Investigating the Probiotic Potential of Vegan Puree Mixture: Viability during Simulated Digestion and Bioactive Compound Bioaccessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Probiotic Strains
2.2. Development of Potential Probiotic Puree Mixture
2.3. In Vitro Gastrointestinal Digestion (GIS)
2.4. Microbiological Viability Analysis
2.5. Bioactive Properties’ Determination
2.5.1. 12,2′-Azino-Bis(3-ethylbenzothiazoline-6-sulfate) (ABTS•+) Radical Cation Depolarization Assay
2.5.2. Total Polyphenolic Content Determination
2.6. Organic Acids and Sugar Detection
2.7. Bioaccessibility Index
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Survival of L. rhamnosus K3 and L. johnsonii K4 in Puree Mixtures during Simulated Digestion
3.2. Evaluation of the Bioactive Components of Fermented and Non-Fermented Puree Mixtures during Simulated Digestion
3.3. Evaluation of the Organic Acids of Fermented and Non-Fermented Puree Mixtures during Simulated Digestion
3.4. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kouamé, K.J.E.-P.; Bora, A.F.M.; Li, X.; Liu, L.; Coulibaly, I.; Sun, Y.; Hussain, M. New Insights into Functional Cereal Foods as an Alternative for Dairy Products: A Review. Food Biosci. 2023, 55, 102840. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Nazir, Y.; Hussain, S.A.; Abdul Hamid, A.; Song, Y. Probiotics and Their Potential Preventive and Therapeutic Role for Cancer, High Serum Cholesterol, and Allergic and HIV Diseases. Biomed. Res. Int. 2018, 2018, 3428437. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Use of Characterized Microorganisms in Fermentation of Non-Dairy-Based Substrates to Produce Probiotic Food for Gut-Health and Nutrition. Fermentation 2023, 9, 1. [Google Scholar] [CrossRef]
- Küçükgöz, K.; Trząskowska, M. Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients 2022, 14, 753. [Google Scholar] [CrossRef]
- Dodoo, C.C.; Wang, J.; Basit, A.W.; Stapleton, P.; Gaisford, S. Targeted Delivery of Probiotics to Enhance Gastrointestinal Stability and Intestinal Colonisation. Int. J. Pharm. 2017, 530, 224–229. [Google Scholar] [CrossRef]
- Shori, A.B. Influence of Food Matrix on the Viability of Probiotic Bacteria: A Review Based on Dairy and Non-Dairy Beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Zielińska, D.; Rzepkowska, A.; Radawska, A.; Zieliński, K. In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Curr. Microbiol. 2015, 70, 183–194. [Google Scholar] [CrossRef]
- Henrion, M.; Francey, C.; Lê, K.-A.; Lamothe, L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef]
- Hui, X.D.; Wu, G.; Han, D.; Gong, X.; Wu, X.Y.; Tang, S.Z.; Brennan, M.A.; Brennan, C.S. The Effects of Bioactive Compounds from Blueberry and Blackcurrant Powder on Oat Bran Pastes: Enhancing In Vitro Antioxidant Activity and Reducing Reactive Oxygen Species in Lipopolysaccharide-Stimulated Raw264.7 Macrophages. Antioxidants 2021, 10, 388. [Google Scholar] [CrossRef]
- Abdi, R.; Joye, I.J. Prebiotic Potential of Cereal Components. Foods 2021, 10, 2338. [Google Scholar] [CrossRef]
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-Glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; dos Santos Pereira, E.; de Oliveira Raphaelli, C.; Radünz, M.; Camargo, T.M.; da Rocha Concenço, F.I.G.; Cantillano, R.F.F.; Fiorentini, Â.M.; Nora, L. Application of Prebiotics in Apple Products and Potential Health Benefits. J. Food Sci. Technol. 2022, 59, 1249–1262. [Google Scholar] [CrossRef]
- Akman, P.K.; Uysal, E.; Ozkaya, G.U.; Tornuk, F.; Durak, M.Z. Development of Probiotic Carrier Dried Apples for Consumption as Snack Food with the Impregnation of Lactobacillus Paracasei. LWT 2019, 103, 60–68. [Google Scholar] [CrossRef]
- Emser, K.; Barbosa, J.; Teixeira, P.; Bernardo de Morais, A.M.M. Lactobacillus Plantarum Survival during the Osmotic Dehydration and Storage of Probiotic Cut Apple. J. Funct. Foods 2017, 38, 519–528. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Bambace, M.F.; Quintana, G.; Gomez-Zavaglia, A.; Moreira, M.d.R. Prebiotic-Alginate Edible Coating on Fresh-Cut Apple as a New Carrier for Probiotic Lactobacilli and Bifidobacteria. LWT 2021, 137, 110483. [Google Scholar] [CrossRef]
- Senna, C.; Soares, L.; Egea, M.B.; Fernandes, S.S. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024, 29, 440. [Google Scholar] [CrossRef]
- Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective Lactobacillus Plantarum and Bifidobacterium Infantis Encapsulation with Chia Seed (Salvia hispanica L.) and Flaxseed (Linum usitatissimum L.) Mucilage and Soluble Protein by Spray Drying. Food Chem. 2017, 216, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Zhao, Y.-S.; Eweys, A.S.; Zhang, J.-Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.-B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Ma, B.; Chen, J.; Zheng, H.; Fang, T.; Ogutu, C.; Li, S.; Han, Y.; Wu, B. Comparative Assessment of Sugar and Malic Acid Composition in Cultivated and Wild Apples. Food Chem. 2015, 172, 86–91. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 3715. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Martins, N.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Development of Functional Dairy Foods. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 1377–1395. ISBN 978-3-319-78030-6. [Google Scholar]
- Jiao, X.; Li, B.; Zhang, Q.; Gao, N.; Zhang, X.; Meng, X. Effect of In Vitro-Simulated Gastrointestinal Digestion on the Stability and Antioxidant Activity of Blueberry Polyphenols and Their Cellular Antioxidant Activity towards HepG2 Cells. Int. J. Food Sci. Technol. 2017, 53, 61–71. [Google Scholar] [CrossRef]
- Zielińska, D.; Długosz, E.; Zawistowska-Deniziak, A. Functional Properties of Food Origin Lactobacillus in the Gastrointestinal Ecosystem-In Vitro Study. Probiotics Antimicrob. Proteins 2019, 11, 820–829. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Barros, R.G.C.; Pereira, U.C.; Andrade, J.K.S.; de Oliveira, C.S.; Vasconcelos, S.V.; Narain, N. In Vitro Gastrointestinal Digestion and Probiotics Fermentation Impact on Bioaccessbility of Phenolics Compounds and Antioxidant Capacity of Some Native and Exotic Fruit Residues with Potential Antidiabetic Effects. Food Res. Int. 2020, 136, 109614. [Google Scholar] [CrossRef] [PubMed]
- Sollano-Mendieta, X.C.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Téllez-Medina, D.I. Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes. Foods 2021, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- ISO 13299:2016(En), Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:13299:ed-2:v1:en (accessed on 17 February 2024).
- Puri, R.; Khamrui, K.; Khetra, Y.; Malhotra, R.; Devraja, H.C. Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Characterization of Indian Milk Product Cham-Cham. J. Food Sci. Technol. 2016, 53, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Wendel, U. Assessing Viability and Stress Tolerance of Probiotics—A Review. Front. Microbiol. 2022, 12, 818468. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Kamil, A.; Fleige, L.; Chung, Y.; De Chavez, P.; Marzorati, M. Different Oat Ingredients Stimulate Specific Microbial Metabolites in the Gut Microbiome of Three Human Individuals In Vitro. ACS Omega 2018, 3, 12446–12456. [Google Scholar] [CrossRef]
- Valerio, F.; Volpe, M.G.; Santagata, G.; Boscaino, F.; Barbarisi, C.; Di Biase, M.; Bavaro, A.R.; Lonigro, S.L.; Lavermicocca, P. The Viability of Probiotic Lactobacillus Paracasei IMPC2.1 Coating on Apple Slices during Dehydration and Simulated Gastro-Intestinal Digestion. Food Biosci. 2020, 34, 100533. [Google Scholar] [CrossRef]
- Ester, B.; Noelia, B.; Laura, C.-J.; Francesca, P.; Cristina, B.; Rosalba, L.; Marco, D.R. Probiotic Survival and in Vitro Digestion of L. Salivarius Spp. Salivarius Encapsulated by High Homogenization Pressures and Incorporated into a Fruit Matrix. LWT 2019, 111, 883–888. [Google Scholar] [CrossRef]
- Mandalari, G.; Vardakou, M.; Faulks, R.; Bisignano, C.; Martorana, M.; Smeriglio, A.; Trombetta, D. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients 2016, 8, 568. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Du, X.; Myracle, A.D. Fermentation Alters the Bioaccessible Phenolic Compounds and Increases the Alpha-Glucosidase Inhibitory Effects of Aronia Juice in a Dairy Matrix Following in Vitro Digestion. Food Funct. 2018, 9, 2998–3007. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus Plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef]
- Ji, G.; Liu, G.; Li, B.; Tan, H.; Zheng, R.; Sun, X.; He, F. Influence on the Aroma Substances and Functional Ingredients of Apple Juice by Lactic Acid Bacteria Fermentation. Food Biosci. 2023, 51, 102337. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of Fermentation of Pomegranate Juice by Lactobacillus Plantarum and Lactobacillus Acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Igual, M.; Fernandes, Â.; Dias, M.I.; Pinela, J.; García-Segovia, P.; Martínez-Monzó, J.; Barros, L. The In Vitro Simulated Gastrointestinal Digestion Affects the Bioaccessibility and Bioactivity of Beta Vulgaris Constituents. Foods 2023, 12, 338. [Google Scholar] [CrossRef]
- Renaud, V.; Faucher, M.; Perreault, V.; Serre, E.; Dubé, P.; Boutin, Y.; Bazinet, L. Evolution of Cranberry Juice Compounds during in Vitro Digestion and Identification of the Organic Acid Responsible for the Disruption of in Vitro Intestinal Cell Barrier Integrity. J. Food Sci. Technol. 2020, 57, 2329–2342. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Duque, S.M.; Abduh, S.B.M.; Oey, I. 6—Carbohydrates. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Barba, F.J., Saraiva, J.M.A., Cravotto, G., Lorenzo, J.M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2019; pp. 171–206. ISBN 978-0-12-814174-8. [Google Scholar]
- Pimentel, T.C.; Madrona, G.S.; Prudencio, S.H. Probiotic Clarified Apple Juice with Oligofructose or Sucralose as Sugar Substitutes: Sensory Profile and Acceptability. LWT—Food Sci. Technol. 2015, 62, 838–846. [Google Scholar] [CrossRef]
Sample | Ingredients | |||||
---|---|---|---|---|---|---|
Apple | Oat Flakes | Oat Bran | Chia Seeds | Cinnamon | Probiotic | |
BRC | 100 g | - | 10 g | 2 g | 0.3 g | - |
FLC | 100 g | 10 g | - | 2 g | 0.3 g | - |
BR3 | 100 g | - | 10 g | 2 g | 0.3 g | L. rhamnosus K3 |
BR4 | 100 g | - | 10 g | 2 g | 0.3 g | L. johnsonii K4 |
FL3 | 100 g | 10 g | - | 2 g | 0.3 g | L. rhamnosus K3 |
FL4 | 100 g | 10 g | - | 2 g | 0.3 g | L. johnsonii K4 |
Samples | After Fermentation | After Gastric Phase | After Intestinal Phase |
---|---|---|---|
BR3 | 9.10 aA | 6.05 aB | 6.20 aB |
BR4 | 9.10 aA | 6.30 aB | 6.03 aB |
FL3 | 9.20 aA | 5.94 bB | 5.80 bB |
FL4 | 9.10 aA | 5.38 cB | 5.70 bC |
Samples | Initial Samples TPC (GAE mg/100 g) | Digested Samples TPC (GAE mg/100 g) | Bioaccessibility of TPC | Initial Samples Phase ABTS (VCEAC mg/100 g) | Digested Samples ABTS (VCEAC mg/100 g) | Bioaccessibility of ABTS |
---|---|---|---|---|---|---|
BRC | 40.9 ± 2.05 eA | 12 ± 2.9 aC | 29.30% | 122.0 ± 5.83 cA | 34.7 ± 2.71 bC | 28.40% |
FLC | 33.6 ± 2.74 bcA | 11.42 ± 8.9 abC | 34.00% | 110.2 ± 5.8 aA | 36.2 ± 2.88 bC | 32.70% |
BR3 | 39.8 ± 4.78 deA | 17.7 ± 1.2 cC | 44.50% | 102.3 ± 5.47 aA | 44.48 ± 4.9 aC | 43.40% |
BR4 | 36.1 ± 2.01 cdA | 16.6 ± 0.1 bcC | 46.00% | 106.0 ± 3.52 aA | 37.3 ± 1.3 bC | 35.18% |
FL3 | 31.0 ± 3.27 abA | 12.6 ± 1.9 cB | 40.60% | 78.4 ± 5.01 bA | 38.05 ± 2.17 bC | 48.50% |
FL4 | 28.8 ± 1.48 aA | 14.5 ± 9.8 cB | 50.30% | 84.1 ± 6.77 bA | 36.5 ± 1.03 bC | 43.40% |
Attribute | BRC | FLC | BR3 | BR4 | FL3 | FL4 |
---|---|---|---|---|---|---|
Apple o. | 3.57 bc | 4.73 a | 5.85 c | 5.92 a | 6.75 ab | 6.87 ab |
Cinnamon o. | 2.60 ac | 3.19 a | 4.56 b | 5.69 a | 6.14 b | 6.54 c |
Fermented o. | 2.01 b | 2.12 b | 2.93 a | 3.44 a | 3.49 a | 4.08 ab |
Sweet o. | 2.89 | 3.34 | 2.75 | 2.90 | 2.79 | 2.51 |
Other o. | 0.47 a | 1.21 ab | 1.36 ab | 1.81 b | 1.93 a | 2.06 a |
Thickness | 5.75 | 5.88 | 5.45 | 6.43 | 6.38 | 5.37 |
Stickiness | 4.93 ab | 5.24 b | 5.85 ac | 6.04 ab | 6.08 ab | 6.23 c |
Apple f. | 4.67 ac | 5.33 ab | 5.76 abc | 6.40 b | 6.52 ab | 6.84 c |
Cinnamon f. | 2.83 c | 3.24 d | 3.85 a | 5.06 a | 5.23 bc | 7.01 ab |
Fermented f. | 1.88 a | 2.53 ab | 3.35 a | 3.74 a | 3.75 a | 3.81 a |
Sweet f. | 2.22 a | 2.96 b | 3.28 a | 3.43 a | 3.52 ab | 4.79 ab |
Acid f. | 1.43 a | 1.85 a | 2.19 a | 2.33 a | 2.35 a | 4.03 b |
Bitter f. | 1.21 | 1.28 | 1.33 | 0.86 | 1.00 | 1.41 |
Other f. | 1.00 | 1.06 | 0.94 | 2.55 | 1.22 | 0.66 |
Overall Quality | 6.16 | 6.96 | 6.89 | 6.63 | 6.63 | 6.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçükgöz, K.; Kruk, M.; Kołożyn-Krajewska, D.; Trząskowska, M. Investigating the Probiotic Potential of Vegan Puree Mixture: Viability during Simulated Digestion and Bioactive Compound Bioaccessibility. Nutrients 2024, 16, 561. https://doi.org/10.3390/nu16040561
Küçükgöz K, Kruk M, Kołożyn-Krajewska D, Trząskowska M. Investigating the Probiotic Potential of Vegan Puree Mixture: Viability during Simulated Digestion and Bioactive Compound Bioaccessibility. Nutrients. 2024; 16(4):561. https://doi.org/10.3390/nu16040561
Chicago/Turabian StyleKüçükgöz, Kübra, Marcin Kruk, Danuta Kołożyn-Krajewska, and Monika Trząskowska. 2024. "Investigating the Probiotic Potential of Vegan Puree Mixture: Viability during Simulated Digestion and Bioactive Compound Bioaccessibility" Nutrients 16, no. 4: 561. https://doi.org/10.3390/nu16040561
APA StyleKüçükgöz, K., Kruk, M., Kołożyn-Krajewska, D., & Trząskowska, M. (2024). Investigating the Probiotic Potential of Vegan Puree Mixture: Viability during Simulated Digestion and Bioactive Compound Bioaccessibility. Nutrients, 16(4), 561. https://doi.org/10.3390/nu16040561