The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium
Highlights
- Trace elements, e.g., zinc, magnesium, and selenium, play key roles in COPD by regulating oxidative stress, inflammation, and immune responses.
- Supplementation with these elements can reduce inflammation, improve lung function, and enhance muscle strength in COPD patients.
- Future research should explore the synergistic effects of combined therapies and refine supplementation strategies tailored to individual needs.
Abstract
:1. Introduction
2. Methods
- Study population: patients aged 40 years and older with a confirmed diagnosis of COPD.
- Intervention: supplementation with trace elements, including zinc, copper, iron, selenium, magnesium, manganese, and calcium.
- Outcome measures: lung function (spirometry), physical activity (6 min walk test, incremental shuttle walk test), systemic inflammatory markers (C-reactive protein, interleukins, tumor necrosis factor-alpha), quality of life (COPD Assessment Test, St George’s Respiratory Questionnaire, EuroQol-5D), exacerbation frequency, and mortality risk.
- Study design: randomized controlled trials, human clinical trials, and follow-up cohort, retrospective, and cross-sectional studies.
- Published articles: articles indexed in PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar.
- Preclinical studies (in vitro studies and intervention studies involving animal models).
- In vitro studies.
- Interventions focusing on macronutrients.
- Dietary advice without intervention.
3. Results
3.1. Clinical Research and the Effect of Zinc Supplementation in COPD
3.2. Effects of Iron Therapy on Oxidative Stress and Quality of Life in COPD Patients
3.3. The Role of Magnesium Sulfate in COPD Exacerbation Management
3.4. The Role of Selenium in Lung Function and COPD
3.5. Manganese and COPD: Potential Role in Disease Pathogenesis
3.6. The Role of Copper in COPD: Biomarker Potential and Therapeutic Implications
3.7. Calcium and COPD: Its Role in Disease Pathogenesis
4. Discussion
- The effects of trace element supplementation and combination therapies: exploring the potential benefits of combined supplementation (e.g., zinc and selenium, or iron and selenium) to maximize the therapeutic efficacy.
- The optimization of trace element dosages: determining the optimal dosages of trace elements tailored to individual needs and disease stages to enhance treatment outcomes.
- The reliability of biomarkers: evaluating the accuracy and reliability of various biomarkers for identifying trace element deficiencies and monitoring the efficacy of supplementation therapies.
5. Limitations
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Kuhn, M.; Prettner, K.; Yu, F.; Yang, T.; Bärnighausen, T.; Bloom, D.E.; Wang, C. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020–50: A health-augmented macroeconomic modelling study. Lancet Glob. Health 2023, 11, e1183–e1193. [Google Scholar] [CrossRef] [PubMed]
- Fazekas-Pongor, V.; Fekete, M.; Balazs, P.; Árva, D.; Pénzes, M.; Tarantini, S.; Urbán, R.; Varga, J.T. Health-related quality of life of COPD patients aged over 40 years. Physiol. Int. 2021, 108, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Gu, W.; Zhang, T.; Xu, X.; Yu, L. Current perspectives on biological therapy for COPD. COPD J. Chronic Obstr. Pulm. Dis. 2023, 20, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.T.; Munkácsi, A.; Máthe, C.; Somfay, A.; Bálint, B.; Lovász, O.; Várdi, K.; Pesti, A.; Koncz, M.; Szilasi, M. A belégző izmok fizikai tréningjének hatása a betegek fizikai állapotára COPD-ben. Med. Thorac. 2018, 71, 96–102. [Google Scholar]
- Boers, E.; Barrett, M.; Su, J.G.; Benjafield, A.V.; Sinha, S.; Kaye, L.; Zar, H.J.; Vuong, V.; Tellez, D.; Gondalia, R. Global burden of chronic obstructive pulmonary disease through 2050. JAMA Netw. Open 2023, 6, e2346598. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S. The role of smoking in the mechanisms of development of chronic obstructive pulmonary disease and atherosclerosis. Int. J. Mol. Sci. 2023, 24, 8725. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Fazekas-Pongor, V.; Balázs, P.; Tarantini, S.; Szollosi, G.; Pakó, J.; Nemeth, A.N.; Varga, J.T. Effect of malnutrition and body composition on the quality of life of COPD patients. Physiol. Int. 2021, 108, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Lehoczki, A.; Tarantini, S.; Varga, J.T. Effects of omega-3 supplementation on quality of life, nutritional status, inflammatory parameters, lipid profile, exercise tolerance and inhaled medications in chronic obstructive pulmonary disease. Ann. Palliat Med. 2022, 11, 2819–2829. [Google Scholar] [CrossRef]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Varga, J. Mechanisms to dyspnoea and dynamic hyperinflation related exercise intolerance in COPD. Acta Physiol. Hung 2015, 102, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. ABC of chronic obstructive pulmonary disease. Future treatments. BMJ 2006, 333, 246–248. [Google Scholar] [CrossRef]
- MacNee, W. Oxidants/antioxidants and chronic obstructive pulmonary disease: Pathogenesis to therapy. Novartis Found Symp. 2001, 234, 169–185; discussion in 185–168. [Google Scholar] [PubMed]
- Kirkham, P.; Rahman, I. Oxidative stress in asthma and COPD: Antioxidants as a therapeutic strategy. Pharmacol. Ther. 2006, 111, 476–494. [Google Scholar] [CrossRef] [PubMed]
- Elmansi, A.M.; Miller, R.A. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. Geroscience 2023, 45, 2967–2981. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.L.; Sell, C.; Azizkhan-Clifford, J. DNA damage-induced degradation of Sp1 promotes cellular senescence. Geroscience 2022, 44, 683–698. [Google Scholar] [CrossRef]
- Pearce, E.E.; Alsaggaf, R.; Katta, S.; Dagnall, C.; Aubert, G.; Hicks, B.D.; Spellman, S.R.; Savage, S.A.; Horvath, S.; Gadalla, S.M. Telomere length and epigenetic clocks as markers of cellular aging: A comparative study. Geroscience 2022, 44, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Cordoba-Lanus, E.; Montuenga, L.M.; Dominguez-de-Barros, A.; Oliva, A.; Mayato, D.; Remirez-Sanz, A.; Gonzalvo, F.; Celli, B.; Zulueta, J.J.; Casanova, C. Oxidative Damage and Telomere Length as Markers of Lung Cancer Development among Chronic Obstructive Pulmonary Disease (COPD) Smokers. Antioxidants 2024, 13, 156. [Google Scholar] [CrossRef]
- Molnar, T.; Lehoczki, A.; Fekete, M.; Varnai, R.; Zavori, L.; Erdo-Bonyar, S.; Simon, D.; Berki, T.; Csecsei, P.; Ezer, E. Mitochondrial dysfunction in long COVID: Mechanisms, consequences, and potential therapeutic approaches. Geroscience 2024, 46, 5267–5286. [Google Scholar] [CrossRef] [PubMed]
- Seman, A.; Chandra, P.K.; Byrum, S.D.; Mackintosh, S.G.; Gies, A.J.; Busija, D.W.; Rutkai, I. Targeting mitochondria in the aged cerebral vasculature with SS-31, a proteomic study of brain microvessels. Geroscience 2023, 45, 2951–2965. [Google Scholar] [CrossRef] [PubMed]
- Selvarani, R.; Van Michelle Nguyen, H.; Thadathil, N.; Wolf, R.F.; Freeman, W.M.; Wiley, C.D.; Deepa, S.S.; Richardson, A. Characterization of novel mouse models to study the role of necroptosis in aging and age-related diseases. Geroscience 2023, 45, 3241–3256. [Google Scholar] [CrossRef]
- Burnaevskiy, N.; Oshima, J.; Mendenhall, A.R. Rapid emergence of transcriptional heterogeneity upon molecular stress predisposes cells to two distinct states of senescence. Geroscience 2023, 45, 1115–1130. [Google Scholar] [CrossRef] [PubMed]
- Marcozzi, S.; Bigossi, G.; Giuliani, M.E.; Giacconi, R.; Piacenza, F.; Cardelli, M.; Brunetti, D.; Segala, A.; Valerio, A.; Nisoli, E.; et al. Cellular senescence and frailty: A comprehensive insight into the causal links. Geroscience 2023, 45, 3267–3305. [Google Scholar] [CrossRef]
- Gulej, R.; Nyul-Toth, A.; Ahire, C.; DelFavero, J.; Balasubramanian, P.; Kiss, T.; Tarantini, S.; Benyo, Z.; Pacher, P.; Csik, B.; et al. Elimination of senescent cells by treatment with Navitoclax/ABT263 reverses whole brain irradiation-induced blood-brain barrier disruption in the mouse brain. Geroscience 2023, 45, 2983–3002. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, T.; Tang, X.; Wen, J.; Zhang, Y.; Zhang, J.; Wang, S. Increased cellular senescence in doxorubicin-induced murine ovarian injury: Effect of senolytics. Geroscience 2023, 45, 1775–1790. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Senotherapy for lung diseases. Adv. Pharmacol. 2023, 98, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Baker, J.; Donnelly, L.E. Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. Am. J. Respir Crit. Care Med. 2019, 200, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Hatao, H.; Oh-ishi, S.; Itoh, M.; Leeuwenburgh, C.; Ohno, H.; Ookawara, T.; Kishi, K.; Yagyu, H.; Nakamura, H.; Matsuoka, T. Effects of acute exercise on lung antioxidant enzymes in young and old rats. Mech. Ageing Dev. 2006, 127, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Lopez, M.; Barja de Quiroga, G. Aging and lung antioxidant enzymes, glutathione, and lipid peroxidation in the rat. Free Radic. Biol. Med. 1991, 10, 35–39. [Google Scholar] [CrossRef]
- Garcia-Vilanova, A.; Allue-Guardia, A.; Chacon, N.M.; Akhter, A.; Singh, D.K.; Kaushal, D.; Restrepo, B.I.; Schlesinger, L.S.; Turner, J.; Weintraub, S.T.; et al. Proteomic analysis of lung responses to SARS-CoV-2 infection in aged non-human primates: Clinical and research relevance. Geroscience 2024, 46, 6395–6417. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Parker, K.; Lehoczki, A.; Lieberman, D.; Partha, I.S.; Scott, S.J.; Phillips, L.R.; Fain, M.J.; Nikolich, J.Z. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. Geroscience 2024, 46, 6563–6581. [Google Scholar] [CrossRef] [PubMed]
- Gounder, S.S.; Kannan, S.; Devadoss, D.; Miller, C.J.; Whitehead, K.S.; Odelberg, S.J.; Firpo, M.A.; Paine, R., 3rd; Hoidal, J.R.; Abel, E.D.; et al. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS ONE 2012, 7, e45697. [Google Scholar] [CrossRef]
- Ungvari, Z.; Bailey-Downs, L.; Sosnowska, D.; Gautam, T.; Koncz, P.; Losonczy, G.; Ballabh, P.; de Cabo, R.; Sonntag, W.E.; Csiszar, A. Vascular oxidative stress in aging: A homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H363–H372. [Google Scholar] [CrossRef]
- Ungvari, Z.; Bailey-Downs, L.; Gautam, T.; Sosnowska, D.; Wang, M.; Monticone, R.E.; Telljohann, R.; Pinto, J.T.; de Cabo, R.; Sonntag, W.E.; et al. Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 866–875. [Google Scholar] [CrossRef]
- Chandra, P.K.; Cikic, S.; Rutkai, I.; Guidry, J.J.; Katakam, P.V.G.; Mostany, R.; Busija, D.W. Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. Geroscience 2022, 44, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Madurka, I.; Boros, E.; Czibók Cs, K.Z.; Bogos, K.; Müller, V.; Szilasi, M. COVID-19 betegek komplex rehabilitációja. Szakmai Protok. 2020. Available online: https://tudogyogyasz.hu/Media/Download/29632 (accessed on 6 October 2024).
- Gurgueira, S.A.; Lawrence, J.; Coull, B.; Murthy, G.G.; Gonzalez-Flecha, B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 2002, 110, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Donlon, T.A.; Morris, B.J.; Chen, R.; Lim, E.; Morgen, E.K.; Fortney, K.; Shah, N.; Masaki, K.H.; Willcox, B.J. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. Geroscience 2023, 45, 2303–2324. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, G.W.; Justice, J.N.; Quillen, E.E.; Cline, J.M. Resilience, aging, and response to radiation exposure (RARRE) in nonhuman primates: A resource review. Geroscience 2023, 45, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, B.; Tare, A.; Ryu, S.; Johnson, S.C.; Atzmon, G.; Barzilai, N.; Kaeberlein, M.; Suh, Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. Geroscience 2023, 45, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Roman, I.; Ferrando, B.; Holst, C.M.; Mengel-From, J.; Rasmussen, S.H.; Thinggaard, M.; Bohr, V.A.; Christensen, K.; Stevnsner, T. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. Geroscience 2022, 44, 103–125. [Google Scholar] [CrossRef] [PubMed]
- Pomatto, L.C.D.; Dill, T.; Carboneau, B.; Levan, S.; Kato, J.; Mercken, E.M.; Pearson, K.J.; Bernier, M.; de Cabo, R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic. Biol. Med. 2020, 152, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Alves, I.; Singh, P.; Palade, P.T.; Carvalho, E.; Borsheim, E.; Jun, S.R.; Cheema, A.; Boerma, M.; Awasthi, S.; et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020, 19, e13261. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, L.; Liu, H.; Wu, K.; Liu, Y.; Bai, L.; Wang, Q.; Qi, B.; Qi, B.; Zhang, L. Reduced NRF2 expression suppresses endothelial progenitor cell function and induces senescence during aging. Aging 2019, 11, 7021–7035. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, M.; Hong, J.; Atieno, N.; Muthusamy, V.R.; Davidson, C.J.; Abu-Rmaileh, N.; Richardson, R.S.; Gomes, A.V.; Hoidal, J.R.; Rajasekaran, N.S. Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radic. Biol. Med. 2014, 71, 402–414. [Google Scholar] [CrossRef]
- Fulop, G.A.; Kiss, T.; Tarantini, S.; Balasubramanian, P.; Yabluchanskiy, A.; Farkas, E.; Bari, F.; Ungvari, Z.; Csiszar, A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 2018, 40, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; Kiss, T.; Gulej, R.; Nyul Toth, A.; Tarantini, S.; Yabluchanskiy, A.; Ungvari, Z.; Csiszar, A. Accelerated Aging Induced by an Unhealthy High-Fat Diet: Initial Evidence for the Role of Nrf2 Deficiency and Impaired Stress Resilience in Cellular Senescence. Nutrients 2024, 16, 952. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Nyul-Toth, A.; Kiss, T.; Yabluchanskiy, A.; Csipo, T.; Balasubramanian, P.; Lipecz, A.; Benyo, Z.; Csiszar, A. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: From increased cellular senescence to the pathogenesis of age-related vascular diseases. Geroscience 2019, 41, 727–738. [Google Scholar] [CrossRef]
- Tarantini, S.; Valcarcel-Ares, M.N.; Yabluchanskiy, A.; Tucsek, Z.; Hertelendy, P.; Kiss, T.; Gautam, T.; Zhang, X.A.; Sonntag, W.E.; de Cabo, R.; et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.; Pharaoh, G.; Premkumar, P.; Huseman, K.; Ranjit, R.; Kinter, M.; Szweda, L.; Kiss, T.; Fulop, G.; Tarantini, S.; et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol 2018, 17, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel-Ares, M.N.; Gautam, T.; Warrington, J.P.; Bailey-Downs, L.; Sosnowska, D.; de Cabo, R.; Losonczy, G.; Sonntag, W.E.; Ungvari, Z.; Csiszar, A. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: Implications for microvascular aging. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.K.; Gowder, S.J.T. Members of antioxidant machinery and their functions. Basic Princ. Clin. Significance Oxid. Stress 2015, 11, 59–85. [Google Scholar]
- Oberley-Deegan, R.E.; Regan, E.A.; Kinnula, V.L.; Crapo, J.D. Extracellular superoxide dismutase and risk of COPD. COPD J. Chronic Obstr. Pulm. Dis. 2009, 6, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Major, D.; Feher, A.; Fazekas-Pongor, V.; Lehoczki, A. Geroscience and pathology: A new frontier in understanding age-related diseases. Pathol. Oncol. Res. 2024, 30, 1611623. [Google Scholar] [CrossRef]
- Moustakas, M. The role of metal ions in biology, biochemistry and medicine. Materials 2021, 14, 549. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Gozzi-Silva, S.C.; Teixeira, F.M.E.; Duarte, A.J.d.S.; Sato, M.N.; Oliveira, L.d.M. Immunomodulatory role of nutrients: How can pulmonary dysfunctions improve? Front. Nutr. 2021, 8, 674258. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Voutilainen, A.; Laukkanen, J.A. Serum copper-to-zinc ratio and risk of chronic obstructive pulmonary disease: A cohort study. Lung 2023, 201, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Pavlisko, E.N.; Roggli, V.L.; Todd, N.W.; Sangani, R.G. Cigarette smoke particle-induced lung injury and iron homeostasis. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Gumus, A.; Haziroglu, M.; Gunes, Y. Association of serum magnesium levels with frequency of acute exacerbations in chronic obstructive pulmonary disease: A prospective study. Pulm. Med. 2014, 2014, 329476. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Massaro, M.; Garbarino, S.; Toraldo, D.M. Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients 2019, 11, 1357. [Google Scholar] [CrossRef]
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review. Nutrients 2023, 15, 2741. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Kurys, E.; Kurys, P.; Kuźniar, A.; Kieszko, R. Analysis of antioxidant enzyme activity and magnesium level in chronic obstructive pulmonary disease (COPD). Ann. Univ. Mar. Curie Sklodowska Med. 2001, 56, 261–266. [Google Scholar]
- Tanrikulu, A.C.; Abakay, A.; Evliyaoglu, O.; Palanci, Y. Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease. Biol. Trace Elem. Res. 2011, 143, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kırkıl, G.; Hamdi Muz, M.; Seçkin, D.; Şahin, K.; Küçük, Ö. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 2008, 102, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ali, M.K.; Dua, K.; Xu, R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022, 14, 2115. [Google Scholar] [CrossRef]
- León-Espinosa de los Monteros, M.T.; Gil Extremera, B.; Maldonado Martín, A.; Luna del Castillo, J.D.; Muñoz Parra, F.; Ruiz López, M.F.; Huertas Hernández, F.; Cobo Martínez, F. Zinc and chronic obstructive pulmonary disease. Rev. Clin. Esp. 2000, 200, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Isbaniah, F.; Wiyono, W.H.; Yunus, F.; Setiawati, A.; Totzke, U.; Verbruggen, M.A. Echinacea purpurea along with zinc, selenium and vitamin C to alleviate exacerbations of chronic obstructive pulmonary disease: Results from a randomized controlled trial. J. Clin. Pharm. Ther. 2011, 36, 568–576. [Google Scholar] [CrossRef]
- Gouzi, F.; Maury, J.; Héraud, N.; Molinari, N.; Bertet, H.; Ayoub, B.; Blaquière, M.; Bughin, F.; De Rigal, P.; Poulain, M.; et al. Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial. Oxid. Med. Cell. Longev. 2019, 2019, 5496346. [Google Scholar] [CrossRef] [PubMed]
- El-Attar, M.; Said, M.; El-Assal, G.; Sabry, N.A.; Omar, E.; Ashour, L. Serum trace element levels in COPD patient: The relation between trace element supplementation and period of mechanical ventilation in a randomized controlled trial. Respirology 2009, 14, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Koç, U.; Karnak, D.; Kavas, G.Ö.; Kayacan, O. Trace elements (copper, zinc and selenium) in acute COPD exacerbation. Trace Elem. Electrolytes 2012, 29, 59–64. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Martín-Ontiyuelo, C.; Rodó-Pi, A.; Piccari, L.; Admetlló, M.; Durán, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021, 9, 1191. [Google Scholar] [CrossRef] [PubMed]
- Martín-Ontiyuelo, C.; Rodó-Pin, A.; Echeverría-Esnal, D.; Admetlló, M.; Duran-Jordà, X.; Alvarado, M.; Gea, J.; Barreiro, E.; Rodríguez-Chiaradía, D.A. Intravenous Iron Replacement Improves Exercise Tolerance in COPD: A Single-Blind Randomized Trial. Arch. Bronconeumol. 2022, 58, 689–698. [Google Scholar] [CrossRef]
- Grasmuk-Siegl, E.; Urban, M.H.; Scherrer, S.; Funk, G.C. Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD: A pilot study. Wien. Klin. Wochenschr. 2023, 135, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Santer, P.; McGahey, A.; Frise, M.C.; Petousi, N.; Talbot, N.P.; Baskerville, R.; Bafadhel, M.; Nickol, A.H.; Robbins, P.A. Intravenous iron and chronic obstructive pulmonary disease: A randomised controlled trial. BMJ Open Respir. Res. 2020, 7, e000577. [Google Scholar] [CrossRef] [PubMed]
- do Amaral, A.F.; Rodrigues-Júnior, A.L.; Terra Filho, J.; Vannucchi, H.; Martinez, J.A. Effects of acute magnesium loading on pulmonary function of stable COPD patients. Med. Sci. Monit. 2008, 14, Cr524–Cr529. [Google Scholar] [PubMed]
- Mukerji, S.; Shahpuri, B.; Clayton-Smith, B.; Smith, N.; Armstrong, P.; Hardy, M.; Marchant, G.; Marsh, E. Intravenous magnesium sulphate as an adjuvant therapy in acute exacerbations of chronic obstructive pulmonary disease: A single centre, randomised, double-blinded, parallel group, placebo-controlled trial: A pilot study. N. Z. Med. J. 2015, 128, 34–42. [Google Scholar]
- Amaral, A.F.; Gallo, L., Jr.; Vannucchi, H.; Crescêncio, J.C.; Vianna, E.O.; Martinez, J.A. The effect of acute magnesium loading on the maximal exercise performance of stable chronic obstructive pulmonary disease patients. Clinics 2012, 67, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Skorodin, M.S.; Tenholder, M.F.; Yetter, B.; Owen, K.A.; Waller, R.F.; Khandelwahl, S.; Maki, K.; Rohail, T.; D’Alfonso, N. Magnesium sulfate in exacerbations of chronic obstructive pulmonary disease. Arch. Intern. Med. 1995, 155, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Vafadar Moradi, E.; Pishbin, E.; Habibzadeh, S.R.; Talebi Doluee, M.; Soltanifar, A. The Adjunctive Effect of Intravenous Magnesium Sulfate in Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial. Acad. Emerg. Med. 2021, 28, 359–362. [Google Scholar] [CrossRef]
- Abreu González, J.; Hernández García, C.; Abreu González, P.; Martín García, C.; Jiménez, A. Effect of intravenous magnesium sulfate on chronic obstructive pulmonary disease exacerbations requiring hospitalization: A randomized placebo-controlled trial. Arch. Bronconeumol. 2006, 42, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Solooki, M.; Miri, M.; Mokhtari, M.; Valai, M.; Sistanizad, M.; Kouchek, M. Magnesium Sulfate in Exacerbations of COPD in Patients Admitted to Internal Medicine Ward. Iran. J. Pharm. Res. 2014, 13, 1235–1239. [Google Scholar]
- Zanforlini, B.M.; Ceolin, C.; Trevisan, C.; Alessi, A.; Seccia, D.M.; Noale, M.; Maggi, S.; Guarnieri, G.; Vianello, A.; Sergi, G. Clinical trial on the effects of oral magnesium supplementation in stable-phase COPD patients. Aging Clin. Exp. Res. 2022, 34, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Cömert, Ş.; Kıyan, E.; Okumuş, G.; Arseven, O.; Ece, T.; İşsever, H. Efficiency of nebulised magnesium sulphate in infective exacerbations of chronic obstructive pulmonary disease. Tuberk Toraks 2016, 64, 17–26. [Google Scholar] [CrossRef]
- Ates Alkan, F.; Karis, D.; Cakmak, G.; Ercan, A.M. Analysis of the Relationship Between Hemorheologic Parameters, Aluminum, Manganese, and Selenium in Smokers. Biol. Trace Elem. Res. 2019, 187, 22–31. [Google Scholar] [CrossRef]
- Fu, C.; Shi, J.; Hu, Y.; Luo, J. Association Between Dietary Selenium Intake and Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study from the National Health and Nutrition Examination Survey 1999–2018. Int. J. Chron. Obs. Pulmon. Dis. 2024, 19, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Oliveira, A.L.; Viegas-Crespo, A.M.; Vicente, L.; Barreiros, A.; Monteiro, P.; Pinheiro, T.; Bugalho De Almeida, A. Systemic markers of the redox balance in chronic obstructive pulmonary disease. Biomarkers 2004, 9, 461–469. [Google Scholar] [CrossRef]
- Hu, G.; Cassano, P.A. Antioxidant nutrients and pulmonary function: The Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Epidemiol. 2000, 151, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.H.; Niemann, D.; Munson-McGee, S.H. Urinary metals, arsenic, and polycyclic aromatic hydrocarbon exposure and risk of chronic bronchitis in the US adult population. Environ. Sci. Pollut. Res. Int. 2022, 29, 73480–73491. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, L.; Türksoy, V.A.; Khalilov, R.; Eftekhari, A. Investigation of heavy metal exposure and trace element levels in acute exacerbatıon of COPD. J. King Saud Univ. Sci. 2023, 35, 102422. [Google Scholar] [CrossRef]
- Han, K.; Shen, J.; Tan, K.; Liu, J.; Sun, W.; Gao, Y. The association between blood manganese and liver stiffness in participants with chronic obstructive pulmonary disease: A cross-sectional study from NHANES 2017–2018. Eur. J. Med. Res. 2023, 28, 14. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; Xu, X.; Nuovo, G.; Killilea, D.W.; Tyrrell, J.; Da Tan, C.; Tarran, R.; Diaz, P.; Jee, J.; Knoell, D. Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir. Res. 2014, 15, 69. [Google Scholar] [CrossRef]
- Astori, E.; Garavaglia, M.L.; Colombo, G.; Landoni, L.; Portinaro, N.M.; Milzani, A.; Dalle-Donne, I. Antioxidants in smokers. Nutr. Res. Rev. 2022, 35, 70–97. [Google Scholar] [CrossRef]
- Janciauskiene, S. The beneficial effects of antioxidants in health and diseases. Chronic Obstr. Pulm. Dis. J. COPD Found. 2020, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.M.; Voynow, J.A.; Ghio, A.J. COPD: Balancing oxidants and antioxidants. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 261–276. [Google Scholar] [CrossRef]
- Dailah, H.G. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review. Molecules 2022, 27, 5542. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Zhou, Y.; Dai, Z.; Yan, T.; Zhong, P.; Zhang, F.; Chen, Q.; Peng, L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front. Nutr. 2023, 10, 1214684. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Nordberg, M.; Costa, M. Toxicology of metals: Overview, definitions, concepts, and trends. In Handbook on the Toxicology of Metals, Fifth Ed.; Academic Press: New York, NY, USA, 2022; pp. 1–14. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, L.; Zeng, Q.; Zhu, H.; Luo, J. High serum copper as a risk factor of all-cause and cause-specific mortality among US adults, NHANES 2011–2014. Front. Cardiovasc. Med. 2024, 11, 1340968. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Weng, X.; Liu, K.; Liu, S.; Chen, J.; Guo, X.; Jing, C. The Relationship between Metal Exposure and Chronic Obstructive Pulmonary Disease in the General US Population: NHANES 2015–2016. Int. J. Environ. Res. Public Health 2022, 19, 2085. [Google Scholar] [CrossRef]
- Isik, B.; Isik, R.S.; Ceylan, A.; Calik, O. Trace elements and oxidative stress in chronic obstructive pulmonary disease. Saudi Med. J. 2005, 26, 1882–1885. [Google Scholar]
- Valkova, E.; Atanasov, V.; Vlaykova, T.; Tacheva, T.; Zhelyazkova, Y.; Dimov, D.; Yakimov, K. The Serum Levels of the Heavy Metals Cu, Zn, Cd, and Pb and Progression of COPD-A Preliminary Study. Int. J. Environ. Res. Public Health 2023, 20, 1427. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Kapoor, H.; Chaudhary, N.; Roy, S.S. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021, 58, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Truong, L.; Zheng, Y.-M.; Kandhi, S.; Wang, Y.-X. 9 Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. In Lung Inflammation in Health and Disease, Volume II; Academic Press: Cham, Switzerland, 2021; Volume 1304, pp. 147–164. [Google Scholar]
- Du, X.; Zhi, J.; Yang, D.; Wang, Q.; Luo, X.; Deng, X. Research progress in the mechanism of calcium ion on contraction and relaxation of airway smooth muscle cells. J. Recept. Signal Transduct. 2021, 41, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Watanabe, R.; Okazaki, R. COPD and osteoporosis: Links, risks, and treatment challenges. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 637–648. [Google Scholar] [CrossRef]
- Berenson, C.S.; Kruzel, R.L.; Eberhardt, E.; Sethi, S. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J. Infect. Dis. 2013, 208, 2036–2045. [Google Scholar] [CrossRef] [PubMed]
- Akata, K.; van Eeden, S.F. Lung macrophage functional properties in chronic obstructive pulmonary disease. Int. J. Mol. Sci. 2020, 21, 853. [Google Scholar] [CrossRef]
- Shipman, J.G.; Onyenwoke, R.U.; Sivaraman, V. Calcium-dependent pulmonary inflammation and pharmacological interventions and mediators. Biology 2021, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Provost, K.A.; Smith, M.; Arold, S.P.; Hava, D.L.; Sethi, S. Calcium restores the macrophage response to nontypeable haemophilus influenzae in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2015, 52, 728–737. [Google Scholar] [CrossRef]
- Hirayama, F.; Lee, A.H.; Oura, A.; Mori, M.; Hiramatsu, N.; Taniguchi, H. Dietary intake of six minerals in relation to the risk of chronic obstructive pulmonary disease. Asia Pac. J. Clin. Nutr. 2010, 19, 572–577. [Google Scholar] [PubMed]
- Andreotta, P.W.; Arold, S.; Kenyon, J.; Spicer, D.; Woodman, P.; Berry, E.; Brogan, T.; Kong, S.; Okerholm, P.; Russell, V. Inhaled calcium salts inhibit tobacco smoke-induced inflammation by modulating expression of chemokines and cytokines. Pulm. Pharmacol. Ther. 2018, 53, 86–99. [Google Scholar] [CrossRef]
- Hendy, R.M.; El-Naggar, M.E. Assessment of serum electrolytes (sodium, potassium, and ionized calcium) during chronic obstructive pulmonary disease exacerbation. Egypt. J. Chest Dis. Tuberc. 2019, 68, 471–474. [Google Scholar] [CrossRef]
- Laudisio, A.; Costanzo, L.; Di Gioia, C.; Delussu, A.S.; Traballesi, M.; Gemma, A.; Incalzi, R.A. Dietary intake of elderly outpatients with chronic obstructive pulmonary disease. Arch. Gerontol. Geriatr. 2016, 64, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Janssens, W.; Mathieu, C.; Boonen, S.; Decramer, M. Vitamin D deficiency and chronic obstructive pulmonary disease: A vicious circle. Vitam. Horm. 2011, 86, 379–399. [Google Scholar] [PubMed]
- Xiang, Y.; Luo, X. Extrapulmonary comorbidities associated with chronic obstructive pulmonary disease: A review. Int. J. Chronic Obstr. Pulm. Dis. 2024, 19, 567–578. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Alvarado, M.; Martín-Ontiyuelo, C.; Duran, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron depletion in systemic and muscle compartments defines a specific phenotype of severe COPD in female and male patients: Implications in exercise tolerance. Nutrients 2022, 14, 3929. [Google Scholar] [CrossRef]
- Seo, M.H.; Kim, M.K.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Lee, W.-Y.; Baek, K.H.; Song, K.-H.; Kang, M.I.; Oh, K.W. The association between daily calcium intake and sarcopenia in older, non-obese Korean adults: The fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2009. Endocr. J. 2013, 60, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Yang, K.-C.; Chang, H.-H.; Lee, L.-T.; Lu, C.-W.; Huang, K.-C. Low serum selenium level is associated with low muscle mass in the community-dwelling elderly. J. Am. Med. Dir. Assoc. 2014, 15, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.; Al-Gaadi, D.; Czirják, T.; Oláh, T.; Dienes, B.; Csernoch, L.; Szentesi, P. Improved calcium homeostasis and force by selenium treatment and training in aged mouse skeletal muscle. Sci. Rep. 2020, 10, 1707. [Google Scholar] [CrossRef]
- Welch, A.A. Nutritional influences on age-related skeletal muscle loss. Proc. Nutr. Soc. 2014, 73, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Ruljančić, N.; Popović-Grle, S.; Rumenjak, V.; Sokolić, B.; Malić, A.; Mihanović, M.; Čepelak, I. COPD: Magnesium in the plasma and polymorphonuclear cells of patients during a stable phase. COPD: J. Chronic Obstr. Pulm. Dis. 2007, 4, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Eftekhari, M.H.; Mazloom, Z.; Masoompour, M.; Fararooei, M.; Eskandari, M.H.; Mehrabi, S.; Bedeltavana, A.; Famouri, M.; Zare, M.; et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: A single-blind, randomized clinical trial. Respir. Res. 2020, 21, 216. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Blizzard, L.; Fell, J.; Giles, G.; Jones, G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian Older Adult Cohort study. J. Am. Geriatr. Soc. 2010, 58, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Barbagallo, M.; Lauretani, F.; Bandinelli, S.; Bos, A.; Corsi, A.M.; Simonsick, E.M.; Ferrucci, L. Magnesium and muscle performance in older persons: The InCHIANTI study. Am. J. Clin. Nutr. 2006, 84, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Knoell, D.L.; Smith, D.; Bao, S.; Sapkota, M.; Wyatt, T.A.; Zweier, J.L.; Flury, J.; Borchers, M.T.; Knutson, M. Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure. J. Trace Elem. Med. Biol. 2020, 60, 126483. [Google Scholar] [CrossRef] [PubMed]
- Karadag, F.; Cildag, O.; Altinisik, M.; Kozaci, L.D.; Kiter, G.; Altun, C. Trace elements as a component of oxidative stress in COPD. Respirology 2004, 9, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. GeroScience 2023, 45, 3381–3408. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Sorond, F.; Merkely, B.; Csiszar, A. Mechanisms of vascular aging, a geroscience perspective: JACC focus seminar. J. Am. Coll. Cardiol. 2020, 75, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.; Cunningham-Rundles, S. Immunologic impact of nutrient depletion in chronic obstructive pulmonary disease. Curr. Drug Targets 2011, 12, 489–500. [Google Scholar] [CrossRef]
- Wong, C.P.; Ho, E. Zinc and its role in age-related inflammation and immune dysfunction. Mol. Nutr. Food Res. 2012, 56, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Luan, R.; Ding, D.; Xue, Q.; Li, H.; Wang, Y.; Yang, J. Protective role of zinc in the pathogenesis of respiratory diseases. Eur. J. Clin. Nutr. 2023, 77, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Conte, L.; Toraldo, D.M. May nutrients and dietary supplements influence the gut-lung microbiota axis in chronic obstructive pulmonary disease and exacerbations? Arch. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Collins, P.F.; Stratton, R.J.; Elia, M. Nutritional support in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.F.; Elia, M.; Stratton, R.J. Nutritional support and functional capacity in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respirology 2013, 18, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Udipi, S.; Ghugre, P.; Gokhale, C. Iron, oxidative stress and health. Mol. Asp. Med. 2005, 26, 299–312. [Google Scholar]
- Abbasi, M.A.; Nazir, A.; Qureshi, S.A.; Haleem, N.; Khattak, N.; Rashid, M.A.; Iltaf, S. Iron deficiency without anaemia in copd patients: Assessing exercise capacity and exacerbation frequency. J. Ayub Med. Coll. Abbottabad-Pak. 2024, 36, 113–118. [Google Scholar]
- Tariq, S.; Ismail, D.; Thapa, M.; Goriparthi, L.; Pradeep, R.; Khalid, K.; Cooper, A.C.; Jean-Charles, G. Chronic obstructive pulmonary disease and its effect on red blood cell indices. Cureus 2023, 15, e36100. [Google Scholar] [CrossRef] [PubMed]
- Kerti, M.; Balogh, Z.; Halasz, A.; Kelemen, K.; Varga, J. COPD Assessment for Symptoms and Functional Condition in Pulmonary Rehabilitation; Eur. Respiratory Soc.: Lausanne, Switzerland, 2015. [Google Scholar]
- Szucs, B.; Petrekanits, M.; Varga, J. Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease. J. Thorac. Dis. 2018, 10, 6482. [Google Scholar] [CrossRef]
- Kerti, M.; Bohacs, A.; Madurka, I.; Kovats, Z.; Gieszer, B.; Elek, J.; Renyi-Vamos, F.; Varga, J.T. The effectiveness of pulmonary rehabilitation in connection with lung transplantation in Hungary. Ann. Palliat Med. 2021, 10, 3906–3915. [Google Scholar] [CrossRef] [PubMed]
- Heefner, A.; Simovic, T.; Mize, K.; Rodriguez-Miguelez, P. The Role of Nutrition in the Development and Management of Chronic Obstructive Pulmonary Disease. Nutrients 2024, 16, 1136. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Rajta, P.N.; Khatana, J. Anemia in Chronic obstructive pulmonary disease: Prevalence, pathogenesis, and potential impact. Lung India 2015, 32, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Tátá, M. The impact of anaemia and iron deficiency in chronic obstructive pulmonary disease: A clinical overview. Rev. Port. De Pneumol. (Engl. Ed.) 2017, 23, 146–155. [Google Scholar]
- Fekete, M.; Fazekas-Pongor, V.; Szőllősi, G.; Varga, J.T. A krónikus obstruktív tüdőbetegség metabolikus következményei. Orvosi Hetil. 2021, 162, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Orosz, Z.; Csiszar, A.; Labinskyy, N.; Smith, K.; Kaminski, P.M.; Ferdinandy, P.; Wolin, M.S.; Rivera, A.; Ungvari, Z. Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: Role of NAD (P) H oxidase activation. Am. J. Physiol. -Heart Circ. Physiol. 2007, 292, H130–H139. [Google Scholar] [CrossRef]
- van Dijk, S.H.; Brusse-Keizer, M.G.; Effing, T.; Van Der Valk, P.D.; Ploumen, E.H.; Van Der Palen, J.; Doggen, C.J.; Lenferink, A. Exploring patterns of COPD exacerbations and comorbid flare-ups. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 2633–2644. [Google Scholar] [CrossRef]
- Fekete, M.; Szollosi, G.; Tarantini, S.; Lehoczki, A.; Nemeth, A.N.; Bodola, C.; Varga, L.; Varga, J.T. Metabolic syndrome in patients with COPD: Causes and pathophysiological consequences. Physiol. Int. 2022, 109, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Selvam, N.S. A Prospective Study to Compare the Efficacy of Iv Magnesium Sulfate Infusion vs. Placebo, As an Adjuvant to Nebulized Salbutamol in Acute Exacerbations of Chronic Obstructive Pulmonary Disease; Rajiv Gandhi University of Health Sciences: Karnataka, India, 2017. [Google Scholar]
- Ain, Q.; Randhawa, F.; Butt, N.; Aslam, A.; Latif, H.; Rathore, R. Effect of Nebulized Magnesium Sulphate in Terms of the In-Hospital Outcome of Patients Admitted with Acute Exacerbation of Chronic Obstructive Pulmonary disease. J. Pak. Soc. Intern. Med. 2024, 5, 383–387. [Google Scholar]
- Ni, H.; Aye, S.Z.; Naing, C. Magnesium sulfate for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2022, 5, CD013506. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Bálint, M.; Csizmadia, Z.; Tarantini, S.; Varga, J.T. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD-A State-of-the-Art Review. Nutrients 2023, 15, 3902. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, K.; Patil, V.C. Chronic obstructive pulmonary disease: Is serum magnesium level a risk factor for its acute exacerbation? Casp. J. Intern. Med. 2021, 12, 223–227. [Google Scholar] [CrossRef]
- Nouira, S.; Bouida, W.; Grissa, M.H.; Beltaief, K.; Trimech, M.N.; Boubaker, H.; Marghli, S.; Letaief, M.; Boukef, R. Magnesium sulfate versus ipratropium bromide in chronic obstructive pulmonary disease exacerbation: A randomized trial. Am. J. Ther. 2014, 21, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.; Shirtcliffe, P.; Wadsworth, K.; Healy, B.; Jefferies, S.; Weatherall, M.; Beasley, R.; Team, M.C.S. Use of nebulised magnesium sulphate as an adjuvant in the treatment of acute exacerbations of COPD in adults: A randomised double-blind placebo-controlled trial. Thorax 2013, 68, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Rowe, B.H.; Bretzlaff, J.; Bourdon, C.; Bota, G.; Blitz, S.; Camargo, C.A., Jr.; Group, C.A. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. Cochrane Database Syst. Rev. 2000, 2000, CD001490. [Google Scholar] [CrossRef] [PubMed]
- Hinds, J.M. Antioxidant and Anti-inflammatory Nutrients on Lung Function in Chronic Obstructive Pulmonary Disease. Master’ Thesis, University of Nebraska Medical Center, Omaha, NE, USA, 2016. [Google Scholar]
- Vlahos, R.; Bozinovski, S. Glutathione peroxidase-1 as a novel therapeutic target for COPD. Redox Rep. 2013, 18, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, L.; Hu, C.; Li, Y.; Yang, Y.; Zhang, X.; Li, Q.; Ma, A.; Cai, J. Improvement of Lung Function by Micronutrient Supplementation in Patients with COPD: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1028. [Google Scholar] [CrossRef]
- Moylan, J.S.; Reid, M.B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2007, 35, 411–429. [Google Scholar] [CrossRef]
- Fekete, M.; Szőllősi, G.; Németh, A.N.; Varga, J.T. Az ómega-3 zsírsavak pótlásának klinikai értéke krónikus obstruktív tüdőbetegségben. Orvosi Hetil. 2021, 162, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-J.; Yang, T.-M.; Tsai, Y.-H. Nutritional Supplementation in Patients with Chronic Obtructive Pulmonary Disease. J. Formos. Med. Assoc. 2015, 595–601. [Google Scholar]
- Pettersson, H.; Alexanderson, H.; Poole, J.L.; Varga, J.; Regardt, M.; Russell, A.-M.; Salam, Y.; Jensen, K.; Mansour, J.; Frech, T. Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Pract. Res. Clin. Rheumatol. 2021, 35, 101695. [Google Scholar] [CrossRef]
- Shenkin, A. Selenium in intravenous nutrition. Gastroenterology 2009, 137, S61–S69. [Google Scholar] [CrossRef] [PubMed]
- Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res. 2010, 43, 1408–1419. [Google Scholar] [CrossRef]
- Stadtman, T.C. Selenocysteine. Annu. Rev. Biochem. 1996, 65, 83–100. [Google Scholar] [CrossRef]
- Shreenath, A.P.; Hashmi, M.F.; Dooley, J. Selenium Deficiency. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, X.; Chen, B.; Dai, R.; Xi, Z.; Xu, H. Insights into manganese superoxide dismutase and human diseases. Int. J. Mol. Sci. 2022, 23, 15893. [Google Scholar] [CrossRef] [PubMed]
- Żwierełło, W.; Styburski, D.; Maruszewska, A.; Piorun, K.; Skórka-Majewicz, M.; Czerwińska, M.; Maciejewska, D.; Baranowska-Bosiacka, I.; Krajewski, A.; Gutowska, I. Bioelements in the treatment of burn injuries–The complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium). J. Trace Elem. Med. Biol. 2020, 62, 126616. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, D.; Rudrashetti, A.P.; Rajasekaran, S. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. J. Appl. Toxicol. 2022, 42, 103–129. [Google Scholar] [CrossRef]
- Hamada, A.M. Vitamins, omega-3, magnesium, manganese, and thyme can boost our immunity and protect against COVID-19. Eur. J. Biol. Res. 2020, 10, 271–295. [Google Scholar]
- Zajac, D. Mineral micronutrients in asthma. Nutrients 2021, 13, 4001. [Google Scholar] [CrossRef] [PubMed]
- Nucera, F.; Mumby, S.; Paudel, K.R.; Dharwal, V.; Di Stefano, A.; Casolaro, V.; Hansbro, P.M.; Adcock, I.M.; Caramori, G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med. 2022, 113, 370–404. [Google Scholar] [CrossRef]
- Sparrow, D.; Silbert, J.E.; Weiss, S.T. The relationship of pulmonary function to copper concentrations in drinking water. Am. Rev. Respir. Dis. 1982, 126, 312–315. [Google Scholar]
- Wan, X.; Chen, L.; Zhu, Z.; Luo, P.; Hang, D.; Su, J.; Tao, R.; Zhou, J.; Fan, X. Association of Serum Calcium with the Risk of Chronic Obstructive Pulmonary Disease: A Prospective Study from UK Biobank. Nutrients 2023, 15, 3439. [Google Scholar] [CrossRef] [PubMed]
- Sertpoyraz, F.M.; Deniz, S. Bone mineral density and vitamin D levels in patients with group a COPD. Aging Male 2020, 23, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Ganmaa, D.; Enkhmaa, D.; Nasantogtokh, E.; Sukhbaatar, S.; Tumur-Ochir, K.E.; Manson, J. Vitamin D, respiratory infections, and chronic disease: Review of meta-analyses and randomized clinical trials. J. Intern. Med. 2022, 291, 141–164. [Google Scholar] [CrossRef]
- Yang, M.; Miao, J.; Du, L.; Wang, J.; Yang, J.; Lu, J.; Fan, X.; Huang, C.; Fu, Z.; Xu, Z. Serum calcium concentrations and risk of all-cause and cause-specific mortality: Results from 2 prospective cohorts. J. Clin. Endocrinol. Metab. 2023, 108, e527–e535. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Hu, J.; Liu, Z.; Wang, E.; Guo, Q.; Zhang, Z.; Song, Z. L-shaped association of serum calcium with all-cause and CVD mortality in the US adults: A population-based prospective cohort study. Front. Nutr. 2023, 9, 1097488. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Kirkil G et al. [68] | RCT | 8 weeks | Turkey | 45 | 61.0 ± 2.8 | 100% male | 22 mg zinc picolinate/day, 8 weeks | Increased SOD (p = 0.029) and zinc (p < 0.001); no significant changes in MDA, CAT, FEV1, or FEV1/FVC |
Isbaniah F et al. [71] | RCT | 4 weeks | Indonesia | 108 | 65.8 | 97%/3% | Ciprofloxacin for 7 days (acute URTI); daily EP, EP+ (EP with zinc, selenium, vitamin C), or placebo | EP+ group had milder, shorter exacerbations; EP alone showed no significant benefit |
Gouzi F et al. [72] | RCT | 28 days | France | 64 | 62.4 ± 6.5 | 50%/50% | Oral antioxidants: α-tocopherol (30 mg/day), ascorbate (180 mg/day), zinc gluconate (15 mg/day), and selenomethionine (50 μg/day) | Muscle weakness reduced in PR group (30% to 10.7%, p < 0.05); type I fibers increased (+32 ± 17%, p = 0.07) |
El-Attar M et al. [73] | RCT | - | Egypt | 120 | 62.8 ± 9.0 | 97%/3% | Daily IV: sodium selenite (100 µg), zinc chloride (2 mg), manganese (0.4 mg) | Mechanical ventilation duration decreased (9.4 ± 7.3 days vs. 17.8 ± 7.6 days, p = 0.013) |
KOÇ U et al. [74] | CS | 8 weeks | Turkey | 30 | 68.8 ± 9.5 | 60%/40% | No intervention | Serum zinc levels were lower in stable COPD patients compared to healthy controls |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Pérez-Peiró M et al. [75] | RCT | 4 weeks | Spain | 62 | 66.8 (7.3) | 73%/27% | Intravenous ferric carboxymaltose (Ferinject® Ferinject®, Vifor, St. Gallen, Switzerland) or placebo | MDA-protein adducts and 3-nitrotyrosine decreased; glutathione (GSH) increased. Hepcidin levels correlated with ferritin |
Martín-Ontiyuelo C et al. [76] | RCT | 4 weeks | Spain | 66 | 68.0 (62–72) | 64%/36% | Single dose of intravenous ferric carboxymaltose (Ferinject® 50 mg/mL) or placebo | 52.3% of patients in the ferric carboxymaltose group showed a 33% improvement in endurance time, compared to 18.2% in the placebo group (p = 0.009) |
Grasmuk-Siegl E et al. [77] | RCT | 4 weeks | Austria | 11 | 63 ± 8 | 72%/28% | 1000 mg of intravenous ferric carboxymaltose (Ferinject®) | The 6MWT distance increased by 34.7 ± 34.4 m (p = 0.011). VO2max increased by 1.87 ± 1.2 mL/kg/min (p = 0.006). The average SGRQ score decreased by 7.56 ± 6.12 units (p = 0.004) |
Santer P et al. [78] | RCT | 8 weeks | UK | 48 | 69 ± 8 | 70%/30% | A single intravenous iron replacement (ferric carboxymaltose, FCM; 15 mg/kg body weight) or saline placebo | In the FCM group, 29.2% of participants showed a ≥40 m improvement in the 6MWD. mMRC: 33.3% vs. 66.7%, p = 0.02 |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
do Amaral AF et al. [79] | RCT | 45 min | Brazil | 22 | 64 ± 6 | 100% male | 2 g of intravenous magnesium sulfate or placebo on two separate occasions | Functional vital capacity: −0.48 L (95% CI: −0.96, −0.01); Inspiratory capacity: 0.21 L (95% CI: 0.04, 0.37); Maximum inspiratory pressure: 10 cmH2O (95% CI: 1.6, 18.4); Maximum expiratory pressure: 10.7 cmH2O (95% CI: 0.20, 21.2) |
Mukerji S et al. [80] | RCT | 120 min | New Zealand | 30 | 62 ± 4 | 50%/50% | Standard bronchodilator therapy and either placebo (saline) or 2 g of intravenous magnesium sulfate | At T120, the mean FEV1 change was 27.07% in the magnesium group, compared to 11.39% in the placebo group (95% CI: 3.7–27.7; p = 0.01) |
Amaral AF et al. [81] | RCT | 100 min | Iran | 20 | 66.2 ± 8.3 | 70%/30% | 2 g of magnesium sulfate or normal saline intravenously on two separate occasions | Magnesium infusion significantly decreased functional residual capacity (−0.41 L) and residual volume (−0.47 L), and increased maximum load (+8 W) and respiratory gas exchange ratio (+0.06) at peak exercise |
Skorodin MS et al. [82] | RCT | 45 min | USA | 72 | 62.8 ± 9.0 | 97%/3% | Either 1.2 g of magnesium sulfate or a placebo was administered intravenously after nebulized albuterol | The magnesium sulfate group showed a significantly greater increase in peak expiratory flow (22.4% ± 28.5%) compared to the placebo group (6.1% ± 24.4%) (p = 0.01) |
Vafadar Moradi E et al. [83] | RCT | 90 min | Iran | 77 | - | - | The magnesium sulfate (MgSO4) group (MG) received 2.5 g of magnesium sulfate in 50 mL saline, while the placebo group received 5 mL of sterile water in 50 mL saline | The MG showed a significant increase in PEFR (15.67% ± 3.35) compared to the placebo group (5.03% ± 6.29). The MG also showed a significant improvement in DSS (−3.69 ± 1.07) compared to the placebo group (−2.05 ± 1.11) |
Abreu González J et al. [84] | RCT | 45 min | Spain | 24 | 64 (57–78) | 50%/50% | 1.5 g of magnesium sulfate or placebo intravenously over 20 min on two separate days | The percentage increase in FEV1 was 17.11% (3.7%) after magnesium sulfate and 7.06% (1.8%) after placebo (p = 0.008) |
Solooki M et al. [85] | RCT | 3 day | Iran | 30 | 68 ± 9 | 70%/30% | Group A received 2 g of magnesium sulfate in saline over 20 min for three days in addition to standard therapy, while Group B received standard medications | After 45 min, the FEV1 value was 27% ± 9 in Group A and 36% ± 20 in Group B (p = 0.122). On day three, the FEV1 value was 32% ± 17 in Group A and 41% ± 22 in Group B (p = 0.205) |
Zanforlini BM et al. [86] | RCT | 6 months | Italy | 49 | 73.0 ± 8.9 | 76%/24% | 300 mg of magnesium citrate daily | The intervention group had lower CRP levels than the placebo group (β = −3.2, p = 0.03) |
Cömert Ş et al. [87] | RCT | 120 min | Turkish | 20 | - | . | One group received 500 µg of ipratropium bromide (IB) and 151 mg of magnesium sulfate via inhalation, while the other group received IB with a placebo | At 10 min, the PEFR increase was significantly higher in the magnesium group (4.7 vs. −3.5, p = 0.005). At 30 min, the PEFR increase was also significantly higher in the magnesium group (8.2 vs. 1.3, p = 0.03) |
Trace Element | Biological Mechanisms | Pathogenesis in COPD | Therapeutic Relevance |
---|---|---|---|
Iron | Essential for hemoglobin and cytochrome function; supports oxygen transport and cellular respiration; key for antioxidant enzymes (e.g., catalase) | Deficiency: worsened hypoxia, increased oxidative stress. Excess: ROS generation via the Fenton reaction, promoting inflammation and oxidative damage | Altered serum iron levels during AECOPD are associated with dyspnea and reduced lung function |
Magnesium | Crucial for ATP production, muscle relaxation, and cofactor for over 300 enzymes, including those in antioxidant defense | Deficiency: reduced bronchodilation, increased inflammation and oxidative stress, higher hospitalization rates | Magnesium supplementation improves bronchodilation and reduces exacerbation frequency |
Zinc | Regulates immune response, antioxidant defense, and tissue repair; controls metalloproteinase activity | Deficiency: weakened immunity, increased susceptibility to infections, oxidative stress, impaired regeneration | Zinc supplementation reduces inflammation and oxidative damage |
Calcium | Critical for muscle contraction, signal transduction, and release of inflammatory mediators | Deficiency: impaired diaphragm function, worsened bronchospasms | Calcium supplementation improves respiratory muscle performance |
Selenium | Integral for antioxidant enzymes such as glutathione peroxidase | Deficiency: weakened antioxidant defense, oxidative damage, worse outcomes during AECOPD | Selenium supplementation enhances antioxidant capacity and reduces inflammation |
Copper | Supports the function of Cu-Zn SOD antioxidant enzyme and acts as a cofactor for cytochrome-c oxidase | Deficiency: reduced antioxidant defense, increased susceptibility to infections | Maintaining adequate copper levels supports immune and antioxidant systems |
Manganese | Essential for Mn-SOD antioxidant enzyme activity; protects mitochondria from oxidative stress | Deficiency: increased mitochondrial ROS production, lung tissue damage | Manganese supplementation improves mitochondrial function and reduces oxidative stress |
Trace Element | Recommended Daily Intake (NRV) | Effect in COPD Patients |
---|---|---|
Zinc | 10–20 mg | Antioxidant and immune-supporting properties reduce inflammation and the frequency of exacerbations. |
Iron | 8–15 mg | Enhances antioxidant defense and respiratory support, improving quality of life. |
Magnesium | 300–500 mg | Supports respiratory muscle function; useful as an adjunct therapy to improve breathing. |
Selenium | 50–70 µg | Anti-inflammatory and tissue-protective antioxidant properties. |
Manganese | 1–2 mg | Reduces inflammation and protects tissues with antioxidant effects. |
Copper | 0.8–2.4 mg | Essential for antioxidant enzyme function and may serve as a biomarker for disease progression. |
Calcium | 1200–1500 mg | Vital for muscle strength and bone health, especially during long-term corticosteroid therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, M.; Lehoczki, A.; Csípő, T.; Fazekas-Pongor, V.; Szappanos, Á.; Major, D.; Mózes, N.; Dósa, N.; Varga, J.T. The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium. Nutrients 2024, 16, 4118. https://doi.org/10.3390/nu16234118
Fekete M, Lehoczki A, Csípő T, Fazekas-Pongor V, Szappanos Á, Major D, Mózes N, Dósa N, Varga JT. The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium. Nutrients. 2024; 16(23):4118. https://doi.org/10.3390/nu16234118
Chicago/Turabian StyleFekete, Mónika, Andrea Lehoczki, Tamás Csípő, Vince Fazekas-Pongor, Ágnes Szappanos, Dávid Major, Noémi Mózes, Norbert Dósa, and János Tamás Varga. 2024. "The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium" Nutrients 16, no. 23: 4118. https://doi.org/10.3390/nu16234118
APA StyleFekete, M., Lehoczki, A., Csípő, T., Fazekas-Pongor, V., Szappanos, Á., Major, D., Mózes, N., Dósa, N., & Varga, J. T. (2024). The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium. Nutrients, 16(23), 4118. https://doi.org/10.3390/nu16234118