Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence
Abstract
:1. Introduction
2. Methods
3. Diagnosis of Sarcopenia
3.1. Case Finding
3.2. Definition and Diagnostic Criteria of Sarcopenia
3.3. Formatting of Mathematical Components
- (a)
- Pre-sarcopenia, the presence of low muscle mass;
- (b)
- Sarcopenia, the presence of low muscle mass with low muscle strength or poor physical performance;
- (c)
- Severe sarcopenia, the presence of low muscle mass, low muscle strength and poor physical performance [30].
- (a)
- Probable sarcopenia, the presence of low muscle strength;
- (b)
- Confirmed sarcopenia, the presence of low muscle quality and quantity;
- (c)
- Severe sarcopenia, the co-existence of poor physical performance together with low muscle strength and low muscle quality/quantity [9].
3.4. Muscle Mass Assessment
3.5. Muscle Strength Assessment
3.6. Physical Performance Assessment
3.7. Biomarkers
4. Comparative Examination of Diagnostic Criteria
5. Public Health Solutions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed]
- Senior, H.E.; Henwood, T.R.; Beller, E.M.; Mitchell, G.K.; Keogh, J.W.L. Prevalence and Risk Factors of Sarcopenia among Adults Living in Nursing Homes. Maturitas 2015, 82, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.J.; Mozer, M. Differentiating Sarcopenia and Cachexia among Patients with Cancer. Nutr. Clin. Pract. 2017, 32, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Tsintavis, P.; Potsaki, G.; Papandreou, D. Differences in the Prevalence of Sarcopenia in Community-Dwelling, Nursing Home and Hospitalized Individuals. A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Shin, Y.; Huh, J.; Sung, Y.S.; Lee, I.-S.; Yoon, K.-H.; Kim, K.W. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J. Radiol. 2019, 20, 205. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.J.C.; Kneppers, A.E.M.; van de Bool, C.; Langen, R.C.J.; Schols, A.M.W.J. Cachexia in Chronic Obstructive Pulmonary Disease: New Insights and Therapeutic Perspective. J. Cachexia Sarcopenia Muscle 2016, 7, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Santilli, V. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in daily practice: Assessment and Management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Dou, Q.; Wang, C.; Zhang, W.; Yang, Y.; Wang, J.; Xie, X.; Zhou, J.; Zeng, Y. Falls among Older Adults with Sarcopenia Dwelling in Nursing Home or Community: A Meta-Analysis. Clin. Nutr. Edinb. Scotl. 2020, 39, 33–39. [Google Scholar] [CrossRef]
- Huang, P.; Luo, K.; Xu, J.; Huang, W.; Yin, W.; Xiao, M.; Wang, Y.; Ding, M.; Huang, X. Sarcopenia as a Risk Factor for Future Hip Fracture: A Meta-Analysis of Prospective Cohort Studies. J. Nutr. Health Aging 2021, 25, 183–188. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Epidemiology of Sarcopenia: Prevalence, Risk Factors, and Consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-M.; Wu, H.-F.; Shi, H.-P.; Yu, Z.; Zhuang, C.-L. Sarcopenia and Malignancies: Epidemiology, Clinical Classification and Implications. Ageing Res. Rev. 2023, 91, 102057. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to Measure, When and Why. Radiol. Med. 2022, 127, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Vogele, D.; Otto, S.; Sollmann, N.; Haggenmüller, B.; Wolf, D.; Beer, M.; Schmidt, S.A. Sarcopenia—Definition, Radiological Diagnosis, Clinical Significance. Rofo 2023, 195, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Stuck, A.K.; Basile, G.; Freystaetter, G.; de Godoi Rezende Costa Molino, C.; Lang, W.; Bischoff-Ferrari, H.A. Predictive Validity of Current Sarcopenia Definitions (EWGSOP2, SDOC, and AWGS2) for Clinical Outcomes: A Scoping Review. J. Cachexia Sarcopenia Muscle 2023, 14, 71–83. [Google Scholar] [CrossRef]
- Fernandes, L.V.; Paiva, A.E.G.; Silva, A.C.B.; De Castro, I.C.; Santiago, A.F.; De Oliveira, E.P.; Porto, L.C.J. Prevalence of Sarcopenia According to EWGSOP1 and EWGSOP2 in Older Adults and Their Associations with Unfavorable Health Outcomes: A Systematic Review. Aging Clin. Exp. Res. 2022, 34, 505–514. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Krzymińska-Siemaszko, R.; Tobis, S.; Lewandowicz, M.; Wieczorowska-Tobis, K. Comparison of Four Sarcopenia Screening Questionnaires in Community-Dwelling Older Adults from Poland Using Six Sets of International Diagnostic Criteria of Sarcopenia. PLoS ONE 2020, 15, e0231847. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A Symptom Score to Predict Persons with Sarcopenia at Risk for Poor Functional Outcomes: SARC-F. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-L.; Ding, L.-Y.; Xu, Q.; Zhu, S.; Xu, X.-Y.; Hua, H.-X.; Chen, L.; Xu, H. Screening Accuracy of SARC-F for Sarcopenia in the Elderly: A Diagnostic Meta-Analysis. J. Nutr. Health Aging 2021, 25, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Oren, M.M.; Yilmaz, O.; Kılıç, C.; Aydin, K.; Karan, M.A. Comparing SARC-F with SARC-CalF to Screen Sarcopenia in Community Living Older Adults. J. Nutr. Health Aging 2018, 22, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Kaluźniak-Szymanowska, A.; Murawiak, M.; Wieczorowska-Tobis, K. Comparison of Diagnostic Value of the SARC-F and Its Four Modified Versions in Polish Community-Dwelling Older Adults. Clin. Interv. Aging 2023, 18, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, T.G.; Menezes, A.M.B.; Bielemann, R.M.; Malmstrom, T.K.; Gonzalez, M.C.; Grupo de Estudos em Composição Corporal e Nutrição (COCONUT). Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. J. Am. Med. Dir. Assoc. 2016, 17, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Micciolo, R.; Rubele, S.; Fantin, F.; Caliari, C.; Zoico, E.; Mazzali, G.; Ferrari, E.; Volpato, S.; Zamboni, M. Assessing the Risk of Sarcopenia in the Elderly: The Mini Sarcopenia Risk Assessment (MSRA) Questionnaire. J. Nutr. Health Aging 2017, 21, 743–749. [Google Scholar] [CrossRef]
- Yang, M.; Hu, X.; Xie, L.; Zhang, L.; Zhou, J.; Lin, J.; Wang, Y.; Li, Y.; Han, Z.; Zhang, D.; et al. Comparing Mini Sarcopenia Risk Assessment With SARC-F for Screening Sarcopenia in Community-Dwelling Older Adults. J. Am. Med. Dir. Assoc. 2018, 20, 53–57. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Stuck, A.K.; Mäder, N.C.; Bertschi, D.; Limacher, A.; Kressig, R.W. Performance of the EWGSOP2 Cut-Points of Low Grip Strength for Identifying Sarcopenia and Frailty Phenotype: A Cross-Sectional Study in Older Inpatients. Int. J. Environ. Res. Public Health 2021, 18, 3498. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hai, S.; Cao, L.; Zhou, J.; Liu, P.; Dong, B.-R. Estimation of Prevalence of Sarcopenia by Using a New Bioelectrical Impedance Analysis in Chinese Community-Dwelling Elderly People. BMC Geriatr. 2016, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, P.M.; Manini, T.; Patel, S.M.; Newman, A.; Travison, T.; Kiel, D.P.; Santanasto, A.J.; Ensrud, K.E.; Xue, Q.; Shardell, M.; et al. Putative Cut-Points in Sarcopenia Components and Incident Adverse Health Outcomes: An SDOC Analysis. J. Am. Geriatr. Soc. 2020, 68, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Messina, C.; Vitale, J.; Sconfienza, L.M. Imaging of Sarcopenia: Old evidence and new insights. Eur. Radiol. 2020, 30, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of Muscle Mass in Sarcopenia: From Imaging to Biochemical Markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Cesari, M.; Fielding, R.A.; Pahor, M.; Goodpaster, B.; Hellerstein, M.; Van Kan, G.A.; Anker, S.D.; Rutkove, S.; Vrijbloed, J.W.; Isaac, M.; et al. Biomarkers of Sarcopenia in Clinical Trials-Recommendations from the International Working Group on Sarcopenia. J. Cachexia Sarcopenia Muscle 2012, 3, 181–190. [Google Scholar] [CrossRef]
- Chien, M.-Y.; Huang, T.-Y.; Wu, Y.-T. Prevalence of Sarcopenia Estimated Using a Bioelectrical Impedance Analysis Prediction Equation in Community-Dwelling Elderly People in Taiwan. J. Am. Geriatr. Soc. 2008, 56, 1710–1715. [Google Scholar] [CrossRef]
- Gupta, M.; Lehl, S.S.; Lamba, A.S. Ultrasonography for Assessment of Sarcopenia: A Primer. J. Mid-Life Health 2022, 13, 269–277. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Jiang, Y.; Su, N.; Li, J.; Kang, L.; Zhang, Y.; Yang, M. Evaluation of Appendicular Muscle Mass in Sarcopenia in Older Adults Using Ultrasonography: A Systematic Review and Meta-Analysis. Gerontology 2022, 68, 1174–1198. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Heymsfield, S.B. Bioelectrical Impedance Analysis for Diagnosing Sarcopenia and Cachexia: What Are We Really Estimating? Editorial. J. Cachexia Sarcopenia Muscle 2017, 8, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing Appendicular Skeletal Muscle Mass with Bioelectrical Impedance Analysis in Free-Living Caucasian Older Adults. Clin. Nutr. Edinb. Scotl. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Reiss, J.; Iglseder, B.; Kreutzer, M.; Weilbuchner, I.; Treschnitzer, W.; Kässmann, H.; Pirich, C.; Reiter, R. Case Finding for Sarcopenia in Geriatric Inpatients: Performance of Bioimpedance Analysis in Comparison to Dual X-ray Absorptiometry. BMC Geriatr. 2016, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.-L.; Tang, S.; Eom, S.-H.; Lee, J.-Y.; Chae, J.H.; Kim, C.-H. Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia. Sensors 2023, 23, 7090. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, S.; Osuka, Y.; Kojima, N.; Motokawa, K.; Hayakawa, M.; Mikami, Y.; Iwasaki, M.; Inagaki, H.; Miyamae, F.; Okamura, T.; et al. Relationship between Phase Angle and Lower-Extremity Function in Older Adults: Itabashi Longitudinal Study on Aging. Nutrition 2023, 119, 112289. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Voulgaridou, G.; Papadopoulou, S. Cancer, Phase Angle and Sarcopenia: The Role of Diet in Connection with Lung Cancer Prognosis. Lung 2022, 200, 347–379. [Google Scholar] [CrossRef]
- Wu, H.; Ding, P.; Wu, J.; Yang, P.; Tian, Y.; Zhao, Q. Phase Angle Derived from Bioelectrical Impedance Analysis as a Marker for Predicting Sarcopenia. Front. Nutr. 2022, 9, 1060224. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bioelectrical Impedance Analysis: Population Reference Values for Phase Angle by Age and Sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.-P.; Later, W.; Wiese, S.; Müller, M.J. Phase Angle from Bioelectrical Impedance Analysis: Population Reference Values by Age, Sex, and Body Mass Index. JPEN J. Parenter. Enteral Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Mattiello, R.; Mundstock, E.; Ziegelmann, P.K. Brazilian Reference Percentiles for Bioimpedance Phase Angle of Healthy Individuals. Front. Nutr. 2022, 9, 912840. [Google Scholar] [CrossRef]
- Kuchnia, A.J.; Teigen, L.M.; Cole, A.J.; Mulasi, U.; Gonzalez, M.C.; Heymsfield, S.B.; Vock, D.M.; Earthman, C.P. Phase Angle and Impedance Ratio: Reference Cut-Points From the United States National Health and Nutrition Examination Survey 1999–2004 From Bioimpedance Spectroscopy Data. J. Parenter. Enter. Nutr. 2017, 41, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Zhang, J.; Cheng, S.; Liang, B. The Role of Standardized Phase Angle in the Assessment of Nutritional Status and Clinical Outcomes in Cancer Patients: A Systematic Review of the Literature. Nutrients 2023, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Matias, C.N.; Nunes, C.L.; Santos, D.A.; Marini, E.; Lukaski, H.C.; Sardinha, L.B. Lack of Agreement of In Vivo Raw Bioimpedance Measurements Obtained from Two Single and Multi-Frequency Bioelectrical Impedance Devices. Eur. J. Clin. Nutr. 2019, 73, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, J.R.; Johnson, B.A.; Benavides, M.L.; Moore, M.L.; Stratton, M.T.; Harty, P.S.; Siedler, M.R.; Tinsley, G.M. Agreement of Bioelectrical Resistance, Reactance, and Phase Angle Values from Supine and Standing Bioimpedance Analyzers. Physiol. Meas. 2021, 42, 035003. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; Alves Junior, C.A.S.; Silva, A.M.; Silva, D.A.S. Phase Angle and Body Composition: A Scoping Review. Clin. Nutr. ESPEN 2023, 56, 237–250. [Google Scholar] [CrossRef]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference Values for the Phase Angle of the Electrical Bioimpedance: Systematic Review and Meta-Analysis Involving More than 250,000 Subjects. Clin. Nutr. Edinb. Scotl. 2020, 39, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Tsiouda, T.; Pilikidou, M.; Palyvou, F.; Mantzorou, M.; Perzirkianidou, P.; Kyrka, K.; Methenitis, S.; Kondyli, F.S.; Voulgaridou, G.; et al. Dietary Habits Are Related to Phase Angle in Male Patients with Non-Small-Cell Lung Cancer. Curr. Oncol. 2022, 29, 8074–8083. [Google Scholar] [CrossRef]
- Detopoulou, P.; Fragopoulou, E.; Nomikos, T.; Antonopoulou, S. Associations of Phase Angle with Platelet-Activating Factor Metabolism and Related Dietary Factors in Healthy Volunteers. Front. Nutr. 2023, 10, 1237086. [Google Scholar] [CrossRef]
- Buckinx, F.; Landi, F.; Cesari, M.; Fielding, R.A.; Visser, M.; Engelke, K.; Maggi, S.; Dennison, E.; Al-Daghri, N.M.; Allepaerts, S.; et al. Pitfalls in the Measurement of Muscle Mass: A Need for a Reference Standard: Measurement of Muscle Mass. J. Cachexia Sarcopenia Muscle 2018, 9, 269–278. [Google Scholar] [CrossRef]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Dayhoff-Brannigan, M.; Lauretani, F.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L. Carotenoids as Protection against Disability in Older Persons. Rejuvenation Res. 2008, 11, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A Review of the Measurement of Grip Strength in Clinical and Epidemiological Studies: Towards a Standardised Approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Sipers, W.M.W.H.; Verdijk, L.B.; Sipers, S.J.E.; Schols, J.M.G.A.; van Loon, L.J.C. The Martin Vigorimeter Represents a Reliable and More Practical Tool Than the Jamar Dynamometer to Assess Handgrip Strength in the Geriatric Patient. J. Am. Med. Dir. Assoc. 2016, 17, 466.e1–466.e7. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Magasi, S.R.; Bubela, D.J.; Wang, Y.-C.; Gershon, R.C. Grip and Knee Extension Muscle Strength Reflect a Common Construct among Adults. Muscle Nerve 2012, 46, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Ploutz-Snyder, L.L.; Manini, T.; Ploutz-Snyder, R.J.; Wolf, D.A. Functionally Relevant Thresholds of Quadriceps Femoris Strength. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, B144–B152. [Google Scholar] [CrossRef] [PubMed]
- Samuel, D.; Wilson, K.; Martin, H.J.; Allen, R.; Sayer, A.A.; Stokes, M. Age-Associated Changes in Hand Grip and Quadriceps Muscle Strength Ratios in Healthy Adults. Aging Clin. Exp. Res. 2012, 24, 245–250. [Google Scholar] [CrossRef]
- Martien, S.; Delecluse, C.; Boen, F.; Seghers, J.; Pelssers, J.; Van Hoecke, A.-S.; Van Roie, E. Is Knee Extension Strength a Better Predictor of Functional Performance than Handgrip Strength among Older Adults in Three Different Settings? Arch. Gerontol. Geriatr. 2015, 60, 252–258. [Google Scholar] [CrossRef]
- Pinheiro, P.A.; Passos, T.D.-R.O.; Coqueiro, R.d.S.; Fernandes, M.H.; Barbosa, A.R. Motor performance of the elderly in northeast Brazil: Differences with age and sex. Rev. Esc. Enferm. USP 2013, 47, 128–136. [Google Scholar] [CrossRef]
- Yee, X.S.; Ng, Y.S.; Allen, J.C.; Latib, A.; Tay, E.L.; Abu Bakar, H.M.; Ho, C.Y.J.; Koh, W.C.C.; Kwek, H.H.T.; Tay, L. Performance on Sit-to-Stand Tests in Relation to Measures of Functional Fitness and Sarcopenia Diagnosis in Community-Dwelling Older Adults. Eur. Rev. Aging Phys. Act. 2021, 18, 1. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Peel, N.M.; Kuys, S.S.; Klein, K. Gait Speed as a Measure in Geriatric Assessment in Clinical Settings: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 39–46. [Google Scholar] [CrossRef]
- Maggio, M.; Ceda, G.P.; Ticinesi, A.; De Vita, F.; Gelmini, G.; Costantino, C.; Meschi, T.; Kressig, R.W.; Cesari, M.; Fabi, M.; et al. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals. PLoS ONE 2016, 11, e0153583. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.J.; Jones, C.J.; Lucchese, N. Predicting the Probability of Falls in Community-Residing Older Adults Using the 8-Foot Up-and-Go: A New Measure of Functional Mobility. J. Aging Phys. Act. 2002, 10, 466–475. [Google Scholar] [CrossRef]
- Martone, A.M.; Marzetti, E.; Calvani, R.; Picca, A.; Tosato, M.; Bernabei, R.; Landi, F. Assessment of Sarcopenia: From Clinical Practice to Research. J. Gerontol. Geriatr. 2019, 67, 39–45. [Google Scholar]
- Bruyère, O.; Beaudart, C.; Reginster, J.-Y.; Buckinx, F.; Schoene, D.; Hirani, V.; Cooper, C.; Kanis, J.A.; Rizzoli, R.; McCloskey, E.; et al. Assessment of Muscle Mass, Muscle Strength and Physical Performance in Clinical Practice: An International Survey. Eur. Geriatr. Med. 2016, 7, 243–246. [Google Scholar] [CrossRef]
- Calvani, R.; Picca, A.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Coelho-Junior, H.J.; Cesari, M.; Bossola, M.; et al. Identification of Biomarkers for Physical Frailty and Sarcopenia through a New Multi-Marker Approach: Results from the BIOSPHERE Study. GeroScience 2021, 43, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in Sarcopenia: A Multifactorial Approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, Κ.S.; Kondyli-Sarika, F.; Voulgaridou, G.; Pritsa, A. Candidate Biomarkers for Sarcopenia and Relationship with Nutrition. In Biomarkers in Nutrition; Patel, V.B., Preedy, V.R., Eds.; Biomarkers in Disease: Methods, Discoveries and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Voulgaridou, G.; Kondyli, F.S.; Drakaki, M.; Sianidou, K.; Andrianopoulou, R.; Rodopaios, N.; Pritsa, A. Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases 2022, 10, 42. [Google Scholar] [CrossRef]
- Jones, G.; Trajanoska, K.; Santanasto, A.J.; Stringa, N.; Kuo, C.-L.; Atkins, J.L.; Lewis, J.R.; Duong, T.; Hong, S.; Biggs, M.L.; et al. Genome-Wide Meta-Analysis of Muscle Weakness Identifies 15 Susceptibility Loci in Older Men and Women. Nat. Commun. 2021, 12, 654. [Google Scholar] [CrossRef]
- Gadher, S.J.; Jarkovska, K.; Kovarova, H. Reproductive Therapies and a Need for Potential Biomarkers for Prognostic and Diagnostic Screening of Women Desperate to Conceive. Expert Rev. Proteom. 2009, 6, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef] [PubMed]
- Valášková, S.; Gažová, A.; Vrbová, P.; Koller, T.; Šalingova, B.; Adamičková, A.; Chomaničová, N.; Hulajová, N.; Payer, J.; Kyselovič, J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol. Res. 2021, 70 (Suppl. S1), S91–S98. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.L.; Zhang, Y.; Feng, B.; Zheng, Z.; Wang, D.; Zhang, S.; Guo, Q.; Ye, H. Circulating MicroRNAs in Plasma Decrease in Response to Sarcopenia in the Elderly. Front. Genet. 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Spexoto, M.C.B.; Ramírez, P.C.; De Oliveira Máximo, R.; Steptoe, A.; De Oliveira, C.; Alexandre, T.D.S. European Working Group on Sarcopenia in Older People 2010 (EWGSOP1) and 2019 (EWGSOP2) Criteria or Slowness: Which Is the Best Predictor of Mortality Risk in Older Adults? Age Ageing 2022, 51, afac164. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.W.J.; Wee, S.-L.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Ling Tan, Q.L.; Chen, K.K.; Jagadish, M.U.; Ng, T.P. Prevalence and Associated Factors of Sarcopenia in Singaporean Adults-The Yishun Study. J. Am. Med. Dir. Assoc. 2021, 22, 885.e1–885.e10. [Google Scholar] [CrossRef]
- Yang, L.; Yao, X.; Shen, J.; Sun, G.; Sun, Q.; Tian, X.; Li, X.; Li, X.; Ye, L.; Zhang, Z.; et al. Comparison of Revised EWGSOP Criteria and Four Other Diagnostic Criteria of Sarcopenia in Chinese Community-Dwelling Elderly Residents. Exp. Gerontol. 2020, 130, 110798. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Zuo, Y.; Tang, H. Sarcopenia for Predicting Falls and Hospitalization in Community-Dwelling Older Adults: EWGSOP versus EWGSOP2. Sci. Rep. 2019, 9, 17636. [Google Scholar] [CrossRef]
- Wallengren, O.; Bosaeus, I.; Frändin, K.; Lissner, L.; Falk Erhag, H.; Wetterberg, H.; Rydberg Sterner, T.; Rydén, L.; Rothenberg, E.; Skoog, I. Comparison of the 2010 and 2019 Diagnostic Criteria for Sarcopenia by the European Working Group on Sarcopenia in Older People (EWGSOP) in Two Cohorts of Swedish Older Adults. BMC Geriatr. 2021, 21, 600. [Google Scholar] [CrossRef]
- Shafiee, G.; Heshmat, R.; Ostovar, A.; Khatami, F.; Fahimfar, N.; Arzaghi, S.M.; Gharibzadeh, S.; Hanaei, S.; Nabipour, I.; Larijani, B. Comparison of EWGSOP-1and EWGSOP-2 Diagnostic Criteria on Prevalence of and Risk Factors for Sarcopenia among Iranian Older People: The Bushehr Elderly Health (BEH) Program. J. Diabetes Metab. Disord. 2020, 19, 727–734. [Google Scholar] [CrossRef]
- Lee, W.-J.; Liu, L.-K.; Peng, L.-N.; Lin, M.-H.; Chen, L.-K. Comparisons of Sarcopenia Defined by IWGS and EWGSOP Criteria Among Older People: Results From the I-Lan Longitudinal Aging Study. J. Am. Med. Dir. Assoc. 2013, 14, 528.e1–528.e7. [Google Scholar] [CrossRef]
- Sim, M.; Prince, R.L.; Scott, D.; Daly, R.M.; Duque, G.; Inderjeeth, C.A.; Zhu, K.; Woodman, R.J.; Hodgson, J.M.; Lewis, J.R. Utility of Four Sarcopenia Criteria for the Prediction of Falls-Related Hospitalization in Older Australian Women. Osteoporos. Int. 2019, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Bachettini, N.P.; Bielemann, R.M.; Barbosa-Silva, T.G.; Menezes, A.M.B.; Tomasi, E.; Gonzalez, M.C. Sarcopenia as a Mortality Predictor in Community-Dwelling Older Adults: A Comparison of the Diagnostic Criteria of the European Working Group on Sarcopenia in Older People. Eur. J. Clin. Nutr. 2020, 74, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D. Perspective: Exercise and Protein Supplementation in Frail Elders. J. Am. Med. Dir. Assoc. 2013, 14, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.C.; Hunter, G.R.; Goss, A.M.; Gower, B.A. Oral Supplementation with Beta-Hydroxy-Beta-Methylbutyrate, Arginine, and Glutamine Improves Lean Body Mass in Healthy Older Adults. J. Diet. Suppl. 2019, 16, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Chilibeck, P.D.; Forbes, S.C.; Fairman, C.M.; Gualano, B.; Roschel, H. Creatine Supplementation for Older Adults: Focus on Sarcopenia, Osteoporosis, Frailty and Cachexia. Bone 2022, 162, 116467. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Artioli, G.G.; Pereira, R.M.R.; Gualano, B. Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules 2019, 9, 642. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous Metabolite, Dietary, and Therapeutic Supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.-Y.; Bruyère, O. The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- Voulgaridou, G.; Papadopoulou, S.D.; Spanoudaki, M.; Kondyli, F.S.; Alexandropoulou, I.; Michailidou, S.; Zarogoulidis, P.; Matthaios, D.; Giannakidis, D.; Romanidou, M.; et al. Increasing Muscle Mass in Elders through Diet and Exercise: A Literature Review of Recent RCTs. Foods 2023, 12, 1218. [Google Scholar] [CrossRef] [PubMed]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients 2019, 11, E2861. [Google Scholar] [CrossRef] [PubMed]
- Gimigliano, F.; Moretti, A.; de Sire, A.; Calafiore, D.; Iolascon, G. The Combination of Vitamin D Deficiency and Overweight Affects Muscle Mass and Function in Older Post-Menopausal Women. Aging Clin. Exp. Res. 2018, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yang, L.; Li, M.; Xiao, H. Relationship of Vitamin D Receptor Gene Polymorphism with Sarcopenia and Muscle Traits Based on Propensity Score Matching. J. Clin. Lab. Anal. 2020, 34, e23485. [Google Scholar] [CrossRef]
- Cesari, M.; Penninx, B.W.J.H.; Pahor, M.; Lauretani, F.; Corsi, A.M.; Rhys Williams, G.; Guralnik, J.M.; Ferrucci, L. Inflammatory Markers and Physical Performance in Older Persons: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 242–248. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef]
- Alonso, N.; Meinitzer, A.; Fritz-Petrin, E.; Enko, D.; Herrmann, M. Role of Vitamin K in Bone and Muscle Metabolism. Calcif. Tissue Int. 2023, 112, 178–196. [Google Scholar] [CrossRef]
- Vikberg, S.; Sörlén, N.; Brandén, L.; Johansson, J.; Nordström, A.; Hult, A.; Nordström, P. Effects of Resistance Training on Functional Strength and Muscle Mass in 70-Year-Old Individuals With Pre-sarcopenia: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019, 20, 28–34. [Google Scholar] [CrossRef]
- Lu, L.; Mao, L.; Feng, Y.; Ainsworth, B.E.; Liu, Y.; Chen, N. Effects of Different Exercise Training Modes on Muscle Strength and Physical Performance in Older People with Sarcopenia: A Systematic Review and Meta-Analysis. BMC Geriatr. 2021, 21, 708. [Google Scholar] [CrossRef]
- Konopka, A.R.; Harber, M.P. Skeletal Muscle Hypertrophy after Aerobic Exercise Training. Exerc. Sport Sci. Rev. 2014, 42, 53–61. [Google Scholar] [CrossRef]
- Hassan, B.H.; Hewitt, J.; Keogh, J.W.L.; Bermeo, S.; Duque, G.; Henwood, T.R. Impact of Resistance Training on Sarcopenia in Nursing Care Facilities: A Pilot Study. Geriatr. Nurs. 2016, 37, 116–121. [Google Scholar] [CrossRef]
- Kim, R.; Choi, S.; Kang, N.; Park, K.; Shin, H.; Lee, H.; Lee, H.; Jun, J.-S.; Jeon, B.; Byun, K. Effects of High-Intensity Interval Training and Moderate-Intensity Continuous Training on Sarcopenia-Related Parameters in Participants with Parkinson’s Disease: A 24-Week Randomized Pilot Trial Substudy. Parkinsonism Relat. Disord. 2023, 117, 105901. [Google Scholar] [CrossRef] [PubMed]
- Youssef, L.; Granet, J.; Marcangeli, V.; Dulac, M.; Hajj-Boutros, G.; Reynaud, O.; Buckinx, F.; Gaudreau, P.; Morais, J.A.; Mauriège, P.; et al. Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare 2022, 10, 1346. [Google Scholar] [CrossRef]
Consensus Group | Year | Criteria for Diagnosis | Notes |
---|---|---|---|
EWGSOP [30] | 2010 | Low muscle mass Low muscle strength Low physical performance | Sarcopenia is classified according to the criteria as follows: Pre-sarcopenia, when only low muscle mass exists Sarcopenia, when low muscle mass with low muscle strength or physical performance exists Severe sarcopenia, when all three criteria co-exist. |
IWGS [31] | 2011 | Low muscle mass Low physical performance | Older adults with both low muscle mass and function should be considered patients with sarcopenia. |
FNIH [32] | 2014 | Low muscle mass Low muscle strength Low physical performance | Based on a thorough examination of clinically relevant thresholds for weakness and low LBM. |
AWGS [10] | 2014 | Low muscle mass Low muscle strength Low physical performance | Same as the EWGSOP definition Cut-off points are used that are specific to elderly Asian people or those who are descended from Asians. |
EWGSOP2 [9] | 2019 | Low muscle mass Low muscle quantity or quality Low physical performance | Updated definition of sarcopenia Sarcopenia is classified according to the following criteria: Probable sarcopenia, when low muscle strength exists Sarcopenia, when low muscle strength and low muscle quantity and/or quality exist Severe sarcopenia, when all criteria co-exist. |
AWGS 2 [14] | 2020 | Low muscle strength Low muscle mass Low physical performance | Sarcopenia is classified according to the following criteria: Possible sarcopenia, when low muscle strength with or without low physical performance exist Sarcopenia, when low muscle mass, low muscle strength and/or low physical performance exist Severe sarcopenia, when all criteria co-exist. |
SDOC [13] | 2020 | Low muscle strength Low physical performance | The definition of sarcopenia is the existence of both slowness and muscle weakness, regardless of lean mass measured by DXA. Low DXA-derived LBM has no consistent connection with negative health consequences (falls, mobility, and mortality). |
EWGSOP [30] | IWGS [31] | FNIH [32] | AWGS [10] | EWGSOP2 [9] | AWGS 2 [14] | SDOC [13] | |
Muscle Mass | DXA (ALM/height2): <7.26 kg/m2 ♂ <5.5 kg/m2 ♀ or BIA: <8.87 kg/m2 ♂ <6.42 kg/m2 ♀ or CT or MRI or Total or partial body potassium per fat-free soft tissue | DXA (ALM/height2): <7.23 kg/m2 ♂ <5.67 kg/m2 ♀ | DXA (ALM/BMI): <0.789 kg/BMI ♂ <0.512 kg/BMI ♀ | DXA (ALM/height2): <7.0 kg/m2 ♂ <5.4 kg/m2 ♀ or BIA: ≤7.0 kg*m−2 ♂ <5.7 kg*m−2 ♀ | DXA (ALM/height2): <7.00 kg/m2 ♂ <6.00 kg/m2 ♀ or BIA or CT or MRI | DXA (ASM): <7.0 kg/m2 ♂ <5.4 kg/m2 ♀ or BIA (ASM): ≤7.0 kg*m−2 ♂ <5.7 kg*m−2 ♀ | Not specified |
Muscle Strength | Grip strength: <30 kg ♂ <20 kg ♀ or Knee flexion/extension or Peak expiratory flow | Not specified | Grip strength: <26 kg ♂ <16 kg ♀ | Grip strength: <26 kg ♂ <18 kg ♀ | Grip strength: <27 kg ♂ <16 kg ♀ or Chair stand test >15 s | Grip strength: <28 kg ♂ <18 kg ♀ | Grip strength: <35.5 kg ♂ <20 kg ♀ |
Physical Performance | SPPB: <8 or 4MGS: <0.8 m/s or TUG or SCTP | 4MGS: <1.0 m/s or Standing up from a chair | 4MGS, 6MGS: <0.8 m/s | 6MGS: <0.8 m/s | Gait speed: <0.8 m/s or SPPB: ≤8 or TUG: ≥20 s or 400 m walk: >6 min | 6MGS: <1.0 m/s or 5TSST: >12 s or SPPB: ≤9 | Gait speed: <0.8 m/s |
Author | n | Study Population | Diagnostic Criteria | Muscle Mass | Muscle Strength | Physical Performance | Results |
---|---|---|---|---|---|---|---|
Spexoto et al., 2022 [86] | 6.182 | ≥50 year-old community-dwelling individuals living in England | EWGSOP and EWGSOP2 | ASMM (kg/m2) determined by using the Lee equation | Handgrip strength was measured by using a dynamometer with 3 trials on the dominant hand. The best performance was recorded. | 2.4 m gait speed; 2 trials; The best performance was recorded. | The EWGSOP2 was a better predictor of mortality risk than the EWGSOP. |
Pang et al., 2021 [87] | 542 | ≥60 year-old community-dwelling individuals living in Singapore | AWGS, AWG2 and EWGSOP2 | DXA (ALMI, ALM/height2) | Handgrip strength was measured by using a dynamometer with 2 trials per arm. The best performance was recorded. | 6-m gait speed; 3 trials; The average was recorded. | According to the AWGS 2, the prevalence of sarcopenia was greater compared to the AWGS and EWGSOP2 criteria in participants aged ≥60 years. |
Yang et al., 2020 [88] | 483 | ≥60 year-old Chinese community-dwelling individuals | EWGSOP, EWGSOP2, AWGS, IWGS and FNIH | ΒΙA (SMI, ASM/BMI) | Handgrip strength was measured by using a dynamometer with 3 trials for each hand. The best performance for each hand was recorded. | 4 m gait speed; 2 trials; The best performance was recorded. | The prevalence of sarcopenia as defined by the EWGSOP2 (men: 6.5%; women: 3.3%) was lower than those defined by the EWGSOP (men: 22.3%; women 11.7%), AWGS (men: 10.9%; women: 8.0%) and IWGS (men: 24.5%; women: 11.0%) criteria but higher than the FNIH criteria (men: 6.0%; women: 1.7%). |
Yang et al., 2019 [89] | 384 | ≥60 year-old community-dwelling individuals living in China | EWGSOP and EWGSOP2 | BIA (ASMI, ASM/height2) | Handgrip strength was measured by using a dynamometer with 3 trials per arm. The best performance was recorded. | 4 m gait speed | The EWGSOP2 defined a lower prevalence of sarcopenia than that of the EWGSOP criteria. |
Wallengren et al., 2021 [90] | 1.041 | One cohort included ≥70 year-old participants, and the second cohort included ≥85 year-old participants from Sweeden | EWGSOP and EWGSOP2 | DXA (ALSTI kg/m2) | Handgrip strength was measured by using a dynamometer with 3 trials per arm. The best performance was recorded. | 30 m gait speed | A 0.9–1.0% lower prevalence of sarcopenia was determined by using the EWGSOP2 compared to the EWGSOP 1 (p < 0.005). |
Shafiee et al., 2020 [91] | 2.426 | ≥60 year-old community-dwelling individuals from Iran | EGWSOP and EWGSOP2 | DXA (SMI kg/m2) | Handgrip strength was measured by using a dynamometer with 3 trials per arm. The best performance was recorded. | 4.57 m gait speed | EWGSOP2 defined a lower prevalence of sarcopenia than that of the EWGSOP criteria for both males and females. |
Lee et al., 2013 [92] | 408 | ≥50 year-old community-dwelling individuals living in Taiwan | IWGS and EWGSOP | DXA (RASM, SMI %) | Handgrip strength was measured by using a dynamometer with 3 trials on the dominant hand. The best performance was recorded. | 6 m gait speed; 2 trials; The shortest time was recorded. | The EWGSOP criteria defined a significantly higher prevalence of sarcopenia (7.8% vs. 4.1%, p < 0.001 by RASM, and 16.6% vs. 11.1%, p < 0.001 by SMI) compared to the IWGS. |
Sim et al., 2019 [93] | 903 | ≥70 year-old community-dwelling Caucasian-Australian women | FNIH, EWGSOP and modified FNIH (AUS-POPF) and EWGSOP (AUS-POPE) | DXA (ALM/BMI and ALM/height2) | Handgrip strength was measured by using a dynamometer with 3 trials on dominant hand. The best performance was recorded. | TUG | Both the FNIH and EWGSOP sarcopenia definitions were predictive of future fall-related risk. |
Bachettini et al., 2020 [94] | 1.291 | ≥60 year-old community-dwelling individuals from Brazil | EWGSOP and EWGSOP2 | CC was measured using tape. Reduced muscle mass was determined if CC was ≤34 cm for men and ≤33 cm for women, according to cut-off values established from the same population. | Handgrip strength was measured by using manual digital dynamometers with 3 trials per arm. The best performance was recorded. | 4 m gait speed; 2 trials; The best performance was recorded. | No statistically significant association between the diagnostic criteria of sarcopenia and mortality risk was found. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voulgaridou, G.; Tyrovolas, S.; Detopoulou, P.; Tsoumana, D.; Drakaki, M.; Apostolou, T.; Chatziprodromidou, I.P.; Papandreou, D.; Giaginis, C.; Papadopoulou, S.K. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients 2024, 16, 436. https://doi.org/10.3390/nu16030436
Voulgaridou G, Tyrovolas S, Detopoulou P, Tsoumana D, Drakaki M, Apostolou T, Chatziprodromidou IP, Papandreou D, Giaginis C, Papadopoulou SK. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients. 2024; 16(3):436. https://doi.org/10.3390/nu16030436
Chicago/Turabian StyleVoulgaridou, Gavriela, Stefanos Tyrovolas, Paraskevi Detopoulou, Despoina Tsoumana, Mariella Drakaki, Thomas Apostolou, Ioanna P. Chatziprodromidou, Dimitrios Papandreou, Constantinos Giaginis, and Sousana K. Papadopoulou. 2024. "Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence" Nutrients 16, no. 3: 436. https://doi.org/10.3390/nu16030436
APA StyleVoulgaridou, G., Tyrovolas, S., Detopoulou, P., Tsoumana, D., Drakaki, M., Apostolou, T., Chatziprodromidou, I. P., Papandreou, D., Giaginis, C., & Papadopoulou, S. K. (2024). Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients, 16(3), 436. https://doi.org/10.3390/nu16030436