Clustered Cardiometabolic Risk and the “Fat but Fit Paradox” in Adolescents: Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment
2.3. Statistical Analysis
3. Results
3.1. “Fat but Fit Paradox” and Cardiometabolic Risk
3.2. Odds of Cardiometabolic Risk and “Fat but Fit Paradox” and Odds Ratio of Cardiometabolic Risk
3.3. Individual Metabolic Risk and “Fat but Fit Paradox”
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimm, S.; Obarzanek, E. Childhood obesity: A new pandemic of the new millennium. Pediatrics 2002, 110, 1003–1007. [Google Scholar] [CrossRef]
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Jankowska, A.; Brzeziński, M.; Romanowicz-Sołtyszewska, A.; Szlagatys-Sidorkiewicz, A. Metabolic Syndrome in Obese Children—Clinical Prevalence and Risk Factors. Int. J. Environ. Res. Public Health 2021, 18, 1060. [Google Scholar] [CrossRef]
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Raitakari, O.T. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Ramírez-Vélez, R.; Correa-Bautista, J.E.; Castellanos-Vega, R.D.P.; Arias-Coronel, F.; González-Ruíz, K.; Alejandro, H.; Schmidt-RioValle, J.; González-Jiménez, E. Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study. Nutrients 2018, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.; Monda, M.; Valenzano, A.; Messina, G.; Villano, I.; Moscatelli, F.; Cibelli, G.; Marsala, G.; Polito, R.; Ruberto, M.; et al. Functional changes induced by orexin a and adiponectin on the sympathetic/parasympathetic balance. Front. Physiol. 2018, 22, 259. [Google Scholar] [CrossRef]
- Freedman, D.S.; Kahn, H.S.; Mei, Z.; Grummer-Strawn, L.M.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relation of body mass index and waist-to-height ratio to cardiovascular disease risk factors in children and adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 2007, 86, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Olsen, L.W.; Sørensen, T.I. Childhood body-mass index and the risk of coronary heart disease in adulthood. N. Engl. J. Med. 2007, 357, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; Henauw, S.D.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: De fi nitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vizcaíno, V.; Solera, M.; Salcedo, F.; Serrano, S.; Franquelo, R.; Sánchez, M.; Martínez, P.M.; Rodríguez-Artalejo, F. Validity of a single-factor model underlying the metabolic syndrome in children. Cardiovasc. Metab. Risk 2010, 33, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Torres-Costoso, A.; Garrido-Miguel, M.; Gracia-Marco, L.; López-Muñoz, P.; Reina-Gutiérrez, S.; Núñez de Arenas-Arroyo, S.; Martínez-Vizcaíno, V. The “Fat but Fit” paradigm and bone health in young adults: A cluster analysis. Nutrients 2021, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Silventoinen, K.; Tynelius, P.; Rasmussen, F. Muscular strength in male adolescents and premature death: Cohort study of one million participants. BMJ 2012, 345, e7279. [Google Scholar] [CrossRef] [PubMed]
- Barry, V.W.; Baruth, M.; Beets, M.W.; Durstine, J.L.; Liu, J.; Blair, S.N. Fitness vs. fatness on all-cause mortality: A meta-analysis. Prog. Cardiovasc. Dis. 2014, 56, 382–390. [Google Scholar] [CrossRef] [PubMed]
- De Schutter, A.; Kachur, S.; Lavie, C.J.; Menezes, A.; Shum, K.K.; Bangalore, S.; Arena, R.; Milani, R.V. Cardiac rehabilitation fitness changes and subsequent survival. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Elagizi, A.; Kachur, S.; Lavie, C.J.; Carbone, S.; Pandey, A.; Ortega, F.B.; Milani, R.V. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2018, 61, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Díez-Fernández, A.; Sánchez-López, M.; Mora-Rodriguez, R.; Notario-Pacheco, B.; Torrijos-Niño, C.; Martínez-Vizcaíno, V. Obesity as a mediator of the influence of cardiorespiratory fitness on cardiometabolic risk: A mediation analysis. Diabetes Care 2014, 37, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Agostinis, C.; Mota, J.; Santos, R.M.; Correa, J.E.; Ramírez, R. Adiposity as a full mediator of the influence of cardiorespiratory fitness and inflammation in schoolchildren: The FUPRECOL Study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Labayen, I.; Lavie, C.J.; Blair, S.N. The Fat but Fit paradox: What we know and don’t know about it. Br. J. Sports Med. 2017, 52, 151–153. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular strength as a predictor of all-cause mortality in apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjöström, M.; Blair, S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ 2008, 337, 92–95. [Google Scholar] [CrossRef]
- Weisstaub, G.; Gonzalez Bravo, M.A.; García-Hermoso, A.; Salazar, G.; López-Gil, J.F. Cross-sectional association between physical fitness and cardiometabolic risk in Chilean schoolchildren: The fat but fit paradox. Transl. Pediatr. 2022, 11, 1085–1094. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Glasgow, UK, 2019. [Google Scholar]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sport Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ervin, R.B.; Fryar, C.D.; Wang, C.Y.; Miller, I.M.; Ogden, C.L. Strength and body weight in US children and adolescents. Pediatrics 2014, 134, e782–e789. [Google Scholar] [CrossRef]
- Stoner, L.; Pontzer, H.; Barone Gibbs, B.; Moore, J.B.; Castro, N.; Skidmore, P.; Lark, S.; Williams, M.A.; Hamlin, M.J.; Faulkner, J. Fitness and Fatness Are Both Associated with Cardiometabolic Risk in Preadolescents. J. Pediatr. 2020, 217, 39–45.e1. [Google Scholar] [PubMed]
- Sasayama, K.; Ochi, E.; Adachi, M. Importance of both fatness and aerobic fitness on metabolic syndrome risk in Japanese children. PLoS ONE 2015, 10, e0127400. [Google Scholar] [CrossRef]
- Pozuelo-carrascosa, D.P.; Sánchez-lópez, M.; Cavero-redondo, I.; Torres-costoso, A.; Bermejo-cantarero, A.; Martínez-vizcaíno, V. Obesity as a Mediator between Cardiorespiratory Fitness and Blood Pressure in Preschoolers. J. Pediatr. 2016, 182, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, I.; Lim, S. Overweight or obesity in children aged 0 to 6 and the risk of adult metabolic-syndrome: A systematic review and meta-analysis. J. Clin. Nurs. 2017, 26, 3869–3880. [Google Scholar] [CrossRef] [PubMed]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic syndrome in children and adolescents: Diagnostic criteria, therapeutic options and perspectives. Curr. Obes. Rep. 2019, 5, 472–479. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- González-Gálvez, N.; Ribeiro, J.; Mota, J. Metabolic syndrome and cardiorespiratory fitness in children and adolescents: The role of obesity as a mediator. J. Pediatr. Endocrinol. Metab. 2021, 34, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Suebsamran, P.; Pimpak, T.; Thani, P.; Chamnan, P. The metabolic syndrome and health behaviors in school children aged 13–16 years in Ubon Ratchathani: UMeSIA project. Metab. Syndr. Relat. Disord. 2018, 6, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.; Young, J.; Boddy, L.; Baker, J. Independent associations between cardiorespiratory fitness, waist circumference, BMI, and clustered cardiometabolic risk in adolescents. Am. J. Hum. Biol. 2014, 26, 29–35. [Google Scholar] [CrossRef]
- Christodoulos, A.D.; Douda, H.T.; Tokmakidis, S.P. Cardiorespiratory fitness, metabolic risk, and inflammation in children. Int. J. Pediatr. 2012, 2012, 270515. [Google Scholar] [CrossRef]
- Bailey, D.P.; Savory, L.A.; Denton, S.J.; Kerr, C.J. The association between cardiorespiratory fitness and cardiometabolic risk in children is mediated by abdominal adiposity: The HAPPY study. J. Phys. Act. Health 2015, 12, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, S.; Sánchez-López, M.; Solera-Martinez, M.; Arias-Palencia, N.; Fuentes-Chacón, R.M.; Martínez-Vizcaíno, V. Physical activity, fitness, and metabolic syndrome in young adults. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 312–321. [Google Scholar] [CrossRef]
- Nyström, C.; Henriksson, P.; Martínez-Vizcaíno, V.; Medrano, M.; Cadenas-Sanchez, C.; Arias-Palencia, N.M.; Löf, M.; Ruiz, J.R.; Labayen, I.; Sánchez-López, M.; et al. Does cardiorespiratory fitness attenuate the adverse effects of severe/morbid obesity on cardiometabolic risk and insulin resistance in Children? A pooled analysis. Diabetes Care 2017, 40, 1580–1587. [Google Scholar] [CrossRef]
- Eisenmann, J.C.; Welk, G.J.; Ihmels, M.; Dollman, J. Fatness, fitness, and cardiovascular disease risk factors in children and adolescents. Med. Sci. Sports Exerc. 2007, 39, 1251–1256. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Carrillo, H.A.; González-Ruíz, K.; Vivas, A.; Triana-Reina, H.R.; Martínez-Torres, J.; Prieto-Benavidez, D.H.; Correa-Bautista, J.E.; Ramos-Sepúlveda, J.A.; Villa-González, E.; et al. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students. PLoS ONE 2017, 12, e0173932. [Google Scholar] [CrossRef] [PubMed]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic Strength Training Improves Insulin Sensitivity without Altering Plasma Levels and Gene Expression of Adipokines in Subcutaneous Adipose Tissue in Obese Men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar] [CrossRef] [PubMed]
- Holten, M.K.; Zacho, M.; Gaster, M.; Juel, C.; Wojtaszewski, J.F.P.; Dela, F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004, 53, 294–305. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Laurson, K.R.; Artero, E.G.; Ortega, F.B.; Labayen, I.; Ruperez, A.I.; Zaqout, M.; Manios, Y.; Vanhelst, J.; Marcos, A.; et al. Muscle strength field-based tests to identify European adolescents at risk of metabolic syndrome: The HELENA study. J. Sci. Med. Sport 2019, 22, 929–934. [Google Scholar] [CrossRef]
- Thivel, D.; Ring-Dimitriou, S.; Weghuber, D.; Frelut, M.-L.; O’Malley, G. Muscle Strength and Fitness in Pediatric Obesity: A Systematic Review from the European Childhood Obesity Group. Obes. Facts 2016, 9, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Jurca, R.; Lamonte, M.J.; Barlow, C.E.; Kampert, J.B.; Church, T.S.; Blair, S.N. Association of muscular strength with incidence of metabolic syndrome in men. Med. Sci. Sports Exerc. 2005, 37, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Lauersen, J.B.; Brønd, J.C.; Anderssen, S.A.; Sardinha, L.B.; Steene-johannessen, J.; McMurray, R.G.; Barros, M.V.G.; Kriemler, S.; Møller, N.C.; et al. A new approach to define and diagnose cardiometabolic disorder in children. J. Diabetes Res. 2015, 2015, 539835. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Esparza-Ros, F. Relationship between Biological Maturation, Physical Fitness, and Kinanthropometric Variables of Young Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; Esparza-Ros, F. Métodos de estimación de la maduración biológica en deportistas en etapa de desarrollo y crecimiento: Revisión bibliográfica. Cult. Cienc. Y Deporte 2022, 17, 55–64. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef]
- Reche-García, C.; Hernández Morante, J.J.; Trujillo Santana, J.T.; González Cisneros, C.A.; Romero Romero, J.; Ortín Montero, F.J. Bienestar psicológico de deportistas adolescentes mexicanos confinados por la pandemia del COVID-19. Cult. Cienc. Y Deporte 2022, 17, 7–13. [Google Scholar] [CrossRef]
- Berrios, B.; Latorre, P.; Salas, J.; Pantoja, A. Effect of physical activity and fitness on executive functions and academic performance in children of elementary school. A systematic review (Efectos de la actividad física y condición física sobre funciones ejecutivas y rendimiento académico en niños de Educación Primaria. Una revisión sistemática). Cult. Cienc. Deporte 2022, 17, 85–103. [Google Scholar] [CrossRef]
CRF | Muscular Fitness | Physical Fitness | ||||
---|---|---|---|---|---|---|
OR | p-Value | OR | p-Value | OR | p-Value | |
UF | 0.0325 | <0.001 | 0.048 | <0.001 | 0.001 | <0.001 |
UU | 0.096 | <0.001 | 0.051 | <0.001 | 0.083 | <0.001 |
FF | 0.427 | 0.048 | 0.061 | <0.001 | 0.05 | 0.049 |
FU | 1 | 1 | 1 |
UF | UU | FF | FU | F | p Value | Pairwise Comparisons | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1–2 | 1–3 | 1–4 | 2–3 | 2–4 | 3–4 | |||||||
Cardiorespiratory fitness | ||||||||||||
BMI (kg/m2) | 17.97 ± 1.55 | 18.18 ± 1.55 | 23.88 ± 2.37 | 25.34 ± 3.75 | 149.25 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.016 | |
WC (cm) | 63.91 ± 5.10 | 64.45 ± 6.02 | 78.33 ± 7.21 | 83.90 ± 10.40 | 107.19 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | |
FM (%) | 16.68 ± 4.65 | 19.35 ± 5.53 | 28.41 ± 5.67 | 31.65 ± 7.29 | 103.70 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.009 | |
LDL (mg/dL) | 80.18 ± 20.31 | 86.31 ± 25.30 | 82.77 ± 22.96 | 96.88 ± 23.69 | 2.98 | 0.033 | ||||||
HDL (mg/dL) | 53.11 ± 17.74 | 53.04 ± 13.16 | 47.66 ± 16.89 | 43.02 ± 17.86 | 4.75 | 0.001 | 0.010 | 0.004 | ||||
NonHDL (mg/dL) | 91.84 ± 18.40 | 101.69 ± 24.92 | 99.79 ± 22.91 | 110.70 ± 25.22 | 5.69 | 0.001 | <0.001 | |||||
Trig (mg/dL) | 58.78 ± 22.09 | 72.05 ± 35.73 | 69.26 ± 30.03 | 84.23 ± 48.00 | 6.47 | <0.001 | 0.002 | 0.001 | ||||
MBP (mmHg) | 75.88 ± 9.40 | 80.19 ± 10.97 | 86.05 ± 9.27 | 86.47 ± 11.14 | 12.54 | <0.001 | <0.001 | <0.001 | 0.016 | 0.006 | ||
Muscular fitness | ||||||||||||
BMI (kg/m2) | 18.06 ± 1.20 | 19.65 ± 0.07 | 21.65 ± 0.31 | 25.83 ± 2.75 | 23.46 | <0.001 | 0.011 | <0.001 | 0.002 | 0.011 | ||
WC (cm) | 62.84 ± 3.48 | 75.25 ± 6.72 | 70.43 ± 4.28 | 82.28 ± 7.10 | 14.82 | <0.001 | 0.038 | <0.001 | 0.025 | |||
FM (%) | 19.45 ± 6.30 | 28.70 ± 2.55 | 23.95 ± 3.52 | 30.48 ± 5.73 | 2.17 | 0.137 | ||||||
LDL (mg/dL) | 55.00 ± 15.82 | 84.50 ± 12.02 | 67.00 ± 15.56 | 85.25 ± 36.58 | 2.16 | 0.139 | ||||||
HDL (mg/dL) | 80.25 ± 14.08 | 71.00 ± 8.49 | 66.75 ± 25.84 | 39.25 ± 4.99 | 2.39 | 0.112 | ||||||
NonHDL (mg/dL) | 72.88 ± 19.32 | 102.50 ± 16.26 | 88.50 ± 15.80 | 111.75 ± 36.83 | 2.66 | 0.089 | ||||||
Trig (mg/dL) | 88.88 ± 24.54 | 89.50 ± 21.92 | 106.75 ± 40.14 | 162.75 ± 72.26 | 0.808 | 0.510 | ||||||
BMP (mmHg) | 90.00 ± 19.94 | 87.50 ± 6.36 | 86.50 ± 11.62 | 92.00 ± 8.16 | 0.10 | 0.961 | ||||||
Physical fitness | ||||||||||||
BMI (kg/m2) | 17.80 ± 1.24 | 18.96 ± 1.06 | 21.65 ± 0.31 | 25.83 ± 2.75 | 22.99 | <0.001 | 0.013 | <0.001 | <0.001 | 0.012 | ||
WC (cm) | 64.36 ± 3.34 | 66.28 ± 8.98 | 70.43 ± 4.28 | 82.28 ± 7.10 | 6.76 | 0.005 | 0.006 | 0.014 | ||||
FM (%) | 19.16 ± 3.84 | 23.44 ± 8.90 | 23.95 ± 3.52 | 30.48 ± 5.73 | 1.67 | 0.218 | ||||||
LDL (mg/dL) | 58.60 ± 17.78 | 63.20 ± 22.20 | 67.00 ± 15.56 | 85.25 ± 36.58 | 1.04 | 0.404 | ||||||
HDL (mg/dL) | 86.60 ± 10.97 | 70.20 ± 10.52 | 66.75 ± 25.84 | 39.25 ± 4.99 | 3.43 | 0.047 | 0.040 | |||||
NonHDL (mg/dL) | 77.20 ± 21.21 | 80.40 ± 24.79 | 88.50 ± 15.80 | 111.75 ± 36.83 | 1.57 | 0.240 | ||||||
Trig (mg/dL) | 92.60 ± 24.81 | 85.40 ± 22.95 | 106.75 ± 40.14 | 162.75 ± 72.26 | 0.81 | 0.510 | ||||||
BMP (mmHg) | 78.60 ± 11.70 | 100.40 ± 16.58 | 86.50 ± 11.62 | 92.00 ± 8.16 | 2.59 | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gálvez, N.; López-Martínez, A.B.; López-Vivancos, A. Clustered Cardiometabolic Risk and the “Fat but Fit Paradox” in Adolescents: Cross-Sectional Study. Nutrients 2024, 16, 606. https://doi.org/10.3390/nu16050606
González-Gálvez N, López-Martínez AB, López-Vivancos A. Clustered Cardiometabolic Risk and the “Fat but Fit Paradox” in Adolescents: Cross-Sectional Study. Nutrients. 2024; 16(5):606. https://doi.org/10.3390/nu16050606
Chicago/Turabian StyleGonzález-Gálvez, Noelia, Ana Belén López-Martínez, and Abraham López-Vivancos. 2024. "Clustered Cardiometabolic Risk and the “Fat but Fit Paradox” in Adolescents: Cross-Sectional Study" Nutrients 16, no. 5: 606. https://doi.org/10.3390/nu16050606
APA StyleGonzález-Gálvez, N., López-Martínez, A. B., & López-Vivancos, A. (2024). Clustered Cardiometabolic Risk and the “Fat but Fit Paradox” in Adolescents: Cross-Sectional Study. Nutrients, 16(5), 606. https://doi.org/10.3390/nu16050606