Associations between Four Diet Quality Indexes and High Blood Pressure among Adults: Results from the 2015 Health Survey of Sao Paulo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Sociodemographic and Anthropometric Information
2.3. Blood Pressure Measurement
2.4. Dietary Data
2.5. Implausible Dietary Energy Intake
2.6. Dietary Quality Indexes
2.6.1. 2020 Healthy Eating Index
2.6.2. Alternative Healthy Eating Index
2.6.3. Dietary Approaches to Stop Hypertension
2.6.4. Brazilian Healthy Eating Index Revised
2.7. Statistical Analyses
3. Results
3.1. Study Population Characteristics
3.2. Nutrient Correlations
3.3. Association between DQIs and BP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Pickersgill, S.J.; Msemburi, W.T.; Cobb, L.; Ide, N.; Moran, A.E.; Su, Y.; Xu, X.; Watkins, D.A. Modeling Global 80-80-80 Blood Pressure Targets and Cardiovascular Outcomes. Nat. Med. 2022, 28, 1693–1699. [Google Scholar] [CrossRef]
- Gonzalez-Guerra, A.; Roche-Molina, M.; García-Quintáns, N.; Sánchez-Ramos, C.; Martín-Pérez, D.; Lytvyn, M.; de Nicolás-Hernández, J.; Rivera-Torres, J.; Arroyo, D.F.; Sanz-Rosa, D.; et al. Sustained Elevated Blood Pressure Accelerates Atherosclerosis Development in a Preclinical Model of Disease. Int. J. Mol. Sci. 2021, 22, 8448. [Google Scholar] [CrossRef]
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Population-Representative Studies with 104 million Participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- World Health Organization Fact Sheets—Hypertension. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 22 December 2023).
- Mills, K.T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Pannucci, T.R.E.; Lerman, J.L.; Herrick, K.A.; Zimmer, M.; Meyers Mathieu, K.; Stoody, E.E.; Reedy, J. Healthy Eating Index-2020: Review and Update Process to Reflect the Dietary Guidelines for Americans, 2020–2025. J. Acad. Nutr. Diet 2023, 123, 1280–1288. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative Dietary Indices Both Strongly Predict Risk of Chronic Disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef]
- Fung, T.T.; Chiuve, S.E.; Mccullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef]
- Verger, E.O.; Savy, M.; Martin-Prevel, Y.; Coates, J.; Frongillo, E.; Neufeld, L.; Saha, K.K.; Hayashi, C.; Holmes, B.; Vogliano, C.; et al. Healthy Diet Metrics: A Suitability Assessment of Indicators for Global and National Monitoring Purposes; World Health Organization: Geneva, Switzerland, 2023. [CrossRef]
- Lobene, A.J.; Smiljanec, K.; Axler, M.R.; Ramos-Gonzalez, M.; Lennon, S.L. Greater Adherence to Healthy Dietary Patterns Is Associated with Lower Diastolic Blood Pressure and Augmentation Index in Healthy, Young Adults. Nutr. Res. 2022, 106, 60–71. [Google Scholar] [CrossRef]
- Chiu, S.; Bergeron, N.; Williams, P.T.; Bray, G.A.; Sutherland, B.; Krauss, R.M. Comparison of the DASH (Dietary Approaches to Stop Hypertension) Diet and a Higher-Fat DASH Diet on Blood Pressure and Lipids and Lipoproteins: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 103, 341–347. [Google Scholar] [CrossRef]
- Kucharska, A.; Gajewska, D.; Kiedrowski, M.; Sińska, B.; Juszczyk, G.; Czerw, A.; Augustynowicz, A.; Bobiński, K.; Deptała, A.; Niegowska, J. The Impact of Individualised Nutritional Therapy According to DASH Diet on Blood Pressure, Body Mass, and Selected Biochemical Parameters in Overweight/Obese Patients with Primary Arterial Hypertension: A Prospective Randomised Study. Kardiol. Pol. 2018, 76, 158–165. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Diet Quality Scores in Relation to Metabolic Risk Factors in Japanese Adults: A Cross-Sectional Analysis from the 2012 National Health and Nutrition Survey, Japan. Eur. J. Nutr. 2019, 58, 2037–2050. [Google Scholar] [CrossRef]
- Motamedi, A.; Ekramzadeh, M.; Bahramali, E.; Farjam, M.; Homayounfar, R. Diet Quality in Relation to the Risk of Hypertension among Iranian Adults: Cross-Sectional Analysis of Fasa PERSIAN Cohort Study. Nutr. J. 2021, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Francisco, S.C.; Araújo, L.F.; Griep, R.H.; Chor, D.; Molina, M.D.C.B.; Mil, J.G.; Bensenor, I.M.; Matos, S.M.A.; Barreto, S.M.; Giatti, L. Adherence to the Dietary Approaches to Stop Hypertension (DASH) and Hypertension Risk: Results of the Longitudinal Study of Adult Health (ELSA-Brasil). Br. J. Nutr. 2020, 123, 1068–1077. [Google Scholar] [CrossRef]
- Gao, X.; Tian, Z.; Zhao, D.; Li, K.; Zhao, Y.; Xu, L.; Wang, X.; Fan, D.; Ma, X.; Ling, W.; et al. Associations between Adherence to Four a Priori Dietary Indexes and Cardiometabolic Risk Factors among Hyperlipidemic Patients. Nutrients 2021, 13, 2179. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Hosseini-Esfahani, F.; Mirmiran, P.; Azizi, F.; Hadaegh, F. The Association of Priori and Posteriori Dietary Patterns with the Risk of Incident Hypertension: Tehran Lipid and Glucose Study. J. Transl. Med. 2021, 19, 44. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, I.; Toledo, E.; Lecea, O.; Salas-Salvadó, J.; Corella, D.; Buil-Cosiales, P.; Zomeño, M.D.; Vioque, J.; Martinez, J.A.; Konieczna, J.; et al. Adherence to a Priori Dietary Indexes and Baseline Prevalence of Cardiovascular Risk Factors in the PREDIMED-Plus Randomised Trial. Eur. J. Nutr. 2020, 59, 1219–1232. [Google Scholar] [CrossRef]
- Previdelli, A.N.; Andrade, S.C.; Pires, M.; Ferreira, S.R.G.; Fisberg, R.M.; Marchioni, D.M. A revised version of the Healthy Eating Index for the Brazilian population. Rev. Saude Publica 2011, 45, 794–798. [Google Scholar] [CrossRef]
- Pereira, J.L.; Mattei, J.; Isasi, C.R.; Van Horn, L.; Carnethon, M.R.; Daviglus, M.L.; Perera, M.J.; Sotres-Alvarez, D.; Fisberg, R.M. Diet Quality, Excess Body Weight and Cardiometabolic Risk Factors in Adolescents Living in São Paulo, Brazil and in the USA: Differences and Similarities. Public. Health Nutr. 2021, 24, 4091–4101. [Google Scholar] [CrossRef]
- de Meneses Fujii, T.M.; Norde, M.M.; Fisberg, R.M.; Marchioni, D.M.L.; Rogero, M.M. Lipid Metabolism Genetic Risk Score Interacts with the Brazilian Healthy Eating Index Revised and Its Components to Influence the Odds for Dyslipidemia in a Cross-Sectional Population-Based Survey in Brazil. Nutr. Health 2019, 25, 119–126. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Sales, C.H.; De Mello Fontanelli, M.; Pereira, J.L.; Alves, M.C.G.P.; Escuder, M.M.L.; César, C.L.G.; Goldbaum, M. 2015 Health Survey of São Paulo with Focus in Nutrition: Rationale, Design, and Procedures. Nutrients 2018, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Lachat, C.; Hawwash, D.; Ocké, M.C.; Berg, C.; Forsum, E.; Hörnell, A.; Larsson, C.L.; Sonestedt, E.; Wirfält, E.; Åkesson, A.; et al. Strengthening the Reporting of Observational Studies in Epidemiology—Nutritional Epidemiology (STROBE-Nut): An Extension of the STROBE Statement. Nutr. Bull. 2016, 41, 240–251. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística [Brazilian Institute of Geography and Statistic]. Atlas do censo demográfico 2010; IBGE: Rio de Janeiro, Brazil, 2013.
- Matsudo, S.; Araujo, T.; Matsudo, V.; Andrade, D.; Andrade, E.; Oliveira, L.C.; Braggion, G. Questionário internacional de atividade física (IPAQ): Estudo de validade e reprodutibilidade no Brasil [International Physical Activity Questionnaire (IPAQ): Study of validity and reliability in Brazil]. Rev. Bras. Ativ. Fís Saúde 2001, 6, 5–18. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010.
- World Health Organization. Consultation on Obesity: Preventing and Managing the Global Epidemic: WHO Technical Report Series no. 894; World Health Organization: Geneva, Switzerland, 2000.
- Lebrão, M.L.; Duarte, Y.A. SABE: Saúde, Bem-estar e Envelhecimento: O Projeto Sabe No Município de São Paulo: Uma Abordagem Inicial [Health, Well-Being and Aging: The SABE Study in Sao Paulo], 1st ed.; Organização Pan-Americana de Saúde: Brasília, Brazil, 2003. [Google Scholar]
- Carvalho, A.M.; Piovezan, L.G.; Selem, S.S.C.; Fisberg, R.M.; Marchioni, D.M.L. Validation and Calibration of Self-Reported Weight and Height from Individuals in the City of São Paulo. Rev. Bras. Epidemiol. 2014, 17, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.D.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Júnior, D.M.; et al. Diretrizes Brasileiras de Hipertensão Arterial—2020 [Brazilian Guidelines of Hypertension—2020]. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method Reduces Bias in the Collection of Energy Intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Núcleo de Estudos e Pesquisas em Alimentação. Tabela Brasileira de Composição de Alimentos: TACO [Brazilian Food Composition Table: TACO], 4th ed.; NEPA-UNICAMP: Campinas, Brazil, 2011. [Google Scholar]
- Tabela Brasileira de Composição de Alimentos. Tabela Brasileira de Composição de Alimentos: Food Research Center (Version 6.0) [Brazilian Food Composition Database: Food Research Center (Version 6.0)]; Universidade de São Paulo: São Paulo, Brazil, 2017. [Google Scholar]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Statist Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef]
- National Academy of Sciences, Institute of Medicine. Food and Nutrition Board Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- National Academy of Sciences, Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Huang, T.T.K.; Roberts, S.B.; Howarth, N.C.; McCrory, M.A. Effect of Screening out Implausible Energy Intake Reports on Relationships between Diet and BMI. Obes. Res. 2005, 13, 1205–1217. [Google Scholar] [CrossRef]
- United States Department of Health and Human Services, National Institutes of Health, National Heart Lung, and Blood Institute. Your Guide to Lowering Your Blood Pressure With DASH. 2006. Available online: https://www.nhlbi.nih.gov/files/docs/public/heart/new_dash.pdf (accessed on 3 January 2024).
- Brasil, Secretaria de Atenção à Saúde, Coordenação-Geral da Política de Alimentação e Nutrição. Guia Alimentar Para População Brasileira: Promovendo a Alimentação Saudável [Dietary Guidelines for the Brazilian Population: Promoting Healthy Eating], 1st ed.; Ministério da Saúde: Brasília, Brazil, 2006. [Google Scholar]
- Guenther, P.M.; Reedy, J.; Krebs-Smith, S.M. Development of the healthy eating index-2005. J. Am. Diet. Assoc. 2008, 108, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases. Joint WHO/FAO Technical Report Series [Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO Technical Report Series] no. 916; WHO: Geneva, Switzerland, 2003.
- Sposito, A.C.; Caramelli, B.; Fonseca, F.A.H.; Bertolami, M.C.; Neto, A.A.; Souza, A.D.; Lottenberg, A.M.P.; Chacra, A.P.; Faludi, A.A.; Loures-Vale, A.A.; et al. IV Diretriz brasileira sobre dislipidemias e prevenção da aterosclerose: Departamento de aterosclerose da sociedade brasileira de cardiologia [Brazilian guideline for dyslipidemia and atherosclerosis prevention: Department of atherosclerosis of Brazilian society of cardiology]. Arq. Bras. Cardiol. 2007, 88, 2–19. [Google Scholar]
- Schap, T.R.; Kuczynski, K.; Hiza, H. Healthy Eating Index—Beyond the Score. J. Acad. Nutr. Diet. 2017, 117, 519–521. [Google Scholar] [CrossRef]
- Brasil, Ministério da Saúde. Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2019: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico: Estimativas Sobre Frequência e Distribuição Sociodemográfica de Fatores de Risco e Proteção para Doenças Crônicas nas Capitais dos 26 Estados Brasileiros e no Distrito Federal em 2019 [Vigitel Brazil 2019: Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone Survey: Estimates of Frequency and Sociodemographic Distribution of Risk and Protective Factors for Chronic Diseases in the Capitals of the 26 Brazilian States and the Federal District in 2019]; Ministério da Saúde: Brasília, Brazil, 2020. [Google Scholar]
- World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2023.
- Pasdar, Y.; Hamzeh, B.; Moradi, S.; Mohammadi, E.; Cheshmeh, S.; Darbandi, M.; Faramani, R.S.; Najafi, F. Healthy Eating Index 2015 and Major Dietary Patterns in Relation to Incident Hypertension; a Prospective Cohort Study. BMC Public Health 2022, 22, 734. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Chourdakis, M.; Chrysoula, L.; Chroni, V.; Tirodimos, I.; Dipla, K.; Gkaliagkousi, E.; Triantafyllou, A. Adherence to the DASH Diet and Risk of Hypertension: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3261. [Google Scholar] [CrossRef]
- Lin, P.H.; Yeh, W.T.; Svetkey, L.P.; Chuang, S.Y.; Chang, Y.C.; Wang, C.; Pan, W.H. Dietary Intakes Consistent with the DASH Dietary Pattern Reduce Blood Pressure Increase with Age and Risk for Stroke in a Chinese Population. Asia Pac. J. Clin. Nutr. 2013, 22, 482–491. [Google Scholar] [CrossRef]
- Trijsburg, L.; Talsma, E.F.; De Vries, J.H.M.; Kennedy, G.; Kuijsten, A.; Brouwer, I.D. Diet Quality Indices for Research in Low- and Middle-Income Countries: A Systematic Review. Nutr. Rev. 2019, 77, 515–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.W.; Yu, H.J.; Yuan, S.; Song, Y.; Tang, B.W.; Cao, Z.K.; Yang, X.H.; Towne, S.D.; He, Q.Q. Association between Fruit and Vegetable Intake and the Risk of Hypertension among Chinese Adults: A Longitudinal Study. Eur. J. Nutr. 2018, 57, 2639–2647. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef]
- Zhao, C.N.; Meng, X.; Li, Y.; Li, S.; Liu, Q.; Tang, G.Y.; Li, H. Bin Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Bhavadharini, B.; Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; et al. Association of Dairy Consumption with Metabolic Syndrome, Hypertension and Diabetes in 147,812 Individuals from 21 Countries. BMJ Open Diabetes Res. Care 2020, 8, e000826. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Marventano, S.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Dairy Foods and Health: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr. 2020, 71, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Chan, Q.; Stamler, J.; Brown, I.J.; Daviglus, M.L.; Van, L.; Dyer, A.R.; Oude Griep, L.M.; Miura, K.; Ueshima, H.; Zhao, L.; et al. Relation of Raw and Cooked Vegetable Consumption to Blood Pressure: The INTERMAP Study. J. Hum. Hypertens. 2014, 28, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.L.; Félix, P.V.; Mattei, J.; Fisberg, R.M. Differences over 12 years in food portion size and association with excess body weight in the city of São Paulo, Brazil. Nutrients 2018, 10, 696. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Koo, H.S.; Han, K.H.; Han, S.Y.; Chin, H.J. Associations of Sodium Intake with Obesity, Metabolic Disorder, and Albuminuria According to Age. PLoS ONE 2017, 12, e0188770. [Google Scholar] [CrossRef]
- Judge, C.; Narula, S.; Mente, A.; Smyth, A.; Yusuf, S.; O’donnell, M.J. Measuring Sodium Intake: Research and Clinical Applications. J. Hypertens. 2021, 39, 2344–2352. [Google Scholar] [CrossRef]
- Mello, A.V.; Pereira, J.L.; Leme, A.C.B.; Goldbaum, M.; Cesar, C.L.G.; Fisberg, R.M. Social Determinants, Lifestyle and Diet Quality: A Population-Based Study from the 2015 Health Survey of São Paulo, Brazil. Public Health Nutr. 2020, 23, 1766–1777. [Google Scholar] [CrossRef]
- Powell, P.K.; Durham, J.; Lawler, S. Food Choices of Young Adults in the United States of America: A Scoping Review. Adv. Nutr. 2019, 10, 479–488. [Google Scholar] [CrossRef]
- Pereira, J.L.; Castro, M.A.; Leite, J.M.R.S.; Rogero, M.M.; Sarti, F.M.; César, C.L.G.; Goldbaum, M.; Fisberg, R.M. Overview of Cardiovascular Disease Risk Factors in Adults in São Paulo, Brazil: Prevalence and Associated Factors in 2008 and 2015. Int. J. Cardiovasc. Sci. 2022, 35, 230–242. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed; Oxford University Press: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
ISA-Nutrition 2015 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Characteristics | Total Population | AHEI (0–110) | HEI-2020 (0–100) | BHEI (0–100) | DASH (8–40) | ||||||||||
n | % | 95% CI | Median | IQR | p 3 | Median | IQR | p | Median | IQR | p | Median | IQR | p | |
Total population | 1235 | - | - | 50.1 | (46.1, 54.6) | 56.8 | (53.0, 61.4) | 70.3 | (65.3, 74.4) | 25.0 | (21.0, 29.0) | ||||
Age group, years | |||||||||||||||
19–30 | 286 | 25.4 | (22.3, 38.6) | 45.5 | (41.8, 48.9) | 51.4 | (49.1, 54.0) | 65.0 | (61.1, 68.9) | 19.0 | (17.0, 22.0) | ||||
31–50 | 314 | 35.2 | (31.7, 38.6) | 48.8 | (45.5, 52.0) | 55.8 | (53.2, 58.4) | 69.1 | (65.6, 72.9) | 24.0 | (21.0, 26.0) | ||||
51–70 | 434 | 28.9 | (25.9, 32.0) | 53.4 | (49.7, 57.2) | 60.6 | (58.1, 63.6) | 73.6 | (70.0, 75.9) | 28.0 | (25.0, 30.0) | ||||
>70 | 201 | 10.6 | (08.9, 12.4) | 59.2 | (56.2, 61.4) | <0.001 | 64.8 | (61.8, 67.6) | <0.001 | 76.2 | (74.1, 78.4) | <0.001 | 31.0 | (30.0, 33.0) | <0.001 |
Sex | |||||||||||||||
Male | 579 | 49.5 | (46.0, 53.1) | 46.6 | (43.3, 50.4) | 55.7 | (52.0, 59.8) | 69.6 | (65.0, 74.2) | 23.0 | (19.0, 26.0) | ||||
Female | 656 | 50.5 | (46.9, 54.0) | 53.1 | (49.8, 57.7) | <0.001 | 58.3 | (53.7, 62.9) | <0.001 | 70.7 | (66.0, 74.8) | 0.032 | 27.0 | (23.0, 30.0) | <0.001 |
Self-reported ethnicity | |||||||||||||||
White or Yellow | 654 | 53.4 | (49.4, 57.3) | 51.1 | (47.2, 56.1) | 58.1 | (53.6, 62.3) | 71.0 | (66.0, 74.9) | 26.0 | (21.0, 30.0) | ||||
Black, Mixed, or Indigenous | 571 | 46.7 | (42.7, 50.6) | 49.0 | (45.1, 53.3) | <0.001 | 55.8 | (51.9, 60.2) | <0.001 | 69.7 | (64.6, 74.1) | 0.024 | 24.0 | (20.0, 27.0) | <0.001 |
Education level | |||||||||||||||
≤11 years of schooling (up to high school) | 961 | 71.7 | (67.5, 75.5) | 50.1 | (46.1, 54.7) | 57.1 | (53.0, 61.2) | 71.0 | (66.0, 74.8) | 25.0 | (21.0, 28.0) | ||||
>11 years of schooling (above high school) | 270 | 28.3 | (24.5, 32.5) | 50.2 | (46.1, 54.5) | 0.965 | 56.6 | (52.8, 61.7) | 0.909 | 68.6 | (64.0, 72.7) | <0.001 | 25.0 | (21.0, 29.0) | 0.671 |
Per capita family income 2 | |||||||||||||||
≤1 minimum wage | 449 | 40.0 | (35.4, 44.8) | 49.1 | (45.2, 53.1) | 55.6 | (51.8, 59.6) | 69.4 | (65.0, 74.1) | 23.0 | (20.0, 27.0) | ||||
1–3 minimum wage | 486 | 45.3 | (40.9, 49.8) | 49.9 | (45.9, 54.4) | 57.0 | (53.2, 61.4) | 70.4 | (65.4, 74.3) | 25.0 | (21.0, 28.0) | ||||
>3 minimum wage | 145 | 14.6 | (11.3, 18.7) | 52.9 | (48.6, 57.7) | <0.001 | 59.6 | (54.8, 64.3) | <0.001 | 71.5 | (66.2, 74.9) | 0.065 | 28.0 | (24.0, 31.0) | <0.001 |
Leisure time physical activity level | |||||||||||||||
Do not meet the recommendation | 1015 | 81.0 | (78.1, 83.6) | 50.4 | (46.4, 54.8) | 57.0 | (53.1, 61.4) | 70.4 | (65.5, 74.5) | 25.0 | (21.0, 29.0) | ||||
Meet the recommendation | 220 | 19.0 | (16.4, 21.9) | 49.7 | (44.7, 53.6) | 0.057 | 56.4 | (52.0, 61.0) | 0.186 | 69.7 | (64.7, 74.2) | 0.221 | 24.0 | (20.0, 28.0) | 0.142 |
Actual smoking status | |||||||||||||||
Non-smoker | 1037 | 83.5 | (80.9, 85.7) | 50.3 | (46.1, 55.0) | 57.2 | (52.9, 61.7) | 70.6 | (65.7, 74.6) | 25.0 | (21.0, 29.0) | ||||
Current smoker | 194 | 16.5 | (14.3, 19.1) | 49.0 | (45.8, 53.9) | 0.086 | 55.9 | (53.3, 59.9) | 0.013 | 68.5 | (63.5, 75.5) | <0.001 | 24.0 | (21.0, 27.0) | <0.001 |
Body weight status | |||||||||||||||
Without excess body weight | 662 | 52.3 | (48.9, 55.7) | 49.8 | (45.5, 54.7) | 56.6 | (52.1, 61.7) | 70.1 | (65.1, 74.5) | 24.0 | (20.0, 29.0) | ||||
With excess body weight | 548 | 47.7 | (44.3, 51.1) | 50.3 | (46.5, 54.4) | 0.502 | 57.1 | (53.5, 61.1) | 0.220 | 70.4 | (65.9, 74.3) | 0.676 | 25.0 | (21.0, 28.0) | 0.580 |
Antihypertensive drug use | |||||||||||||||
No | 871 | 76.5 | (73.6, 79.1) | 43.9 | (40.2, 47.7) | 55.5 | (51.9, 59.8) | 68.9 | (64.3, 73.2) | 23.0 | (20.0, 27.0) | ||||
Yes | 361 | 23.5 | (20.9, 26.4) | 50.4 | (45.7, 54.2) | <0.001 | 61.6 | (58.3, 64.9) | <0.001 | 74.2 | (71.1, 76.8) | <0.001 | 29.0 | (26.0, 32.0) | <0.001 |
Misreporting | |||||||||||||||
Plausible reporter | 499 | 41.4 | (38.9, 44.7) | 48.2 | (43.8, 53.1) | 55.9 | (51.9, 60.8) | 69.5 | (64.4, 74.2) | 23.0 | (20.0, 28.0) | ||||
Under-reporter | 711 | 58.6 | (55.3, 61.9) | 51.3 | (47.5, 55.8) | <0.001 | 57.6 | (53.5, 61.7) | 0.001 | 70.6 | (66.0, 74.6) | 0.030 | 25.0 | (22.0, 29.0) | <0.001 |
Total Population (n = 1235) | ||||
---|---|---|---|---|
AHEI | HEI-2020 | BHEI | DASH | |
HEI-2020 | 0.801 *** | |||
BHEI | 0.654 *** | 0.796 *** | ||
DASH | 0.887 *** | 0.895 *** | 0.717 *** | |
Total energy (kcal/d) | −0.743 *** | −0.481 *** | −0.327 *** | −0.610 *** |
Total grams of foods and beverages (g/day) | −0.631 *** | −0.359 *** | −0.269 *** | −0.483 *** |
Protein (%kcal) | 0.227 *** | 0.284 *** | 0.293 *** | 0.257 *** |
Carbohydrates (%kcal) | 0.028 | −0.116 ** | 0.009 | −0.014 |
Total Fat (%kcal) | 0.068 * | −0.119 *** | −0.188 *** | −0.042 |
Total fiber (g/1000 kcal) | 0.525 *** | 0.603 *** | 0.604 *** | 0.577 *** |
Added sugar (%kcal) | −0.415 *** | −0.599 *** | −0.642 *** | −0.488 *** |
Sodium (mg/1000 kcal) | −0.094 *** | −0.090 *** | −0.104 *** | −0.089 *** |
Calcium (mg/1000 kcal) | 0.522 *** | 0.593 *** | 0.371 *** | 0.610 *** |
Potassium (mg/1000 kcal) | 0.713 *** | 0.806 *** | 0.657 *** | 0.773 *** |
Vitamin A (mg/1000 kcal) | 0.769 *** | 0.689 *** | 0.455 *** | 0.763 *** |
Vitamin C (mg/1000 kcal) | 0.743 *** | 0.805 *** | 0.591 *** | 0.811 *** |
Vitamin D (mg/1000 kcal) | 0.651 *** | 0.587 *** | 0.430 *** | 0.619 *** |
Vitamin E (mg/1000 kcal) | 0.606 *** | 0.502 *** | 0.348 *** | 0.563 *** |
Quartile (Range of Scores) | Adjusted Model for High Blood Pressure (n = 633) 1 | ||
---|---|---|---|
OR | 95% CI | p * | |
AHEI (continuous) | 0.941 | (0.88, 1.00) | 0.079 |
Q1 (ref) | |||
Q2 | 0.566 | (0.19, 1.60) | 0.284 |
Q3 | 0.365 | (0.11, 1.12) | 0.078 |
Q4 | 0.339 | (0.09, 1.20) | 0.094 |
HEI-2020 (continuous) | 0.943 | (0.89, 0.99) | 0.043 |
Q1 (ref) | |||
Q2 | 0.580 | (0.16, 2.09) | 0.408 |
Q3 | 0.560 | (0.16, 1.99) | 0.372 |
Q4 | 0.276 | (0.07, 1.05) | 0.070 |
BHEI (continuous) | 0.949 | (0.91, 0.99) | 0.059 |
Q1 (ref) | |||
Q2 | 0.333 | (0.12, 0.90) | 0.031 |
Q3 | 0.417 | (0.16, 1.05) | 0.064 |
Q4 | 0.346 | (0.13, 0.89) | 0.028 |
DASH (continuous) | 0.942 | (0.87, 1.01) | 0.123 |
Q1 (ref) | |||
Q2 | 1.107 | (0.29, 3.89) | 0.879 |
Q3 | 0.877 | (0.22, 3.45) | 0.851 |
Q4 | 0.556 | (0.12, 2.41) | 0.434 |
DQI Components | Adjusted Model for High Blood Pressure (n = 633) 1 | ||
---|---|---|---|
OR | 95% CI | p * | |
AHEI | |||
Whole fruits | 0.823 | (0.67, 0.99) | 0.047 |
Total vegetables | 1.022 | (0.73, 1.41) | 0.893 |
Whole grains | 0.813 | (0.52, 1.26) | 0.358 |
Red and processed meat | 1.033 | (0.70, 1.52) | 0.869 |
Nuts | - | ||
Long-chain (n-3) fats | 1.061 | (0.83, 1.34) | 0.625 |
Polyunsaturated fatty acids | 0.925 | (0.73, 1.16) | 0.504 |
Trans fat | 0.996 | (0.60, 1.64) | 0.991 |
Sugar-sweetened beverages and fruit juice | 0.911 | (0.80, 1.02) | 0.124 |
Sodium | 0.975 | (0.78, 1.21) | 0.823 |
Alcohol | 0.912 | (0.73, 1.16) | 0.529 |
HEI-2020 | |||
Total Fruits | 0.716 | (0.55, 0.91) | 0.009 |
Whole Fruits | 0.819 | (0.62, 1.07) | 0.152 |
Total Vegetables | 1.204 | (0.83, 1.73) | 0.318 |
Greens and Beans | 0.635 | (0.13, 2.89) | 0.559 |
Whole Grains | 0.768 | (0.52, 1.11) | 0.168 |
Dairy | 0.802 | (0.69, 0.92) | 0.002 |
Total Protein Foods | 0.804 | (0.27, 2.35) | 0.692 |
Seafood and Plant Proteins | 1.397 | (0.89, 2.17) | 0.138 |
Fatty Acids | 1.115 | (0.96, 1.28) | 0.129 |
Refined Grains | 0.969 | (0.85, 1.09) | 0.615 |
Sodium | 0.991 | (0.85, 1.14) | 0.912 |
Saturated Fats | 1.177 | (0.99, 1.39) | 0.057 |
Added Sugars | 0.894 | (0.74, 1.06) | 0.223 |
BHEI | |||
Total fruits | 0.787 | (0.61, 0.98) | 0.044 |
Whole fruits | 0.952 | (0.69, 1.31) | 0.768 |
Total vegetables | 0.971 | (0.33, 2.78) | 0.956 |
Dark green and orange vegetables and legumes | 0.770 | (0.51, 1.15) | 0.211 |
Total grains | 0.715 | (0.29, 1.71) | 0.454 |
Whole grains | 0.969 | (0.73, 1.28) | 0.830 |
Milk and dairy products | 0.834 | (0.72, 0.96) | 0.012 |
Meats, eggs, and legumes | 0.946 | (0.66, 1.34) | 0.758 |
Oils | - | ||
Saturated fat | 1.131 | (0.97, 1.31) | 0.113 |
Sodium | 0.981 | (0.82, 1.17) | 0.838 |
Total energies from solid fat, alcohol, and added sugar | 0.970 | (0.91, 1.03) | 0.343 |
DASH | |||
Total fruits | 0.799 | (0.63, 0.99) | 0.048 |
Total Vegetables | 1.054 | (0.81, 1.36) | 0.688 |
Nuts and Legumes | 1.075 | (0.86, 1.33) | 0.504 |
Whole grains | 0.988 | (0.76, 1.28) | 0.930 |
Low-fat dairy | 0.755 | (0.59, 0.97) | 0.021 |
Sodium | 0.921 | (0.63, 1.33) | 0.667 |
Red and processed meats | 0.820 | (0.58, 1.14) | 0.243 |
Sugar-sweetened beverages | 0.890 | (0.71, 1.11) | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felix, P.V.; Pereira, J.L.; Fisberg, R.M. Associations between Four Diet Quality Indexes and High Blood Pressure among Adults: Results from the 2015 Health Survey of Sao Paulo. Nutrients 2024, 16, 629. https://doi.org/10.3390/nu16050629
Felix PV, Pereira JL, Fisberg RM. Associations between Four Diet Quality Indexes and High Blood Pressure among Adults: Results from the 2015 Health Survey of Sao Paulo. Nutrients. 2024; 16(5):629. https://doi.org/10.3390/nu16050629
Chicago/Turabian StyleFelix, Paula Victoria, Jaqueline Lopes Pereira, and Regina Mara Fisberg. 2024. "Associations between Four Diet Quality Indexes and High Blood Pressure among Adults: Results from the 2015 Health Survey of Sao Paulo" Nutrients 16, no. 5: 629. https://doi.org/10.3390/nu16050629
APA StyleFelix, P. V., Pereira, J. L., & Fisberg, R. M. (2024). Associations between Four Diet Quality Indexes and High Blood Pressure among Adults: Results from the 2015 Health Survey of Sao Paulo. Nutrients, 16(5), 629. https://doi.org/10.3390/nu16050629