Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects
Abstract
:1. Introduction
2. Results
Associations of the Amounts of Minerals in the Daily Diet and Platelet Reactivity to Arachidonate, Collagen and ADP in Older Subjects
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Study Design
4.3. Blood Sampling, Isolation of Blood Plasma, Measurements of Blood Morphology and Serum Biochemistry
4.4. Whole Blood Impedance Aggregometry
4.5. Mineral Intake
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rana, A.; Westein, E.; Niego, B.; Hagemeyer, C.E. Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities. Front. Cardiovasc. Med. 2019, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res. 2007, 100, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Holmsen, H. Platelet Responses and Metabolism; C.R.C. Press: Boca Raton, FL, USA, 1986; p. 11. [Google Scholar]
- Jackson, S.P. The growing complexity of platelet aggregation. Blood 2007, 109, 5087–5095. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.R. Platelet interaction with collagen fibrils in flowing blood. I. Reaction of human platelets with alpha chymotrypsin-digested subendothelium. Thromb. Haemost. 1977, 37, 1–16. [Google Scholar] [PubMed]
- Clemetson, K.J.; Clemetson, J.M. Platelet collagen receptors. Thromb. Haemost. 2001, 86, 189–197. [Google Scholar]
- Yun, S.H.; Sim, E.H.; Goh, R.Y.; Park, J.I.; Han, J.Y. Platelet Activation: The Mechanisms and Potential Biomarkers. BioMed Res. Int. 2016, 2016, 9060143. [Google Scholar] [CrossRef]
- Adamzik, M.; Görlinger, K.; Peters, J.; Hartmann, M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit. Care 2012, 16, R204. [Google Scholar] [CrossRef]
- Yankin, I.; Carver, A.M.; Koenigshof, A.M. The use of impedance aggregometry to evaluate platelet function after the administration of DDAVP in healthy dogs treated with aspirin or clopidogrel. Am. J. Vet. Res. 2021, 82, 823–828. [Google Scholar] [CrossRef]
- Rumbaut, R.E.; Thiagarajan, P. Chapter 4, Platelet Aggregation. In Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53449/ (accessed on 15 May 2023).
- Wilkerson, W.R.; Sane, D.C. Aging and thrombosis. Semin. Thromb. Hemost. 2002, 28, 555–568. [Google Scholar] [CrossRef]
- Le Blanc, J.; Lordkipanidzé, M. Platelet Function in Aging. Front. Cardiovasc. Med. 2019, 6, 109. [Google Scholar] [CrossRef]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet function in patients with diabetes mellitus: From a theoretical to a practical perspective. Int. J. Endocrinol. 2011, 2011, 742719. [Google Scholar] [CrossRef] [PubMed]
- Gąsecka, A.; Rogula, S.; Szarpak, Ł.; Filipiak, K.J. LDL-Cholesterol and Platelets: Insights into Their Interactions in Atherosclerosis. Life 2021, 11, 39. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Pepperell, D.; Morel-Kopp, M.C.; Cumming, R.G.; Ward, C.; Hilmer, S.N. Effect of Frailty and Age on Platelet Aggregation and Response to Aspirin in Older Patients with Atrial Fibrillation: A Pilot Study. Cardiol. Ther. 2016, 5, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; Gioscia, R.; De Luca, G. Optimal dual antiplatelet therapy strategy in elderly patients with acute coronary syndrome. J. Geriatr. Cardiol. 2021, 18, 210–218. [Google Scholar] [CrossRef]
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc. Health Risk Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and Cardiovascular Health. Int. J. Mol. Sci. 2018, 19, 3988. [Google Scholar] [CrossRef]
- Violi, F.; Pignatelli, P.; Basili, S. Nutrition, supplements, and vitamins in platelet function and bleeding. Circulation 2010, 121, 1033–2044. [Google Scholar] [CrossRef]
- Ostertag, L.M.; O’Kennedy, N.; Kroon, P.A.; Duthie, G.G.; de Roos, B. Impact of dietary polyphenols on human platelet function—A critical review of controlled dietary intervention studies. Mol. Nutr. Food Res. 2010, 54, 60–81. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.I.; Josse, R.; Vieth, R.; Blanco Mejia, S.; Viguiliouk, E.; Nishi, S.; Sahye-Pudaruth, S.; et al. Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J. Am. Coll. Cardiol. 2018, 71, 2570–2584. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Gotay, C.; Humphries, K.H.; Ignaszewski, A.; Esmaillzadeh, A.; Sarrafzadegan, N. Electrolyte minerals intake and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 2375–2385. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.I.; Josse, R.G.; Vieth, R.; Sahye-Pudaruth, S.; Paquette, M.; Patel, D.; Blanco Mejia, S.; et al. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment: JACC Focus Seminar. J. Am. Coll. Cardiol. 2021, 77, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Ingles, D.P.; Cruz Rodriguez, J.B.; Garcia, H. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment. Curr. Cardiol. Rep. 2020, 22, 22. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.H.; Terker, A.S. Why Your Mother Was Right: How Potassium Intake Reduces Blood Pressure. Trans. Am. Clin. Climatol. Assoc. 2015, 126, 46–55. [Google Scholar] [PubMed]
- Vaskonen, T. Dietary minerals and modification of cardiovascular risk factors. J. Nutr. Biochem. 2003, 14, 492–506. [Google Scholar] [CrossRef]
- Kendrick, J.; Kestenbaum, B.; Chonchol, M. Phosphate and cardiovascular disease. Adv. Chronic Kidney Dis. 2011, 18, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Liu, J.; O’Keefe, J.H. Magnesium for the prevention and treatment of cardiovascular disease. Open Heart 2018, 5, e000775. [Google Scholar] [CrossRef]
- Wen, H.; Niu, X.; Hu, L.; Sun, N.; Zhao, R.; Wang, Q.; Li, Y. Dietary copper intake and risk of myocardial infarction in US adults: A propensity score-matched analysis. Front. Cardiovasc. Med. 2022, 9, 942000. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Glibetic, M. Zinc as a Biomarker of Cardiovascular Health. Front. Nutr. 2021, 8, 686078. [Google Scholar] [CrossRef] [PubMed]
- ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. [Google Scholar] [CrossRef]
- Kim, J.M.; Bae, Y.J. Mineral Intake Status of Community-Dwelling Elderly from Urban and Rural Areas of South Korea: A Cross-Sectional Study Based on Korean National Health and Nutrition Examination Survey, 2013~2016. Int. J. Environ. Res. Public Health 2020, 17, 3415. [Google Scholar] [CrossRef] [PubMed]
- Ervin, R.B.; Kennedy-Stephenson, J. Mineral intakes of elderly adult supplement and non-supplement users in the third national health and nutrition examination survey. J. Nutr. 2002, 132, 3422–3427. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Mahato, D.K.; Dey, A.; Dhawan, K.; Kumar, S. Nutritional Interventions for Elderly and Considerations for the Development of Geriatric Foods. Curr. Aging Sci. 2019, 12, 15–27. [Google Scholar] [CrossRef]
- Semba, R.D.; Bartali, B.; Zhou, J.; Blaum, C.; Ko, C.W.; Fried, L.P. Low serum micronutrient concentrations predict frailty among older women living in the community. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 594–599. [Google Scholar] [CrossRef]
- Michelon, E.; Blaum, C.; Semba, R.D.; Xue, Q.L.; Ricks, M.O.; Fried, L.P. Vitamin and carotenoid status in older women: Associations with the frailty syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 600–607. [Google Scholar] [CrossRef]
- Wiley, J.S.; Kuchibhotla, J.; Shaller, C.C.; Colman, R.W. Potassium uptake and release by human blood platelets. Blood 1976, 48, 185–197. [Google Scholar] [CrossRef]
- Lin, H.; Young, D.B. Interaction between plasma potassium and epinephrine in coronary thrombosis in dogs. Circulation 1994, 89, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Lu, X.; Skurnick, J.; Awad, G.; Bogden, J.; Kemp, F.; Aviv, A. Potassium chloride supplementation diminishes platelet reactivity in humans. Hypertension 2004, 44, 969–973. [Google Scholar] [CrossRef]
- Back, V.; Asgari, A.; Franczak, A.; Saito, M.; Castaneda Zaragoza, D.; Sandow, S.L.; Plane, F.; Jurasz, P. Inhibition of platelet aggregation by activation of platelet intermediate conductance Ca2+-activated potassium channels. J. Thromb. Haemost. 2022, 20, 2587–2600. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.R.; Mahaut-Smith, M.P. Why do platelets express K+ channels? Platelets 2021, 32, 872–879. [Google Scholar] [CrossRef]
- Smith, S.A.; Mutch, N.J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J.H. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 2006, 103, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Tustison, K.S.; Sugatani, T.; Chaudhary, L.R.; Rifas, L.; Hruska, K.A. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J. Am. Soc. Nephrol. 2008, 19, 1092–1105. [Google Scholar] [CrossRef]
- Lu, D.X.; Zhang, K.; Ma, T.; Li, M.; Li, Z.; Xu, Y.B.; Wang, C.F.; Ren, C.; Zhang, B.F. The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study. Diagnostics 2023, 13, 545. [Google Scholar] [CrossRef]
- Ahmed, N.S.; Lopes-Pires, M.; Pugh, N. Zinc: An endogenous and exogenous regulator of platelet function during hemostasis and thrombosis. Platelets 2021, 32, 880–887. [Google Scholar] [CrossRef]
- Watson, B.R.; White, N.A.; Taylor, K.A.; Howes, J.M.; Malcor, J.D.; Bihan, D.; Sage, S.O.; Farndale, R.W.; Pugh, N. Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner. Metallomics 2016, 8, 91–100. [Google Scholar] [CrossRef]
- Faure, P.; Durand, P.; Blache, D.; Favier, A.; Roussel, A.M. Influence of a long-term zinc-deficient diet on rat platelet function and fatty acid composition. Biometals 1995, 8, 80–85. [Google Scholar] [CrossRef]
- Chen, S.M.; Kuo, C.D.; Ho, L.T.; Liao, J.F. Zinc deficiency increases platelet oxidative stress in nephrectomized rats. Biol. Trace Elem. Res. 2007, 118, 111–119. [Google Scholar] [CrossRef]
- Gow, I.F.; Padfield, P.L.; Reid, M.; Stewart, S.E.; Edwards, C.R.; Williams, B.C. High sodium intake increases platelet aggregation in normal females. J. Hypertens. Suppl. 1987, 5, S243–S5246. [Google Scholar] [PubMed]
- Gow, I.F.; Dockrell, M.; Edwards, C.R.; Elder, A.; Grieve, J.; Kane, G.; Padfield, P.L.; Waugh, C.J.; Williams, B.C. The sensitivity of human blood platelets to the aggregating agent ADP during different dietary sodium intakes in healthy men. Eur. J. Clin. Pharmacol. 1992, 43, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, V.G.; Goff, T.; Hunsaker, B.D.; Neves, C.D. The Gilded Clot: Review of Metal-Modulated Platelet Activation, Coagulation, and Fibrinolysis. Int. J. Mol. Sci. 2023, 24, 3302. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; Ciavatti, M.; Thevenon, C.; Ripoll, J.P. Protective effects of dietary calcium and magnesium on platelet function and atherosclerosis in rabbits fed saturated fat. Atherosclerosis 1983, 47, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Sano, H.; Kawahara, J.; Yokoyama, M. Calcium supplementation attenuates an enhanced platelet function in salt-loaded mildly hypertensive patients. Hypertension 1995, 26, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D.A.; Hatton, D. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats. Am. J. Hypertens. 1997, 10, 1165–1170. [Google Scholar] [CrossRef]
- Brissot, E.; Troadec, M.B.; Loréal, O.; Brissot, P. Iron and platelets: A subtle, under-recognized relationship. Am. J. Hematol. 2021, 96, 1008–1016. [Google Scholar] [CrossRef]
- Elstrott, B.K.; Lakshmanan, H.H.S.; Melrose, A.R.; Jordan, K.R.; Martens, K.L.; Yang, C.J.; Peterson, D.F.; McMurry, H.S.; Lavasseur, C.; Lo, J.O.; et al. Platelet reactivity and platelet count in women with iron deficiency treated with intravenous iron. Res. Pract. Thromb. Haemost. 2022, 6, e12692. [Google Scholar] [CrossRef]
- Calişkan, U.; Oner, A.F.; Kabakuş, N.; Koç, H. Diminished platelet aggregation in patients with iron deficiency anemia. Clin. Appl. Thromb. Hemost. 1999, 5, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Lominadze, D.G.; Saari, J.T.; Miller, F.N.; Catalfamo, J.L.; Justus, D.E.; Schuschke, D.A. Platelet aggregation and adhesion during dietary copper deficiency in rats. Thromb. Haemost. 1996, 75, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Q.; Chen, Z.H.; Ma, G.Y.; Wang, D.C.; Wu, W.L.; Liu, W.P.; Yang, Y.K.; Xiong, H.Z. Inhibitory effects of copper-aspirin complex on platelet aggregation. Zhongguo Yao Li Xue Bao 1997, 18, 358–362. [Google Scholar] [PubMed]
- Weiping, L.; Yang, Y.K.; Xiong, H.Z.; Cheng, X.Z.; Chen, Z.H.; Shen, Z.Q.; Li, L. Coordination of copper with aspirin enhances its anti-platelet aggregation activity. Inflammopharmacology 1997, 5, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.L.; Yen, C.F.; Nadler, J.L. Effect of extracellular magnesium on platelet activation and intracellular calcium mobilization. Am. J. Hypertens. 1992, 5, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Gawaz, M.; Ott, I.; Reininger, A.J.; Neumann, F.J. Effects of magnesium on platelet aggregation and adhesion. Magnesium modulates surface expression of glycoproteins on platelets in vitro and ex vivo. Thromb. Haemost. 1994, 72, 912–918. [Google Scholar] [PubMed]
- Sheu, J.R.; Hsiao, G.; Shen, M.Y.; Fong, T.H.; Chen, Y.W.; Lin, C.H.; Chou, D.S. Mechanisms involved in the antiplatelet activity of magnesium in human platelets. Br. J. Haematol. 2002, 119, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- van Rensburg, M.J.; van Rooy, M.; Bester, M.J.; Serem, J.C.; Venter, C.; Oberholzer, H.M. Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: An ex vivo study. Hum. Exp. Toxicol. 2019, 38, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Sołtysik, B.K.; Kroc, Ł.; Pigłowska, M.; Guligowska, A.; Śmigielski, J.; Kostka, T. An Evaluation of the Work and Life Conditions and the Quality of Life in 60 to 65 Year-Old White-Collar Employees, Manual Workers, and Unemployed Controls. J. Occup. Environ. Med. 2017, 59, 461–466. [Google Scholar] [CrossRef]
- Karolczak, K.; Konieczna, L.; Kostka, T.; Witas, P.J.; Soltysik, B.; Baczek, T.; Watala, C. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Aging 2018, 10, 902–929. [Google Scholar] [CrossRef]
- Bartali, B.; Salvini, S.; Turrini, A.; Lauretani, F.; Russo, C.R.; Corsi, A.M.; Bandinelli, S.; D’Amicis, A.; Palli, D.; Guralnik, J.M.; et al. Age and disability affect dietary intake. J. Nutr. 2003, 133, 2868–2873. [Google Scholar] [CrossRef]
- Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Assessment of the dietary intake of high-rank professional male football players during a preseason training week. Int. J. Environ. Res. Public Health 2020, 17, 8567. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, P.; Adamska-Patruno, E.; Bauer, W.; Fiedorczuk, J.; Krasowska, U.; Moroz, M.; Gorska, M.; Kretowski, A. The impact of FTO genetic variants on obesity and its metabolic consequences is dependent on daily macronutrient intake. Nutrients 2020, 12, 3255. [Google Scholar] [CrossRef] [PubMed]
Variable | Both Sexes (n = 246) | Males (n = 124) | Females (n = 122) | p Value (Less than) |
---|---|---|---|---|
Indices of blood morphology, biochemistry and blood platelet aggregation | ||||
WBC (103/mm3) | 5.8 (5.0–6.9) | 6.0 (5.0–6.9) | 5.6 (5.1–6.8) | 0.05 U |
RBC (106/mm3) | 4.5 ± 0.4 | 4.7 (4.4–4.9) | 4.3 ± 0.3 | 0.0001 T |
HGB (g/dL) | 13.8 (13.0–14.6) | 14.4 (13.7–14.9) | 13.3 ± 0.8 | 0.0001 U |
HCT (%) | 39.8 (37.6–41.6) | 41.1 (39.2–42.6) | 38.5 ± 2.2 | 0.0001 U |
PLT (103/mm3) | 213.0 (181–243) | 197.0 (168.5–228.5) | 226.0 ±44.7 | 0.0001 U |
MPV (µm3) | 11.3 (10.8–12.1) | 11.2 ± 0.9 | 11.35 ± 1.0 | n.s. T |
PCT (%) | 0.2 (0.2–0.2) | 0.22 (0.2–0.2) | 0.26 ± 0.1 | 0.0001 U |
PDW (fl) | 13.6 (12.4–15.6) | 13.5 (12.1–15.2) | 13.8 (12.7–16.3) | 0.05 U |
P-LCR (%) | 36.1 ± 7.7 | 35.7 ± 7.4 | 36.5 ± 8.4 | 0.05 T |
Lym (103/mm3) | 2.0 (1.6–2.4) | 1.9 (1.5–2.2) | 1.9 ± 0.5 | n.s. U |
Mono (103/mm3) | 0.5 (0.5–0.7) | 0.5 (0.5–0.7) | 0.5 (0.4–0.6) | 0.0001 U |
Neu (103/mm3) | 3.1 (2.6–3.9) | 3.2 (2.5–3.8) | 2.9 (2.5–4.0) | n.s. U |
Eo (103/mm3) | 0.2 (0.1–0.2) | 0.1 (0.1–0.2) | 0.1 (0.1–0.2) | 0.05 U |
Baso (103/mm3) | 0.03 (0.02–0.03) | 0.03 (0.02–0.03) | 0.03 (0.02–0.03) | n.s. U |
Total cholesterol (mg/dL) | 206.8 (173.8–237.3) | 187.2 (168.7–218.3) | 223.1 ± 49.9 | 0.0001 U |
Triglycerides (mg/dL) | 111.2 (76.8–161.1) | 111.2 (77.4–141.3) | 110.5 (78.4–164.4) | n.s. U |
HDL cholesterol (mg/dL) | 48.4 (41.0–59.3) | 44.3 (40.2–51.0) | 54.25 (44.1–63.4) | 0.0001 U |
LDL cholesterol (mg/dL) | 131.2 (103.4–156.5) | 116.3 (101.4–139.0) | 140.1 ± 39.6 | 0.001 U |
Glucose (mg/dL) | 99.2 (91.4–108.3) | 101.0 (93.8–111.6) | 96.4 (89.0–105.4) | 0.01 U |
Uric acid (mg/dL) | 4.8 ± 1.2 | 5.4 (4.8–6.1) | 4.3 (3.8–5.2) | 0.0001 T |
AUC_AA | 2486.5 (2075.5–2864.6) | 2356.5 (1867.5–2643.5) | 2652.0 (2217.0–2962.7) | 0.001 U |
Amax_AA | 128.0 (109.1–145.1) | 123.7 (102.0–138.6) | 134.0 (117.2–151.4) | 0.01 U |
(AUC×Amax)/1000_AA | 319.2 (224.8–417.9) | 291.9 (186.8–369.1) | 354.5 (256.8–449.7) | 0.001 U |
AUC_COL | 2825.0 (2442.7–3326.2) | 2680.0 (2273.7–3217.0) | 2972.5 (2567.7–3463.2) | 0.01 U |
Amax_COL | 152.6 (133.5–177.6) | 147.4 (123.8–167.9) | 157.9 (137.2–184.9) | 0.01 U |
(AUC×Amax)/1000_COL | 438.1 (328.6–587.7) | 386.9 (287.9–535.5) | 470.6 (356.8–636.8) | 0.01 U |
AUC_ADP | 2326.0 (1985.5–2746.4) | 2167.0 (1808.7–2580.5) | 2471.5 (2191.5–2812.5) | 0.001 U |
Amax_ADP | 122.3 (104.4–140.3) | 113.4 (94.2–131.5) | 128.1 (114.6–144.2) | 0.001 U |
(AUC×Amax)/1000_ADP | 284.4 (206.4–376.9) | 245.2 (170.3–343.5) | 322.8 (254.4–408.3) | 0.001 U |
Mineral intake | ||||
Sodium (mg) | 3338.9 (2435.6–4307.4) | 3943.9 (2977.3–4790.6) | 2795.8 (2092.6–3806.8) | 0.0001 U |
Potassium (mg) | 2975.5 (2275.4–4017.1) | 3408.6 (2436.1–4342.4) | 2805.0 (2239.0–3733.8) | 0.05 U |
Calcium (mg) | 589.6 (346.6–837.7) | 610.5 (364.1–871.9) | 573.0 (341.6–796.4) | n.s. U |
Phosphorus (mg) | 1160.2 (921.3–1439.3) | 1223.5 (963.6–1588.0) | 1111.0 (873.9–1355.7) | 0.01 U |
Magnesium (mg) | 292.5 (231.2– 364.5) | 309.0 (241.8–382.8) | 269.8 (221.4–354.9) | 0.05 U |
Iron (mg) | 9.9 (7.9–13.4) | 10.4 (8.2–14.1) | 9.5 (7.4–12.1) | 0.05 U |
Zinc (mg) | 9.2 (7.2–11.8) | 10.2 (8.2–13.2) | 8.6 (7.0–10.7) | 0.0001 U |
Copper (mg) | 1.1 (0.8–1.5) | 1.1 (0.9–1.5) | 1.1 (0.8–1.4) | n.s. U |
Manganese (mg) | 4.8 (3.6–6.9) | 4.9 (3.7–7.3) | 4.7 (3.5–6.1) | n.s. U |
Dietary indices | ||||
Protein intake (g) | 72.1 (54.9–85.8) | 77.3 (59.8–94.0) | 67.1 (50.0–81.4) | 0.001 U |
Fat intake (g) | 56.5 (39.8–83.0) | 65.0 (46.2–95.4) | 50.1 (34.3–66.9) | 0.0001 U |
Carbohydrates intake (g) | 224.2 (172.1–293.4) | 252.5 (194.6–322.3) | 199.4 (152.7–264.7) | 0.0001 U |
AA | COL | ADP | |
---|---|---|---|
Sodium (mg) | 0.124 n.s./−0.096 n.s. | −0.108 n.s./−0.027 n.s. | −0.120 n.s./−0.116 * |
Potassium (mg) | −0.175 ##/−0.147 # | −0.130 #/−0.143 # | −0.159 #/−0.109 ## |
Calcium (mg) | −0.089 n.s./−0.080 n.s. | −0.125 */−0.022 n.s. | −0.085 n.s./−0.089 n.s. |
Phosphorus (mg) | −0.134 #/−0.142 # | −0.134 #/−0.102 n.s. | −0.130 #/−0.179 ## |
Iron (mg) | −0.155 #/−0.102 n.s. | −0.129 #/−0.122 * | −0.108 n.s./−0.146 # |
Zinc (mg) | −0.175 ##/−0.168 ## | −0.160 #/−0.142 # | −0.187 ##/−0.215 ## |
Copper (mg) | −0.149 #/−0.122 * | −0.069 n.s./−0.061 n.s. | −0.093 n.s./−0.102 n.s. |
Magnesium (mg) | −0.179 ##/−0.084 n.s. | −0.08 n.s./−0.095 n.s. | −0.085 n.s./−0.036 n.s. |
Manganese (mg) | −0.131 #/−0.106 * | −0.074 n.s./−0.102 n.s. | −0.063 n.s./−0.052 n.s. |
AA | COL | ADP | |
---|---|---|---|
Sodium (mg) | −0.034 n.s., I −0.055 n.s., II 0.068 n.s., III | −0.050 n.s., I −0.057 n.s., II 0.072 n.s., III | −0.050 n.s., I −0.053 n.s., II 0.086 n.s., III |
Potassium (mg) | −0.104 n.s., I −0.120 n.s., II −0.035 n.s., III | −0.111 n.s., I −0.125 n.s., II −0.048 n.s., III | −0.146 #, I −0.158 #, II −0.074 n.s., III |
Calcium (mg) | −0.086 n.s., I −0.093 n.s., II 0.009 n.s., III | −0.097 n.s., I −0.107 n.s., II 0.004 n.s., III | −0.117 *, I −0.123 *, II 0.006 n.s., III |
Phosphorus (mg) | −0.097 n.s., I −0.110 n.s., II 0.016 n.s., III | −0.131 *, I −0.144 #, II −0.040 n.s., III | −0.136 #, I −0.146 #, II −0.015 n.s., III |
Iron (mg) | −0.046 n.s., I −0.059 n.s., II 0.014 n.s., III | −0.097 n.s., I −0.110 *, II −0.043 n.s., III | −0.096 n.s., I −0.107 n.s., II −0.023 n.s., III |
Zinc (mg) | −0.017 n.s., I −0.116 *, II −0.034 n.s., III | −0.123 *, I −0.132 *, II −0.075 n.s., III | −0.149 #, I −0.132 *, II −0.080 n.s., III |
Copper (mg) | −0.097 n.s., I −0.106 n.s., II −0.036 n.s., III | −0.061 n.s., I −0.071 n.s., II −0.003 n.s., III | −0.092 n.s., I −0.098 n.s., II −0.010 n.s., III |
Magnesium (mg) | −0.057 n.s., I −0.074 n.s., II −0.042 n.s., III | −0.117 *, I −0.126 *, II −0.073 n.s., III | −0.013 n.s., I −0.026 n.s., II 0.042 n.s., III |
Manganese (mg) | −0.055 n.s., I −0.047 n.s., II −0.057 n.s., III | −0.033 n.s., I −0.037 n.s., II −0.062 n.s., III | 0.016 n.s., I 0.019 n.s., II 0.009 n.s., III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karolczak, K.; Guligowska, A.; Sołtysik, B.K.; Kostanek, J.; Kostka, T.; Watala, C. Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects. Nutrients 2024, 16, 332. https://doi.org/10.3390/nu16030332
Karolczak K, Guligowska A, Sołtysik BK, Kostanek J, Kostka T, Watala C. Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects. Nutrients. 2024; 16(3):332. https://doi.org/10.3390/nu16030332
Chicago/Turabian StyleKarolczak, Kamil, Agnieszka Guligowska, Bartłomiej K. Sołtysik, Joanna Kostanek, Tomasz Kostka, and Cezary Watala. 2024. "Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects" Nutrients 16, no. 3: 332. https://doi.org/10.3390/nu16030332
APA StyleKarolczak, K., Guligowska, A., Sołtysik, B. K., Kostanek, J., Kostka, T., & Watala, C. (2024). Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects. Nutrients, 16(3), 332. https://doi.org/10.3390/nu16030332