- Monaco, C.M.F.; Gingrich, M.A.; Hawke, T.J. Considering type 1 diabetes as a form of accelerated muscle aging. Exerc. Sport. Sci. 2019, 47, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Gallen, I.W.; Hume, C.; Lumb, A. Fuelling the athlete with type 1 diabetes. Diabetes Obes. Metab. 2011, 13, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.D.; Kime, N.; McKenna, J. Exercise and physical activity in patients with type 1 diabetes. Lancet. Diabetes Endocrinol. 2017, 5, 493. [Google Scholar] [CrossRef] [PubMed]
- Gitsi, E.; Livadas, S.; Angelopoulos, N.; Paparodis, R.D.; Raftopoulou, M.; Argyrakopoulou, G. A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus. Nutrients 2023, 15, 4897. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [PubMed]
- Scott, S.; Kempf, P.; Bally, L.; Stettler, C. Carbohydrate Intake in the Context of Exercise in People with Type 1 Diabetes. Nutrients 2019, 11, 3017. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, S.; Jendle, J.; Adolfsson, P. Carbohydrate Loading Followed by High Carbohydrate Intake During Prolonged Physical Exercise and Its Impact on Glucose Control in Individuals with Diabetes Type 1-An Exploratory Study. Front. Endocrinol 2019, 10, 571. [Google Scholar] [CrossRef]
- Adolfsson, P.; Mattsson, S.; Jendle, J. Evaluation of glucose control when a new strategy of increased carbohydrate supply is implemented during prolonged physical exercise in type 1 diabetes. Eur. J. Appl. Physiol. 2015, 115, 2599–2607. [Google Scholar] [CrossRef]
- Nansel, T.R.; Gellar, L.; McGill, A. Effect of varying glycemic index meals on blood glucose control assessed with continuous glucose monitoring in youth with type 1 diabetes on basal-bolus insulin regimens. Diabetes Care 2008, 31, 695–697. [Google Scholar] [CrossRef]
- Parillo, M.; Annuzzi, G.; Rivellese, A.A.; Bozzetto, L.; Alessandrini, R.; Riccardi, G.; Capaldo, B. Effects of meals with different glycaemic index on postprandial blood glucose response in patients with Type 1 diabetes treated with continuous subcutaneous insulin infusion. Diabet. Med. 2011, 28, 227–229. [Google Scholar] [CrossRef]
- Francescato, M.P.; Geat, M.; Fusi, S.; Stupar, G.; Noacco, C.; Cattin, L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients. Metab. Clin. Exp. 2004, 53, 1126–1130. [Google Scholar] [CrossRef]
- Francescato, M.P.; Carrato, S. Management of exercise-induced glycemic imbalances in type 1 diabetes. Curr. Diab. Rev. 2011, 7, 253–263. [Google Scholar] [CrossRef]
- Gallen, I.W. Exercise for people with type 1 diabetes. Med. Sport. Sci. 2014, 60, 141–153. [Google Scholar] [PubMed]
- Jeukendrup, A.E. Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care. 2010, 13, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Bracken, R.M.; Page, R.; Gray, B.; Kilduff, L.P.; West, D.J.; Stephens, J.W.; Bain, S.C. Isomaltulose improves glycemia and maintains run performance in type 1 diabetes. Med. Sci. Sports Exerc. 2012, 44, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Jentjens, R.L.; Jeukendrup, A.E. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br. J. Nutr. 2005, 93, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.D.; Walker, M.; Trenell, M.I.; Stevenson, E.J.; Turner, D.; Bracken, R.M.; Shaw, J.A.; West, D.J. A low-glycemic index meal and bedtime snack prevents postprandial hyperglycemia and associated rises in inflammatory markers, providing protection from early but not late nocturnal hypoglycemia following evening exercise in type 1 diabetes. Diabetes Care 2014, 37, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Sherr, J.L.; Tauschmann, M.; Battelino, T.; de Bock, M.; Forlenza, G.; Roman, R.; Hood, K.K.; Maahs, D.M. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies. Pediatr. Diabetes 2018, 19, 302–325. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Acerini, C.L.; Codner, E.; Craig, M.E.; Hofer, S.E.; Pillay, K.; Maahs, D.M. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr. Diabetes 2018, 19, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.; Moser, O.; Al Yaarubi, S.; Alsaffar, H.; Al Shaikh, A.; Ajjan, R.A.; Deeb, A. Use of continuous glucose monitoring trend arrows in the younger population with type 1 diabetes. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211062155. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Milliken, J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: An observational field study. Diabetes Technol. Ther. 2011, 13, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Hinkley, T.; Salmon, J.; Okely, A.D.; Crawford, D.; Hesketh, K. Preschoolers’ physical activity, screen time, and compliance with recommendations. Med. Sci. Sports Exerc. 2012, 44, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Riddell, M.C.; Potashner, D.; Brown, R.E.; Aronson, R. Time Lag and Accuracy of Continuous Glucose Monitoring during High Intensity Interval Training in Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 286–294. [Google Scholar] [CrossRef]
- Zaharieva, D.P.; Turksoy, K.; McGaugh, S.M.; Pooni, R.; Vienneau, T.; Ly, T.; Riddell, M.C. Lag Time Remains with Newer Real-Time Continuous Glucose Monitoring Technology during Aerobic Exercise in Adults Living with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 313–321. [Google Scholar] [CrossRef]
- Moser, O.; Yardley, J.E.; Bracken, R.M. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between. Nutrients 2018, 10, 93. [Google Scholar] [CrossRef]
- Moser, O.; Mader, J.K.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Koehler, G.; Messerschmidt, J.; Hofmann, P. Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus. Nutrients 2016, 8, 489. [Google Scholar] [CrossRef]
- Moser, O.; Riddell, M.C.; Eckstein, M.L.; Adolfsson, P.; Rabasa-Lhoret, R.; van den Boom, L.; Gillard, P.; Nørgaard, K.; Oliver, N.S.; Zaharieva, D.P.; et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: Position statement of the European Association for the Study of Diabetes (EASD) and of the ISPAD and ADA. Pediatr. Diabetes 2020, 21, 1375–1393. [Google Scholar] [CrossRef] [PubMed]
- Molveau, J.; Rabasa-Lhoret, R.; Taleb, N.; Heyman, E.; Myette-Côté, É.; Suppère, C.; Berthoin, S.; Tagougui, S. Minimizing the Risk of Exercise-Induced Glucose Fluctuations in People Living with Type 1 Diabetes Using Continuous Subcutaneous Insulin Infusion: An Overview of Strategies. Can. J. Diabetes 2021, 45, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Iscoe, K.E.; Sigal, R.J.; Kenny, G.P.; Perkins, B.A.; Riddell, M.C. Insulin pump therapy is associated with less post-exercise hyperglycemia than multiple daily injections: An observational study of physically active type 1 diabetes patients. Diabetes Technol. Ther. 2013, 15, 84–88. [Google Scholar] [CrossRef]
- Bally, L.; Thabit, H. Closing the Loop on Exercise in Type 1 Diabetes. Curr. Diabetes Rev. 2018, 14, 257–265. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C.; Wojtusciszyn, A.; Dejager, S.; Renard, E.; Molinari, N.; Owens, D.R. Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. Diabetes Care 2017, 40, 832–838. [Google Scholar] [CrossRef]
- Cockcroft, E.J.; Narendran, P.; Andrews, R.C. Exercise-induced hypoglycaemia in type 1 diabetes. Exp. Physiol. 2020, 105, 590–599. [Google Scholar] [CrossRef]
- Bally, L.; Laimer, M.; Stettler, C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 428–433. [Google Scholar] [CrossRef]
- Campbell, M.D.; Walker, M.; Trenell, M.I.; Jakovljevic, D.G.; Stevenson, E.J.; Bracken, R.M.; Bain, S.C.; West, D.J. Large pre- and postexercise rapid-acting insulin reductions preserve glycemia and prevent early- but not late-onset hypoglycemia in patients with type 1 diabetes. Diabetes Care 2013, 36, 2217–2224. [Google Scholar] [CrossRef]
- Phillip, M.; Nimri, R.; Bergenstal, R.M.; Barnard-Kelly, K.; Danne, T.; Hovorka, R.; Kovatchev, B.P.; Messer, L.H.; Parkin, C.G.; Ambler-Osborn, L.; et al. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr. Rev. 2023, 44, 254–280. [Google Scholar] [CrossRef]
- Franc, S.; Daoudi, A.; Pochat, A.; Petit, M.H.; Randazzo, C.; Petit, C.; Duclos, M.; Penfornis, A.; Pussard, E.; Not, D.; et al. Insulin-based strategies to prevent hypoglycaemia during and after exercise in adult patients with type 1 diabetes on pump therapy: The DIABRASPORT randomized study. Diabetes Obes. Metab. 2015, 17, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Rickels, M.R. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann. N. Y. Acad. Sci. 2019, 1454, 68–79. [Google Scholar] [CrossRef]
- Marliss, E.B.; Vranic, M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: Implications for diabetes. Diabetes 2002, 51, S271–S283. [Google Scholar] [CrossRef]
- Mao, Y.; Wen, S.; Zhou, M.; Zhu, S.; Zhou, L. The hypoglycemia associated autonomic failure triggered by exercise in the patients with “brittle” diabetes and the strategy for prevention. Endocr. J. 2019, 66, 753–762. [Google Scholar] [CrossRef]
- Camacho, R.C.; Galassetti, P.; Davis, S.N.; Wasserman, D.H. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc. Sport. Sci. Rev. 2005, 33, 17–23. [Google Scholar]
- Garg, S.; Brazg, R.L.; Bailey, T.S.; Buckingham, B.A.; Slover, R.H.; Klonoff, D.C.; Shin, J.; Welsh, J.B.; Kaufman, F.R. Reduction in duration of hypoglycemia by automatic suspension of insulin delivery: The in-clinic ASPIRE study. Diabetes Technol. Ther. 2012, 14, 205–209. [Google Scholar] [CrossRef]
- Sherr, J.L.; Cengiz, E.; Palerm, C.C.; Clark, B.; Kurtz, N.; Roy, A.; Carria, L.; Cantwell, M.; Tamborlane, W.V.; Weinzimer, S.A. Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes. Diabetes Care 2013, 36, 2909–2914. [Google Scholar] [CrossRef]
- Krebs, M.; Brehm, A.; Krssak, M.; Anderwald, C.; Bernroider, E.; Nowotny, P.; Roth, E.; Chandramouli, V.; Landau, B.R.; Waldhäusl, W.; et al. Direct and indirect effects of amino acids on hepatic glucose metabolism in humans. Diabetologia 2003, 46, 917–925. [Google Scholar] [CrossRef]
- Tremblay, F.; Krebs, M.; Dombrowski, L.; Brehm, A.; Bernroider, E.; Roth, E.; Nowotny, P.; Waldhäusl, W.; Marette, A.; Roden, M. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005, 54, 2674–2684. [Google Scholar] [CrossRef]
- Karusheva, Y.; Koessler, T.; Strassburger, K.; Markgraf, D.; Mastrototaro, L.; Jelenik, T.; Simon, M.C.; Pesta, D.; Zaharia, O.P.; Bódis, K.; et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2019, 110, 1098–1107. [Google Scholar] [CrossRef]
- Karusheva, Y.; Strassburger, K.; Markgraf, D.F.; Zaharia, O.P.; Bódis, K.; Kössler, T.; Tura, A.; Pacini, G.; Burkart, V.; Roden, M.; et al. Branched-Chain Amino Acids Associate Negatively with Postprandial Insulin Secretion in Recent-Onset Diabetes. J. Endocr. Soc. 2021, 5, bvab067. [Google Scholar] [CrossRef]
- Colberg, S.R. Nutrition and Exercise Performance in Adults with Type 1 Diabetes. Can. J. Diabetes 2020, 44, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. American Dietetic Association, Dietitians of Canada, American College of Sports Medicine. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [PubMed]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. Physiol. J. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Rilstone, S.; Spurway, P.; Oliver, N.; Hill, N.E. Nutritional support for a person with type 1 diabetes undertaking endurance swimming. Front. Endocrinol. 2022, 13, 1038294. [Google Scholar] [CrossRef]
- Paramalingam, N.; Keating, B.L.; Chetty, T.; Fournier, P.A.; Soon, W.H.K.; O’Dea, J.M.; Roberts, A.G.; Horowitz, M.; Jones, T.W.; Davis, E.A. Protein Ingestion in Reducing the Risk of Late-Onset Post-Exercise Hypoglycemia: A Pilot Study in Adolescents and Youth with Type 1 Diabetes. Nutrients 2023, 15, 543. [Google Scholar] [CrossRef]
- Lisle, D.K.; Trojian, T.H. Managing the athlete with type 1 diabetes. Curr. Sports Med. Rep. 2006, 5, 93–98. [Google Scholar] [CrossRef]
- Australian Institute of Sport. Australian Institute of Sport Position Statement: Supplements and Sports Foods in High-Performance Sports, August 2022. Available online: https://www.ais.gov.au/__data/assets/pdf_file/0014/1000841/Position-Statement-Supplements-and-Sports-Foods.pdf (accessed on 19 February 2024).
- Hannon, B.A.; Fairfield, W.D.; Adams, B.; Kyle, T.; Crow, M.; Thomas, D.M. Use and abuse of dietary supplements in persons with diabetes. Nutr. Diabetes 2020, 10, 14. [Google Scholar] [CrossRef]
- Zaharieva, D.P.; Miadovnik, L.A.; Rowan, C.P.; Gumieniak, R.J.; Jamnik, V.K.; Riddell, M.C. Effects of acute caffeine supplementation on reducing exercise-associated hypoglycaemia in individuals with Type 1 diabetes mellitus. Diabet. Med. 2016, 33, 488–496. [Google Scholar] [CrossRef]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary Nitrate and Physical Performance. Ann. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Zheng, W.; Fang, X.; Chen, L.; Rink, L.; Min, J.; Wang, F. Zinc supplementation improves glycemic control for diabetes prevention and management: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 110, 76–90. [Google Scholar] [CrossRef]
- Codella, R.; Luzi, L.; Inverardi, L.; Ricordi, C. The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3709–3722. [Google Scholar]
Before | During (Exercise Duration > 30′) | After (Exercise Duration > 30′) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXE | Glycaemia mg/dL (Arrow Trends) | CHO (g/kg) | Insulin Bolus | Basal Rate (CSII) | Food Choice | CHO (g/kg) | Insulin Bolus | Basal Rate (CSII) | Food Choice | CHO (g/kg) | Insulin Bolus | Basal Rate (CSII) | Food Choice |
Aerobic | >270 | 0 | −25% | −25% | High-GI food next to exercise (i.e., sugar, honey, corn syrup, non-diet juices, sports drinks, energy gels) Low- to moderate-GI foods 2 h before exercise | 0 | −25% | −25% | High-GI food (i.e., sugar, honey, corn syrup, non-diet juices, sports drinks, energy gels) | 0.2 | −25% | Regular | High-GI for recovery Low-GI maintain CHO availability and stable glucose levels Bedtime snack containing protein after intense or extended physical activity to prevent nocturnal hypoglycaemia |
180–270 | ↑ 0.0 → 0.0 ↓ 0.1–0.2 | −50% | −50% | 0.0 0.0 0.1–0.2 | −50% | −50% | 0.4 | −50% | −20% in 6 h | ||||
126–180 | ↑ 0–0.2 → 0.3 ↓ 0.4.0.5 | −50% −50–75% −75% | −50% | 0–0.2 0.3 0.4–0.5 | −50% −50–75% −75% | −50% | 0.4 | −50%/75% | −20% in 6 h | ||||
<126 | Delay exercise, treat hypo | −75% | −80% | Stop exercise, treat hypo | −75% | −80% | 0.6 | −75% | −40% | ||||
Mixed | >270 | 0 | −25% | Regular | High-GI food next to exercise (i.e., sugar, honey, corn syrup, non-diet juices, sports drinks, energy gels) Low- to moderate-GI foods 2 h before exercise | 0 | −25% | Regular | High-GI food (i.e., sugar, honey, corn syrup, non-diet juices, sports drinks, energy gels) | 0.2 | Regular | Regular | High-GI for recovery (if necessary) Low-GI maintain CHO availability and stable glucose levels Bedtime snack containing protein after intense or extended physical activity to prevent nocturnal hypoglycaemia |
180–270 | ↑ 0.0 → 0.0 0.1–0.2 | −50% | −25% | 0.0 0.0 0.1–0.2 | −50% | −25% | 0.4 | −25% | −20% in 6 h | ||||
126–180 | ↑ 0.0–0.1 → 0.2 ↓ 0.3–0.4 | −50% | −25% | 0.0–0.1 0.2 0.3–0.4 | −50% | −25% | 0.4 | −25% | −20% in 6 h | ||||
<126 | Delay exercise, treat hypo | −75% | −50% | Stop exercise, treat hypo | −75% | −50% | 0.6 | −50% | −40% | ||||
Anaerobic | >270 | 0 | regular | Regular | Low- to moderate-GI foods 2 h before exercise | 0 | regular | Regular | 0.2 | Regular | Regular | Low-GI maintain CHO availability and stable glucose levels Bedtime snack containing protein after intense or extended physical activity to prevent nocturnal hypoglycaemia | |
180–270 | ↑ 0 → 0 ↓ 0 | −25% | Regular | 0 0 0 | −25% | Regular | 0.4 | −25% | −20% in 6 h | ||||
90–180 | ↑ 0.0–0.1 → 0.2 ↓ 0.3–0.4 | −25% | Regular | 0.0–0.1 0.2 0.3–0.4 | −25% | Regular | 0.4 | −25% | −20% in 6 h | ||||
<90 | Delay exercise, treat hypo | −50% | −25% | Stop exercise, treat hypo | −50% | −25% | 0.6 | −50% | −40% |
Groups | Supplements |
---|---|
Group A Strong scientific evidence for use in specific situations in sport using evidence-based protocols | Sport Foods: Sports Drink, Sports Gels, Sports Confectionary, Sports Bar, Electrolyte supplements, Protein Supplements Mixed Macronutrient Supplement (Bar, Powder, Liquid Meal); Medical Supplements: Iron, Calcium, Vitamin D, Multivitamin, Probiotics, Zinc; Performance Supplements: Caffeine, B-alanine, Bicarbonate, Beetroot juice/Nitrate, Creatine, Glycerol |
Group B Emerging scientific support, deserving of further research. | Food Polyphenols: Fruit-derived polyphenols; Antioxidants: Vitamin C, N-Acetyl Cysteine; Tastants: Menthol, pickle juice, quinine; Others: Collagen Supplement, Curcumin, Ketone Supplements, Fish Oils (Omega 3), Carnitine. |
Group C Scientific evidence not supportive of benefit amongst athletes | Magnesium, Alpha lipoic, acid HMB, BCAA/Leucine, Phosphate, Prebiotics, Vitamin E, Tyrosine. |
Group D Banned or at high risk of substances that could lead to a positive doping test | https://www.wada-ama.org, accessed on 1 January 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, M.; De Fano, M.; Barana, L.; Dozzani, I.; Bianchini, E.; Pellegrino, M.; Cisternino, L.; Migliarelli, S.; Giulietti, C.; Pippi, R.; et al. Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients 2024, 16, 907. https://doi.org/10.3390/nu16060907
Cavallo M, De Fano M, Barana L, Dozzani I, Bianchini E, Pellegrino M, Cisternino L, Migliarelli S, Giulietti C, Pippi R, et al. Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients. 2024; 16(6):907. https://doi.org/10.3390/nu16060907
Chicago/Turabian StyleCavallo, Massimiliano, Michelantonio De Fano, Luisa Barana, Ivan Dozzani, Eleonora Bianchini, Marialucia Pellegrino, Linda Cisternino, Sara Migliarelli, Cecilia Giulietti, Roberto Pippi, and et al. 2024. "Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review" Nutrients 16, no. 6: 907. https://doi.org/10.3390/nu16060907
APA StyleCavallo, M., De Fano, M., Barana, L., Dozzani, I., Bianchini, E., Pellegrino, M., Cisternino, L., Migliarelli, S., Giulietti, C., Pippi, R., & Fanelli, C. G. (2024). Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients, 16(6), 907. https://doi.org/10.3390/nu16060907