Adherence to the Mediterranean Diet and Its Influence on Anthropometric and Fitness Variables in High-Level Adolescent Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.3.1. Questionnaire Measurements
2.3.2. Anthropometric Measurements
2.3.3. Physical Fitness Tests
2.4. Protocol
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, E.; Durstine, J.L. Physical Activity, Exercise, and Chronic Diseases: A Brief Review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Yoon, K.H. Epidemic Obesity in Children and Adolescents: Risk Factors and Prevention. Front. Med. 2018, 12, 658–666. [Google Scholar] [CrossRef]
- Wellman, R.J.; Sylvestre, M.P.; Abi Nader, P.; Chiolero, A.; Mesidor, M.; Dugas, E.N.; Tougri, G.; O’Loughlin, J. Intensity and Frequency of Physical Activity and High Blood Pressure in Adolescents: A Longitudinal Study. J. Clin. Hypertens. 2020, 22, 283–290. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Zanesco, A. Early Physical Activity Promotes Lower Prevalence of Chronic Diseases in Adulthood. Hypertens. Res. 2010, 33, 926–931. [Google Scholar] [CrossRef]
- Stabelini Neto, A.; Sasaki, J.E.; Mascarenhas, L.P.G.; Boguszewski, M.C.S.; Bozza, R.; Ulbrich, A.Z.; Da Silva, S.G.; De Campos, W. Physical Activity, Cardiorespiratory Fitness, and Metabolic Syndrome in Adolescents: A Cross-Sectional Study. BMC Public Health 2011, 11, 674. [Google Scholar] [CrossRef]
- Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Gilmore, J.M.E.; Torner, J.C.; Levy, S.M. Objectively Measured Physical Activity Trajectories Predict Adolescent Bone Strength: Iowa Bone Development Study. Br. J. Sports Med. 2014, 48, 1032–1036. [Google Scholar] [CrossRef]
- Janz, K.F.; Dawson, J.D.; Mahoney, L.T. Tracking Physical Fitness and Physical Activity from Childhood to Adolescence: The Muscatine Study. Med. Sci. Sports Exerc. 2000, 32, 1250–1257. [Google Scholar] [CrossRef]
- Carson, V.; Rinaldi, R.L.; Torrance, B.; Maximova, K.; Ball, G.D.C.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; Boulé, N.G.; Wozny, P.; et al. Vigorous Physical Activity and Longitudinal Associations with Cardiometabolic Risk Factors in Youth. Int. J. Obes. 2014, 38, 16–21. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Arenaza, L.; Medrano, M.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Migueles, J.H.; Muñoz-Hernández, V.; Merchan-Ramirez, E.; Martinez-Avila, W.D.; Maldonado, J.; et al. Associations of Dietary Energy Density with Body Composition and Cardiometabolic Risk in Children with Overweight and Obesity: Role of Energy Density Calculations, under-Reporting Energy Intake and Physical Activity. Br. J. Nutr. 2019, 121, 1057–1068. [Google Scholar] [CrossRef]
- Sands, W.A.; Wurth, J.J.; Hewit, J.K. The National Strength and Conditioning Association’s (NSCA) Basics of Strength and Conditioning Manual; NSCA: Colorado Springs, CO, USA, 2012. [Google Scholar]
- Farooq, A.; Martin, A.; Janssen, X.; Wilson, M.G.; Gibson, A.M.; Hughes, A.; Reilly, J.J. Longitudinal Changes in Moderate-to-Vigorous-Intensity Physical Activity in Children and Adolescents: A Systematic Review and Meta-Analysis. Obes. Rev. 2020, 21, e12953. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Sánchez, A.; Morán-García, J.; Abián, P.; Abián-Vicén, J. Association of the Use of the Mobile Phone with Physical Fitness and Academic Performance: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 1042. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic Review of Sedentary Behaviour and Health Indicators in School-Aged Children and Youth: An Update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Henriques-Neto, D.; Peralta, M.; Martins, J.; Gomes, F.; Popovic, S.; Masanovic, B.; Demetriou, Y.; Schlund, A.; Ihle, A. Field-Based Health-Related Physical Fitness Tests in Children and Adolescents: A Systematic Review. Front. Pediatr. 2021, 9, 640028. [Google Scholar] [CrossRef]
- Agata, K.; Monyeki, M.A. Association between Sport Participation, Body Composition, Physical Fitness, and Social Correlates among Adolescents: The PAHL Study. Int. J. Environ. Res. Public Health 2018, 15, 2793. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, Youth and the Mediterranean Diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in Children and Adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Donini, L.M.; Serra-Majem, L.; Bulló, M.; Gil, Á.; Salas-Salvadó, J. The Mediterranean Diet: Culture, Health and Science. Br. J. Nutr. 2015, 113, S1–S3. [Google Scholar] [CrossRef]
- Calella, P.; Gallè, F.; Cerullo, G.; Postiglione, N.; Ricchiuti, R.; Liguori, G.; D’Angelo, S.; Valerio, G. Adherence to Mediterranean Diet among Athletes Participating at the XXX Summer Universiade. Nutr. Health 2023, 29, 645–651. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ezzatvar, Y.; López-Gil, J.F.; Ramírez-Vélez, R.; Olloquequi, J.; Izquierdo, M. Is Adherence to the Mediterranean Diet Associated with Healthy Habits and Physical Fitness? A Systematic Review and Meta-Analysis Including 565Â 421 Youths. Br. J. Nutr. 2022, 128, 1433–1444. [Google Scholar] [CrossRef]
- De Santi, M.; Callari, F.; Brandi, G.; Toscano, R.V.; Scarlata, L.; Amagliani, G.; Schiavano, G.F. Mediterranean Diet Adherence and Weight Status among Sicilian Middle School Adolescents. Int. J. Food Sci. Nutr. 2020, 71, 1010–1018. [Google Scholar] [CrossRef]
- Arcila-Agudelo, A.M.; Ferrer-Svoboda, C.; Torres-Fernàndez, T.; Farran-Codina, A. Determinants of Adherence to Healthy Eating Patterns in a Population of Children and Adolescents: Evidence on the Mediterranean Diet in the City of Mataró (Catalonia, Spain). Nutrients 2019, 11, 854. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Benito, J.L.; León Izard, P. Cartas Científicas Estudio de Los Hábitos Alimentarios de Jóvenes Deportistas. Sánchez Benito Y P. León Izard Nutr. Hosp. 2008, 23, 619–629. [Google Scholar]
- García Rovés, P.M.; Terrados, N.; Fernández, S.; Patterson, M.A. Comparison of Dietary Intake and Eating Behavior of Professional Road Cyclist during Trining and Competition. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Cotugna, N.; Snider, O.S.; Windish, J. Nutrition Assessment of Horse-Racing Athletes. J. Community Health 2011, 36, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, N.; Gil-Antuñano, N.P.; Zenarruzabeitia, Z.M.; Juan, B.G.; García, Á.; Iglesias-Gutiérrez, E. Hábitos Alimenticios y Composición Corporal de Deportistas Españoles de Élite Pertenecientes a Disciplinas de Combate. Nutr. Hosp. 2010, 25, 414–421. [Google Scholar] [CrossRef]
- Walsh, M.; Cartwright, L.; Corish, C.; Sugrue, S.; Wood-Martin, R. The Body Composition, Nutritional Knowledge, Attitudes, Behaviors, and Future Education Needs of Senior Schoolboy Rugby Players in Ireland. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 365–376. [Google Scholar] [CrossRef]
- Romero-García, D.; Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Esparza-Ros, F.; Martínez-Sanz, J.M. Influence of Biological Maturation Status on Kinanthropometric Characteristics, Physical Fitness and Diet in Adolescent Male Handball Players. Appl. Sci. 2023, 13, 3012. [Google Scholar] [CrossRef]
- Alacid, F.; Vaquero-Cristóbal, R.; Sánchez-Pato, A.; Muyor, J.M.; López-Miñarro, P.Á. Adhesión a La Dieta Mediterránea y Relación Con Los Parámetros Antropométricos de Mujeres Jóvenes Kayakistas. Nutr. Hosp. 2014, 29, 121–127. [Google Scholar] [CrossRef] [PubMed]
- García Rovés, P.M.; Fernandez, S.; Rodriguez, M.; Pérez Landaluce, J.; Patterson, M.A. Eating Pattern and Nutritional Status of International Elite Flatwater Paddlers. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 182–198. [Google Scholar] [CrossRef]
- Vaquero-Cristóbal, R.; Alacid, F.; Muyor, J.M.; López-Miñarro, P.A. Relación Entre Los Parámetros Antropométricos y La Adhesión a La Dieta Mediterránea En Jóvenes Piragüistas Hombres de Élite. MHSALUD Rev. Cienc. Mov. Hum. Salud 2018, 15, 20–35. [Google Scholar] [CrossRef]
- Tokyo Organising Committee of the Olympic and Paralympic Games. Official Report—Tokyo 2020; The Olympic Centre Studies: Tokyo, Japan, 2022. [Google Scholar]
- Consejo Superior de Deportes. Federaciones Deportivas Españolas. Licencias. 2022, 1–5. Available online: https://www.csd.gob.es/es/federaciones-y-asociaciones/federaciones-deportivas-espanolas/licencias. (accessed on 15 November 2023).
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef]
- Galan-Lopez, P.; Sánchez-Oliver, A.J.; Ries, F.; González-Jurado, J.A. Mediterranean Diet, Physical Fitness and Body Composition in Sevillian Adolescents: A Healthy Lifestyle. Nutrients 2019, 11, 2009. [Google Scholar] [CrossRef] [PubMed]
- Mariscal-Arcas, M.; Rivas, A.; Velasco, J.; Ortega, M.; Caballero, A.M.; Olea-Serrano, F. Evaluation of the Mediterranean Diet Quality Index (KIDMED) in Children and Adolescents in Southern Spain. Public Health Nutr. 2009, 12, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for Advancement in Kinanthropometry: Brasilia, Brazil, 2019. [Google Scholar]
- Esparza-Ros, F.; Vaquero-Cristóbal, R. Antropometría: Fundamentos Para La Aplicación e Interpretación; Aula Magna Mc Graw Hill: Madrid, Spain, 2023. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Biol. Humana 1988, 60, 709–723. [Google Scholar]
- Poortmans, J.R.; Boisseau, N.; Moraine, J.J.; Moreno-Reyes, R.; Goldman, S. Estimation of Total-Body Skeletal Muscle Mass in Children and Adolescents. Med. Sci. Sports Exerc. 2005, 37, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Matiegka, C.H. The Testing of Physical Efficiency. Am. J. Phys. Anthropol. 1921, 4, 223–230. [Google Scholar] [CrossRef]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñquiñ´quiñónez-Gastélum, C.M.; Gastélum, G.; Plascencia-Aguilera, L.P.; Arana-Nuñ, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.M.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and Body Composition Profile of Young Professional Soccer Players. J. Strength. Cond. Res. 2020, 34, 1911–1923. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion-Related Validity of Sit-and-Reach Tests for Estimating Hamstring and Lumbar Extensibility: A Meta-Analysis. J. Sports Sci. Med. 2014, 13, 1–14. [Google Scholar]
- Ayala, F.; de Baranda, P.S.; Croix, M.D.S.; Santonja, F. Reliability and Validity of Sit-and-Reach Tests: Systematic Review. Rev. Andal. Med. Deport. 2012, 5, 57–66. [Google Scholar] [CrossRef]
- Gülü, M.; Akalan, C. A New Peak-Power Estimation Equations in 12 to 14 Years-Old Soccer Players. Medicine 2021, 100, e27383. [Google Scholar] [CrossRef]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; Mcguigan, M.R. Relationship between Vertical and Horizontal Jump Variables and Muscular Performance in Athletes. J. Strength. Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef]
- Barker, L.A.; Harry, J.R.; Mercer, J.A. Relationships between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J. Strength. Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Henriques-Neto, D.; Minderico, C.; Peralta, M.; Marques, A.; Sardinha, L.B. Test–Retest Reliability of Physical Fitness Tests among Young Athletes: The FITescola® Battery. Clin. Physiol. Funct. Imaging 2020, 40, 173–182. [Google Scholar] [CrossRef] [PubMed]
- España-Romero, V.; Ortega, F.B.; Vicente-Rodríguez, G.; Artero, E.G.; Rey, J.P.; Ruiz, J.R. Elbow Position Affects Handgrips Strength in Adolescents: Validity and Reliability of Jamar Dynex, and, Tkk Dynamometers. J. Strength Cond. Res. 2010, 24, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Abad, C.C.C.; D’angelo, R.A.; Fernandes, V.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Vertical and Horizontal Jump Tests Are Strongly Associated with Competitive Performance in 100-m Dash Events. J. Strength. Cond. Res. 2015, 29, 1966–1971. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Montoya-Lozano, J.M.; Abenza-Cano, L. Differences in Kinanthropometric Variables and Physical Fitness of Adolescents with Different Adherence to the Mediterranean Diet and Weight Status: “Fat but Healthy Diet” Paradigm. Nutrients 2023, 15, 1152. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint Performance and Mechanical Outputs Computed with an IPhone App: Comparison with Existing Reference Methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef] [PubMed]
- World Athletics. The Consitution; World Athletics: Stockholm, Sweden, 2023. [Google Scholar]
- Díaz-Soler, M.A.; Vaquero-Cristóbal, R.; Espejo-Antúnez, L.; López-Miñarro, P. Efecto de Un Protocolo de Calentamiento En La Distancia Alcanzada En El Test Sit-and-Reach En Alumnos Adolescents. Nutr. Hosp. 2015, 31, 2618–2623. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.W.; Malek, M.H. Manual NSCA: Fundamentos Del Entrenamiento Personal; Paidotribo: Barcelona, Spain, 2017. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación. Informe Del Consumo de Alimentación En España; Gobierno de España: Madrid, Spain, 2017. [Google Scholar]
- Pérez-Rodrigo, C.; Ribas, L.; Serra-Majem, L.; Aranceta, J. Food Preferences of Spanish Children and Young People: The EnKid Study. Eur. J. Clin. Nutr. 2003, 57, S45–S48. [Google Scholar] [CrossRef]
- Borisenkov, M.F.; Tserne, T.A.; Popov, S.V.; Bakutova, L.A.; Pecherkina, A.A.; Dorogina, O.I.; Martinson, E.A.; Vetosheva, V.I.; Gubin, D.G.; Solovieva, S.V.; et al. Food Preferences and YFAS/YFAS-C Scores in Schoolchildren and University Students. Eat. Weight. Disord. 2021, 26, 2333–2343. [Google Scholar] [CrossRef]
- Herrera-Ramos, E.; Tomaino, L.; Sánchez-Villegas, A.; Ribas-Barba, L.; Gómez, S.F.; Wärnberg, J.; Osés, M.; González-Gross, M.; Gusi, N.; Aznar, S.; et al. Trends in Adherence to the Mediterranean Diet in Spanish Children and Adolescents across Two Decades. Nutrients 2023, 15, 2348. [Google Scholar] [CrossRef]
- Varela-Moreiras, G.; Ávila, J.M.; Cuadrado, C.; del Pozo, S.; Ruiz, E.; Moreiras, O. Evaluation of Food Consumption and Dietary Patterns in Spain by the Food Consumption Survey: Updated Information. Eur. J. Clin. Nutr. 2010, 64, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Romero-García, D.; Esparza-Ros, F.; García, M.P.; Martínez-Sanz, J.M.; Vaquero-Cristóbal, R. Adherence to the Mediterranean Diet, Kinanthropometric Characteristics and Physical Performance of Young Male Handball Players. PeerJ 2022, 10, e14329. [Google Scholar] [CrossRef]
- Manzano-Carrasco, S.; Felipe, J.L.; Sanchez-Sanchez, J.; Hernandez-Martin, A.; Gallardo, L.; Garcia-Unanue, J. Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 Msrt Score and Maturational Stage. Int. J. Environ. Res. Public Health 2020, 17, 3257. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Martínez-Olcina, M.; Hernández-García, M.; Rubio-Arias, J.; Sánchez-Sánchez, J.; Lara-Cobos, D.; Vicente-Martínez, M.; Carvalho, M.J.; Sánchez-Sáez, J.A. Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 2837. [Google Scholar] [CrossRef]
- Urquiaga, I.; Echeverría, G.; Dussaillant, C.; Rigotti, A. Origen, Componentes y Posibles Mecanismos de Acción de La Dieta Mediterránea. Rev. Med. Chil. 2017, 145, 85–95. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-González, S.; Garrido-Miguel, M.; Martínez-Vizcaíno, V.; López-Gil, J.F. Mediterranean Dietary Pattern and Psychosocial Health Problems in Spanish Adolescents: The EHDLA Study. Nutrients 2023, 15, 2905. [Google Scholar] [CrossRef]
- Pollitt, E.; Mathews, R. Breakfast and Cognition: An Integrative Summary. Am. Soc. Clin. Nutr. 1998, 67, 804–813. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe Marketing of Foods High in Fat, Salt and Sugar to Children: Update 2012–2013; Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Jonker, L.; Elferink-Gemser, M.T.; Visscher, C. Differences in Self-Regulatory Skills among Talented Athletes: The Significance of Competitive Level and Type of Sport. J. Sports Sci. 2010, 28, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Buscemi, S.; Scuderi, A.; Matalone, M.; Platania, A.; Giorgianni, G.; Rametta, S.; Nolfo, F.; Galvano, F.; et al. Factors Associated with Adherence to the Mediterranean Diet among Adolescents Living in Sicily, Southern Italy. Nutrients 2013, 5, 4908–4923. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Carrasco, S.; Felipe, J.L.; Sanchez-Sanchez, J.; Hernandez-Martin, A.; Clavel, I.; Gallardo, L.; Garcia-Unanue, J. Relationship between Adherence to the Mediterranean Diet and Body Composition with Physical Fitness Parameters in a Young Active Population. Int. J. Environ. Res. Public Health 2020, 17, 3337. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, H.; Rajabi, H.; Farzad, B.; Bayati, M.; Jeffreys, I. Anthropometry of World-Class Elite Handball Players According to the Playing Position: Reports from Men’s Handball World Championship 2013. J. Hum. Kinet. 2013, 39, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, A.; Martínez-Olcina, M.; Hernández-García, M.; Rubio-Arias, J.Á.; Sánchez-Sánchez, J.; Sánchez-Sáez, J.A. Body Composition Characteristics of Handball Players: Systematic. Arch. Med. Deporte 2020, 37, 52–61. [Google Scholar]
- Alvero Cruz, J.R.; Cabañas Armesilla, M.D.; Herrero deLucas, A.; Martinez Riaza, L.; Moreno Pascual, C.; Porta Manzañido, J.; Sillero Quintana, M.; Sirvent Belando, J.E. Protocolo de Valoración de La Composición Corporal Para El Reconocimiento Médico-Deportivo. Documento de Conseno Del Grupo Español de Cineantropometría de La Federación Española de Medicina Del Deporte. Arch. Med. Deporte 2009, 26, 166–179. [Google Scholar]
- Mecherques-Carini, M.; Esparza-Ros, F.; Albaladejo-Saura, M.; Vaquero-Cristóbal, R. Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population. Appl. Sci. 2022, 12, 13043. [Google Scholar] [CrossRef]
- Brownell, K.D.; Steen, S.N.; Wilmore, J.H. Weight Regulation Practices in Athletes. Med. Sci. Sports Exerc. 1987, 19, 546–556. [Google Scholar] [CrossRef]
Mean ± SD/n (%) | Min. | Max. | |
---|---|---|---|
Age (years old) | 17.59 ± 1.97 | 15.24 | 24.89 |
Sex | Male: n = 47; Female: n = 49 | ||
Race | Caucasian: n = 96 (100%) | ||
Nationality | Spanish: n = 96 (100%) | ||
Category | U-16: n = 33 (34.3%); U-18: n = 33 (34.3%); U-20: n = 30 (31.2%) | ||
Years of athletics experience (years) | 3.69 ± 3.56 | 1 | 15 |
Athletic weekly training days (days) | 4.52 ± 0.89 | 3 | 7 |
Athletic hours of training per week (hours) | 7.34 ± 3.16 | 6 | 19 |
Gym hours of training per week (hours) | 3.82 ± 2.67 | 2 | 16 |
Poor AMD | Moderate AMD | Excellent AMD | p | η2 | r | V | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YES | NO | R | YES | NO | R | YES | NO | R | ||||||
Eat a piece of fruit or drink natural juice every day | 3 (42.9%) | 4 (57.1%) | −3.1 | 22 (73.3%) | 8 (26.7%) | −2 | 56 (94.9%) | 3 (5.1%) | 3.6 | 0.000 | 0.417 | 0.000 | 0.000 | 0.000 |
Eat a 2nd piece of fruit every day | 1 (14.3%) | 6 (85.7%) | −3.1 | 18 (60.0%) | 12 (40.0%) | −1.1 | 46 (78.0%) | 13 (22.0%) | 2.7 | 0.000 | 0.347 | 0.002 | 0.002 | 0.002 |
Eat fresh/cooked vegetables once a day | 2 (28.6%) | 5 (71.4%) | −3.6 | 21 (70.0%) | 9 (30.0%) | −1.7 | 54 (91.5%) | 5 (8.5%) | 3.5 | 0.000 | 0.429 | 0.000 | 0.000 | 0.000 |
Eat fresh/cooked vegetables more than once a day | 0 (0.0%) | 7 (100.0%) | −2.4 | 6 (20.0%) | 24 (80.0%) | −3.2 | 36 (61.0%) | 23 (39.0%) | 4.3 | 0.000 | 0.443 | 0.000 | 0.000 | 0.000 |
Eat fish at least 2–3 times a week | 2 (28.6%) | 5 (71.4%) | −2.5 | 15 (50.0%) | 15 (50.0%) | −2.8 | 50 (84.7%) | 9 (15.3%) | 4.0 | 0.000 | 0.423 | 0.000 | 0.000 | 0.000 |
Go to a fast-food restaurant once a week or more | 2 (28.6%) | 5 (71.4%) | 1.0 | 6 (20.0%) | 24 (80.0%) | 0.8 | 7 (11.9%) | 52 (88.1) | −1.3 | 0.376 | 0.143 | 0.376 | 0.376 | 0.376 |
Likes legumes and consumes more than once a week | 4 (57.1%) | 3 (42.9%) | −1.4 | 19 (63.3%) | 11 (36.7%) | −2.4 | 52 (88.1%) | 7 (11.9%) | 3.0 | 0.011 | 0.296 | 0.011 | 0.011 | 0.011 |
Eat pasta or rice almost every day (5 or more days) | 6 (85.7%) | 1 (14.3%) | 1.9 | 11 (36.7%) | 19 (63.3%) | −1.9 | 32 (54.2%) | 27 (45.8%) | 0.8 | 0.048 | 0.018 | 0.048 | 0.048 | 0.048 |
Eat a cereal or derivative (bread, etc.) for breakfast | 0 (0.0%) | 7 (100.0%) | −4.2 | 18 (60.0%) | 12 (40.0%) | −1.4 | 49 (83.1%) | 10 (16.9%) | 3.6 | 0.000 | 0.459 | 0.000 | 0.000 | 0.000 |
Eat nuts (at least 2–3 times a week) | 1 (14.3%) | 6 (85.7%) | −2.3 | 10 (33.3%) | 20 (66.7%) | −3.1 | 43 (72.9%) | 16 (27.1%) | 4.1 | 0.000 | 0.426 | 0.000 | 0.000 | 0.000 |
Olive oil is used at home | 5 (71.4%) | 2 (28.6%) | −2.9 | 29 (96.7%) | 1 (3.3%) | 0.6 | 57 (96.6%) | 2 (3.4%) | 1.0 | 0.015 | 0.202 | 0.015 | 0.015 | 0.015 |
No breakfast | 4 (57.1%) | 3 (42.9%) | 4.9 | 3 (10.0%) | 27 (90.0%) | 0.4 | 1 (1.7%) | 58 (98.3%) | −3.0 | 0.000 | 0.440 | 0.000 | 0.000 | 0.000 |
Have a dairy breakfast (yogurt, etc.) | 3 (42.9%) | 4 (57.1%) | −3.0 | 22 (73.3%) | 8 (26.7%) | −1.8 | 55 (93.2%) | 4 (6.8%) | 3.3 | 0.001 | 0.386 | 0.001 | 0.001 | 0.001 |
Eat industrial pastries for breakfast | 2 (28.6%) | 5 (71.4%) | 1.3 | 6 (20.0%) | 24 (80.0%) | 1.5 | 4 (6.8%) | 55 (93.2%) | −2.1 | 0.084 | 0.226 | 0.084 | 0.084 | 0.084 |
Have 2 yogurts and/or 40 g of cheese every day | 0 (0.0%) | 7 (100.0%) | −2.4 | 3 (10.0%) | 27 (90.0%) | −4.4 | 38 (64.4%) | 21 (35.6%) | 5.4 | 0.000 | 0.530 | 0.000 | 0.000 | 0.000 |
Eat sweets and/or candies several times a day | 2 (28.6%) | 5 (71.4%) | 1.8 | 4 (13.3%) | 26 (86.7%) | 0.9 | 3 (5.1%) | 56 (94.9%) | −1.8 | 0.088 | 0.221 | 0.088 | 0.088 | 0.088 |
Poor AMD | Moderate AMD | Excellent AMD | ANOVA | Group × Sex | |||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F | p | η2p | F | p | η2p | |
Age (years old) | 17.11 ± 1.55 | 17.90 ± 2.31 | 17.80 ± 1.84 | 0.44 | 0.643 | 0.009 | 2.48 | 0.066 | 0.075 |
Years of experience in athletics (years) | 3.60 ± 3.45 | 6.00 ± 3.40 | 6.80 ± 3.60 | 2.85 | 0.063 | 0.058 | 1.88 | 0.138 | 0.058 |
Total hours of training per week (hours) | 7.00 ± 1.52 | 8.83 ± 2.90 | 8.61 ± 3.41 | 0.97 | 0.383 | 0.020 | 2.24 | 0.088 | 0.068 |
Body mass (kg) | 57.92 ± 13.4 | 65.70 ± 18.20 | 63.90 ± 11.21 | 0.88 | 0.417 | 0.019 | 4.22 | 0.008 | 0.121 |
Maturity offset (years) | 2.20 ± 0.96 | 3.00 ± 1.71 | 3.14 ± 1.33 | 1.40 | 0.258 | 0.029 | 1.20 | 0.322 | 0.037 |
BMI (kg/m2) | 22.15 ± 4.13 | 22.32 ± 4.60 | 21.92 ± 3.40 | 0.11 | 0.893 | 0.002 | 0.07 | 0.973 | 0.002 |
∑3 Skinfolds (mm) | 54.06 ± 40.20 | 33.90 ± 17.40 | 40.60 ± 24.60 | 2.17 | 0.120 | 0.045 | 12.61 | 0.000 | 0.291 |
∑Corrected girths (cm) | 95.20 ± 7.30 | 103.70 ± 12.40 | 101.80 ± 9.30 | 2.00 | 0.146 | 0.041 | 13.72 | 0.000 | 0.309 |
Fat mass (kg) | 20.00 ± 9.72 | 21.70 ± 7.90 | 21.82 ± 6.00 | 0.22 | 0.803 | 0.005 | 1.07 | 0.364 | 0.034 |
Fat mass (%) | 21.02 ± 12.82 | 15.00 ± 7.30 | 18.09 ± 9.91 | 1.66 | 0.194 | 0.035 | 14.18 | 0.000 | 0.316 |
Muscle mass (kg) | 23.21 ± 2.80 | 27.20 ± 6.50 | 26.51 ± 4.03 | 1.88 | 0.157 | 0.039 | 7.41 | 0.000 | 0.195 |
Muscle mass (%) | 34.65 ± 16.30 | 40.35 ± 8.23 | 40.16 ± 8.75 | 1.17 | 0.313 | 0.025 | 0.80 | 0.504 | 0.025 |
Bone mass (kg) | 9.20 ± 1.80 | 10.50 ± 1.65 | 10.44 ± 1.60 | 2.00 | 0.140 | 0.041 | 31.12 | 0.000 | 0.504 |
Bone mass (%) | 16.03 ± 1.85 | 16.40 ± 2.07 | 16.50 ± 1.70 | 0.20 | 0.814 | 0.004 | 4.42 | 0.006 | 0.126 |
Muscle–bone index | 53.40 ± 1.80 | 52.53 ± 1.15 | 52.60 ± 1.30 | 1.21 | 0.301 | 0.025 | 4.90 | 0.003 | 0.137 |
Handgrip right (kg) | 30.60 ± 9.24 | 36.70 ± 10.50 | 34.35 ± 8.35 | 1.44 | 0.240 | 0.030 | 21.27 | 0.000 | 0.410 |
Handgrip left (kg) | 27.20 ± 7.50 | 34.35 ± 10.60 | 33.10 ± 8.90 | 1.70 | 0.193 | 0.035 | 21.01 | 0.000 | 0.407 |
Sit-and-reach test (cm) | 23.30 ± 11.13 | 20.21 ± 8.52 | 22.53 ± 9.30 | 0.72 | 0.487 | 0.015 | 2.76 | 0.046 | 0.083 |
CMJ (cm) | 30.42 ± 5.25 | 34.93 ± 9.62 | 33.45 ± 7.82 | 0.90 | 0.410 | 0.019 | 14.08 | 0.000 | 0.315 |
SJ (cm) | 27.60 ± 4.70 | 32.80 ± 8.42 | 31.24 ± 6.70 | 1.60 | 0.213 | 0.033 | 13.40 | 0.000 | 0.304 |
Horizontal jump test (cm) | 202.90 ± 28.06 | 208.33 ± 32.92 | 205.50 ± 35.00 | 0.10 | 0.899 | 0.002 | 14.25 | 0.000 | 0.317 |
Medicine ball throw (m) | 5.80 ± 1.80 | 6.60 ± 1.90 | 6.80 ± 1.80 | 1.00 | 0.381 | 0.021 | 16.40 | 0.000 | 0.348 |
30 m sprint (s) | 4.72 ± 0.35 | 4.54 ± 0.40 | 4.63 ± 0.41 | 1.13 | 0.326 | 0.024 | 16.55 | 0.000 | 0.351 |
Tests | Group Comparison | Mean ± SD | p | 95% CI | |
---|---|---|---|---|---|
Body mass (kg) | Poor AMD | Moderate AMD | −4.90 ± 5.61 | 1.000 | −18.60 to 8.80 |
Poor AMD | Excellent AMD | −4.44 ± 5.30 | 1.000 | −17.40 to 8.50 | |
Moderate AMD | Excellent AMD | 0.50 ± 3.00 | 1.000 | −6.83 to 7.74 | |
∑3 Skinfolds (mm) | Poor AMD | Moderate AMD | 12.52 ± 8.90 | 0.480 | −9.00 to 34.05 |
Poor AMD | Excellent AMD | 9.30 ± 8.40 | 0.802 | −11.03 to 29.65 | |
Moderate AMD | Excellent AMD | −3.22 ± 4.70 | 1.000 | −14.70 to 8.25 | |
∑Corrected girths (cm) | Poor AMD | Moderate AMD | −5.10 ± 3.72 | 0.520 | −14.20 to 3.96 |
Poor AMD | Excellent AMD | −4.73 ± 3.51 | 0.543 | 13.30 to 3.90 | |
Moderate AMD | Excellent AMD | 0.40 ± 2.00 | 1.000 | −4.50 to 5.20 | |
Fat mass (%) | Poor AMD | Moderate AMD | 2.90 ± 3.40 | 1.000 | −5.40 to 11.08 |
Poor AMD | Excellent AMD | 1.20 ± 3.20 | 1.000 | −6.60 to 9.00 | |
Moderate AMD | Excellent AMD | −1.70 ± 1.80 | 1.000 | −6.05 to 2.73 | |
Muscle mass (kg) | Poor AMD | Moderate AMD | −2.80 ± 1.91 | 0.462 | −7.40 to 1.91 |
Poor AMD | Excellent AMD | −2.62 ± 1.80 | 0.450 | −7.02 to 1.80 | |
Moderate AMD | Excellent AMD | 0.12 ± 1.02 | 1.000 | −2.40 to 2.60 | |
Bone mass (kg) | Poor AMD | Moderate AMD | −0.60 ± 0.50 | 0.704 | −1.80 to 0.62 |
Poor AMD | Excellent AMD | −0.90 ± 0.50 | 0.204 | −2.00 to 0.30 | |
Moderate AMD | Excellent AMD | −0.30 ± 0.30 | 0.915 | −0.92 to 0.40 | |
Bone mass (%) | Poor AMD | Moderate AMD | 0.03 ± 0.73 | 1.000 | −1.80 to 1.82 |
Poor AMD | Excellent AMD | −0.25 ± 0.70 | 1.000 | −2.00 to 1.50 | |
Moderate AMD | Excellent AMD | −0.30 ± 0.40 | 1.000 | −1.22 to 0.70 | |
Muscle–bone index | Poor AMD | Moderate AMD | 0.60 ± 0.52 | 0.880 | −0.72 to 1.82 |
Poor AMD | Excellent AMD | 0.61 ± 0.50 | 0.645 | −0.60 to 1.82 | |
Moderate AMD | Excellent AMD | 0.06 ± 0.30 | 1.000 | −0.61 to 0.74 | |
Handgrip right (kg) | Poor AMD | Moderate AMD | −2.50 ± 3.04 | 1.000 | −10.00 to 4.90 |
Poor AMD | Excellent AMD | −1.80 ± 2.90 | 1.000 | −8.80 to 5.20 | |
Moderate AMD | Excellent AMD | 0.70 ± 1.60 | 1.000 | −3.25 to 4.70 | |
Handgrip left (kg) | Poor AMD | Moderate AMD | −3.60 ± 3.20 | 0.800 | −11.20 to 4.20 |
Poor AMD | Excellent AMD | −4.00 ± −3.00 | 0.560 | −11.20 to 3.30 | |
Moderate AMD | Excellent AMD | −0.41 ± 1.70 | 1.000 | −4.50 to 3.70 | |
CMJ (cm) | Poor AMD | Moderate AMD | −1.65 ± 3.00 | 1.000 | −8.90 to 5.60 |
Poor AMD | Excellent AMD | −1.50 ± 2.80 | 1.000 | −8.30 to 5.40 | |
Moderate AMD | Excellent AMD | 0.20 ± 1.60 | 1.000 | −3.70 to 4.02 | |
SJ (cm) | Poor AMD | Moderate AMD | −2.80 ± 2.60 | 0.840 | −9.20 to 3.50 |
Poor AMD | Excellent AMD | −2.40 ± 2.50 | 1.000 | −8.40 to 3.70 | |
Moderate AMD | Excellent AMD | 0.50 ± 1.40 | 1.000 | −2.90 to 3.90 | |
Horizontal jump test (cm) | Poor AMD | Moderate AMD | 6.50 ± 12.00 | 1.000 | −22.80 to 35.80 |
Poor AMD | Excellent AMD | 4.00 ± 11.33 | 1.000 | −23.70 to 31.60 | |
Moderate AMD | Excellent AMD | −2.60 ± 6.40 | 1.000 | −18.20 to 13.00 | |
Medicine ball throw (m) | Poor AMD | Moderate AMD | −0.12 ± 0.63 | 1.000 | −1.70 to 1.50 |
Poor AMD | Excellent AMD | −0.65 ± 0.60 | 0.880 | −2.10 to 0.82 | |
Moderate AMD | Excellent AMD | −0.52 ± 0.40 | 0.400 | −1.40 to 0.30 | |
30 m sprint (s) | Poor AMD | Moderate AMD | 0.04 ± 0.20 | 1.000 | −0.30 to 0.40 |
Poor AMD | Excellent AMD | −0.02 ± 0.20 | 1.000 | −0.40 to 0.30 | |
Moderate AMD | Excellent AMD | −0.06 ± 0.07 | 1.000 | −0.30 to 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Alcázar, A.E.; García-Roca, J.A.; Vaquero-Cristóbal, R. Adherence to the Mediterranean Diet and Its Influence on Anthropometric and Fitness Variables in High-Level Adolescent Athletes. Nutrients 2024, 16, 624. https://doi.org/10.3390/nu16050624
Vélez-Alcázar AE, García-Roca JA, Vaquero-Cristóbal R. Adherence to the Mediterranean Diet and Its Influence on Anthropometric and Fitness Variables in High-Level Adolescent Athletes. Nutrients. 2024; 16(5):624. https://doi.org/10.3390/nu16050624
Chicago/Turabian StyleVélez-Alcázar, Antonio E., Juan Alfonso García-Roca, and Raquel Vaquero-Cristóbal. 2024. "Adherence to the Mediterranean Diet and Its Influence on Anthropometric and Fitness Variables in High-Level Adolescent Athletes" Nutrients 16, no. 5: 624. https://doi.org/10.3390/nu16050624
APA StyleVélez-Alcázar, A. E., García-Roca, J. A., & Vaquero-Cristóbal, R. (2024). Adherence to the Mediterranean Diet and Its Influence on Anthropometric and Fitness Variables in High-Level Adolescent Athletes. Nutrients, 16(5), 624. https://doi.org/10.3390/nu16050624