Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Participants
2.2. Procedure
2.3. Nutritional Minerals Assessment
2.4. Neurocognitive Performance Assessment
2.5. Statistical Analysis
2.6. Results
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Beluska-Turkan, K.; Korczak, R.; Hartell, B.; Moskal, K.; Maukonen, J.; Alexander, D.E.; Salem, N.; Harkness, L.; Ayad, W.; Szaro, J.; et al. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients 2019, 11, 2891. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberg, S.J.; Georgieff, M.K. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [PubMed]
- Mattei, D.; Pietrobelli, A. Micronutrients and Brain Development. Curr. Nutr. Rep. 2019, 8, 99–107. [Google Scholar] [CrossRef]
- Quezada-Pinedo, H.G.; Cassel, F.; Duijts, L.; Muckenthaler, M.U.; Gassmann, M.; Jaddoe, V.W.; Reiss, I.K.; Vermeulen, M.J. Maternal Iron Status in Pregnancy and Child Health Outcomes after Birth: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2221. [Google Scholar] [CrossRef]
- McCann, S.; Amadó, M.P.; Moore, S.E. The Role of Iron in Brain Development: A Systematic Review. Nutrients 2020, 12, 2001. [Google Scholar] [CrossRef]
- Talebi, S.; Miraghajani, M.; Ghavami, A.; Mohammadi, H. The effect of zinc supplementation in children with attention deficit hyperactivity disorder: A systematic review and dose-response meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 9093–9102. [Google Scholar] [CrossRef]
- Sun, R.; Wang, J.; Feng, J.; Cao, B. Zinc in Cognitive Impairment and Aging. Biomolecules 2022, 12, 1000. [Google Scholar] [CrossRef]
- Maier, J.A.; Locatelli, L.; Fedele, G.; Cazzaniga, A.; Mazur, A. Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2022, 24, 223. [Google Scholar] [CrossRef]
- An, Y.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Zhang, M. The Role of Copper Homeostasis in Brain Disease. Int. J. Mol. Sci. 2022, 23, 13850. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E.; Motley, A.K.; Winfrey, V.P.; Kurokawa, S.; Mitchell, S.L.; Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014, 28, 3579–3588. [Google Scholar] [CrossRef] [PubMed]
- Varikasuvu, S.R.; Prasad, V.S.; Kothapalli, J.; Manne, M. Brain Selenium in Alzheimer’s Disease (BRAIN SEAD Study): A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2019, 189, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Farias, P.M.; Marcelino, G.; Santana, L.F.; de Almeida, E.B.; Guimarães, R.D.; Pott, A.; Hiane, P.A.; Freitas, K.D. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules 2020, 25, 5630. [Google Scholar] [CrossRef]
- Lam, L.F.; Lawlis, T.R. Feeding the brain—The effects of micronutrient interventions on cognitive performance among school-aged children: A systematic review of randomized controlled trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef]
- Brion, L.P.; Heyne, R.; Lair, C.S. Role of zinc in neonatal growth and brain growth: Review and scoping review. Pediatr. Res. 2021, 89, 1627–1640. [Google Scholar] [CrossRef]
- Bastian, T.W.; Rao, R.; Tran, P.V.; Georgieff, M.K. The Effects of Early-Life Iron Deficiency on Brain Energy Metabolism. Neurosci. Insights 2020, 15, 2633105520935104. [Google Scholar] [CrossRef]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef]
- Skogheim, T.S.; Weyde, K.V.; Engel, S.M.; Aase, H.; Surén, P.; Øie, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Caspersen, I.H.; Hornig, M.; et al. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int. 2021, 152, 106468. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Ghani, R.B.A. The role of iron and zinc in cognitive development of children. Asian J. Med. Biol. Res. 2017, 3, 145–151. [Google Scholar] [CrossRef]
- Lai, J.S.; Cai, S.; Feng, L.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; Godfrey, K.M.; Meaney, M.J.; Rifkin-Graboi, A.; et al. Associations of maternal zinc and magnesium with offspring learning abilities and cognitive development at 4 years in GUSTO. Nutr. Neurosci. 2021, 24, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Botturi, A.; Ciappolino, V.; Delvecchio, G.; Boscutti, A.; Viscardi, B.; Brambilla, P. The Role and the Effect of Magnesium in Mental Disorders: A Systematic Review. Nutrients 2020, 12, 1661. [Google Scholar] [CrossRef] [PubMed]
- Businaro, R. Food supplements to complement brain functioning. The benefits of a combination of magnesium, folic acid, omega-3 fatty acids and vitamin E. F1000Research 2022, 11, 140. [Google Scholar] [CrossRef]
- Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 2010, 54, 457–470. [Google Scholar] [CrossRef]
- Huss, M.; Völp, A.; Stauss-Grabo, M. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems—An observational cohort study. Lipids Health Dis. 2010, 9, 105. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Kwiatkowski, S.; Kosik-Bogacka, D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020, 10, 1176. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, S3, 001. [Google Scholar] [CrossRef]
- Teoh, S.L. Micronutrients and Neurogenesis. In Role of Micronutrients in Brain Health; Springer: Singapore, 2022; pp. 3–18. [Google Scholar]
- Amorós, R.; Murcia, M.; González, L.; Soler-Blasco, R.; Rebagliato, M.; Iñiguez, C.; Carrasco, P.; Vioque, J.; Broberg, K.; Levi, M.; et al. Maternal copper status and neuropsychological development in infants and preschool children. Int. J. Hyg. Environ. Health 2019, 222, 503–512. [Google Scholar] [CrossRef]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Skröder, H.M.; Hamadani, J.D.; Tofail, F.; Persson, L.Å.; Vahter, M.E.; Kippler, M.J. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin. Nutr. 2015, 34, 923–930. [Google Scholar] [CrossRef]
- Pohl, K.M.; Thompson, W.K.; Adeli, E.; Linguraru, M.G. Adolescent Brain Cognitive Development Neurocognitive Prediction: First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings, 1st ed.; Pohl, K.M., Thompson, W.K., Adeli, E., Linguraru, M.G., Eds.; Image Processing, Computer Vision, Pattern Recognition, and Graphics; Springer International Publishing: Cham, Switzerland, 2019; Volume 11791. [Google Scholar]
- Norris, S.A.; Frongillo, E.A.; Black, M.M.; Dong, Y.; Fall, C.; Lampl, M.; Liese, A.D.; Naguib, M.; Prentice, A.; Rochat, T.; et al. Nutrition in adolescent growth and development. Lancet 2022, 399, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Christian, P.; Smith, E.R. Adolescent Undernutrition: Global Burden, Physiology, and Nutritional Risks. Ann. Nutr. Metab. 2018, 72, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Rahman, S.M.; Tarafder, C.; Rahman, M.M.; Rahman, A.; Ekström, E.C. Exploring Rural Adolescents’ Dietary Diversity and Its Socioeconomic Correlates: A Cross-Sectional Study from Matlab, Bangladesh. Nutrients 2020, 12, 2230. [Google Scholar] [CrossRef]
- Stevens, G.A.; Beal, T.; Mbuya, M.N.; Luo, H.; Neufeld, L.M.; Addo, O.Y.; Adu-Afarwuah, S.; Alayón, S.; Bhutta, Z.; Brown, K.H.; et al. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Cheng, B.J.; Wang, J.; Meng, X.L.; Sun, L.; Hu, B.; Li, H.B.; Sheng, J.; Chen, G.M.; Tao, F.B.; Sun, Y.H.; et al. The association between essential trace element mixture and cognitive function in Chinese community-dwelling older adults. Ecotoxicol. Environ. Saf. 2022, 231, 113182. [Google Scholar] [CrossRef]
- Fuhrmann, D.; Madsen, K.S.; Johansen, L.B.; Baaré, W.F.; Kievit, R.A. The midpoint of cortical thinning between late childhood and early adulthood differs between individuals and brain regions: Evidence from longitudinal modelling in a 12-wave neuroimaging sample. Neuroimage 2022, 261, 119507. [Google Scholar] [CrossRef]
- Pruszkowski, E.; Neubauer, K.; Thomas, R. An overview of clinical applications by inductively coupled plasma mass spectrometry. At. Spectrosc. 1998, 19, 111–115. [Google Scholar]
- Stroh, A. Determination of Pb and Cd in whole blood using isotope dilution ICP-MS. At. Spectrosc. 1988, 14, 141–143. [Google Scholar]
- Khan, K.M.; Hatch, L.C.; Akhter, S.; Eunus, M.; Zhou, Z.; Parvez, F.; Rohlman, D. Reliability of a computer-based neurobehavioral assessment test battery for Bangladeshi adolescent children. Neurotoxicology 2021, 85, 47–53. [Google Scholar] [CrossRef]
- Schweizer, U.; Fabiano, M. Selenoproteins in brain development and function. Free Radic. Biol. Med. 2022, 190, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Gamble, M.; Wasserman, G.A.; Liu, X.; Parvez, F.; Navas-Acien, A.; Islam, T.; Factor-Litvak, P.; Uddin, M.N.; Kioumourtzoglou, M.A.; et al. Mixed metals exposure and cognitive function in Bangladeshi adolescents. Ecotoxicol. Environ. Saf. 2022, 232, 113229. [Google Scholar] [CrossRef] [PubMed]
- Skröder, H.; Kippler, M.; Tofail, F.; Vahter, M. Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children. Environ. Health Perspect. 2017, 125, 117003. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.; Bourque, J.; Moore, T.M.; Adebimpe, A.; Calkins, M.E.; Elliott, M.A.; Gur, R.C.; Gur, R.E.; Moberg, P.J.; Roalf, D.R.; et al. Longitudinal Development of Brain Iron Is Linked to Cognition in Youth. J. Neurosci. 2020, 40, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Gingoyon, A.; Borkhoff, C.M.; Koroshegyi, C.; Mamak, E.; Birken, C.S.; Maguire, J.L.; Fehlings, D.; Macarthur, C.; Parkin, P.C. Chronic Iron Deficiency and Cognitive Function in Early Childhood. Pediatrics 2022, 150, e2021055926. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, H.; Wang, D.; Sudfeld, C.R.; Zhao, A.; Xin, Y.; Chen, J.C.; Fawzi, W.W.; Xing, Y.; Li, Z. Effect of Oral Iron Supplementation on Cognitive Function among Children and Adolescents in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 5332. [Google Scholar] [CrossRef]
- Samson, K.L.I.; Fischer, J.A.J.; Roche, M.L. Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. Nutrients 2022, 14, 224. [Google Scholar] [CrossRef]
- Amani, R.; Tahmasebi, K.; Nematpour, S.; Nazari, Z.; Ahmadi, K.; Mostafavi, S.A. Association of cognitive function with nutritional zinc status in adolescent female students. Prog. Nutr. 2019, 22, 86–93. [Google Scholar]
- Tupe, R.P.; Chiplonkar, S.A. Zinc Supplementation Improved Cognitive Performance and Taste Acuity in Indian Adolescent Girls. J. Am. Coll. Nutr. 2009, 28, 388–396. [Google Scholar] [CrossRef]
- Warthon-Medina, M.; Moran, V.H.; Stammers, A.L.; Dillon, S.; Qualter, P.; Nissensohn, M.; Serra-Majem, L.; Lowe, N.M. Zinc intake, status and indices of cognitive function in adults and children: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 649–661. [Google Scholar] [CrossRef]
- Fouad, S. Zinc Deficiency and Association with Cognitive Performance in School-aged Children: Peer Review. Acta Sci. Med. Sci. 2021, 5, 182–188. [Google Scholar]
- Bhatnagar, S.; Taneja, S. Zinc and cognitive development. Br. J. Nutr. 2001, 85 (Suppl. S2), S139–S145. [Google Scholar] [CrossRef]
- Singh, S.; Awasthi, S.; Kumar, D.; Sarraf, S.R.; Pandey, A.K.; Agarwal, G.G.; Awasthi, A.; Anish, T.S.; Mathew, J.L.; Kar, S.; et al. Micronutrients and cognitive functions among urban school-going children and adolescents: A cross-sectional multicentric study from India. PLoS ONE 2023, 18, e0281247. [Google Scholar] [CrossRef] [PubMed]
- Patton, G.C.; Sawyer, S.M.; Santelli, J.S.; Ross, D.A.; Afifi, R.; Allen, N.B.; Arora, M.; Azzopardi, P.; Baldwin, W.; Bonell, C.; et al. Our future: A Lancet commission on adolescent health and wellbeing. Lancet 2016, 387, 2423–2478. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, D.; Mates, E.; Menon, P.; Alderman, H.; Devakumar, D.; Fawzi, W.; Greenfield, G.; Hammoudeh, W.; He, S.; Lahiri, A.; et al. Strategies and interventions for healthy adolescent growth, nutrition, and development. Lancet 2022, 399, 198–210. [Google Scholar] [CrossRef]
- Azzopardi, P.S.; Hearps, S.J.; Francis, K.L.; Kennedy, E.C.; Mokdad, A.H.; Kassebaum, N.J.; Lim, S.; Irvine, C.M.; Vos, T.; Brown, A.D.; et al. Progress in adolescent health and wellbeing: Tracking 12 headline indicators for 195 countries and territories, 1990–2016. Lancet 2019, 393, 1101–1118. [Google Scholar] [CrossRef]
- Neufeld, L.M.; Andrade, E.B.; Suleiman, A.B.; Barker, M.; Beal, T.; Blum, L.S.; Demmler, K.M.; Dogra, S.; Hardy-Johnson, P.; Lahiri, A.; et al. Food choice in transition: Adolescent autonomy, agency, and the food environment. Lancet 2022, 399, 185–197. [Google Scholar] [CrossRef]
- Mba, C.M.; Jones, K.S.; Forouhi, N.G.; Imamura, F.; Assah, F.; Mbanya, J.C.; Wareham, N.J. The association between plasma zinc concentrations and markers of glucose metabolism in adults in Cameroon. Br. J. Nutr. 2023, 130, 1220–1227. [Google Scholar] [CrossRef]
- Office of Dietary Supplements. Zinc Fact Sheet for Professionals. National Health of Institute. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 20 September 2024).
- Kabir, M.H.; Wang, Q.; Rashid, M.H.; Wang, W.; Isobe, Y. Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. Atmosphere 2022, 13, 488. [Google Scholar] [CrossRef]
BARS Measures | Domain of Cognition Measured |
---|---|
Match to Sample | Visual Memory |
Digit Span | Short-term Memory, Attention |
Continuous Performance | Sustained Attention |
Finger Tapping | Motor Coordination |
Simple Reaction Time | Response Speed |
Symbol Digit | Information Processing Speed |
Variable | Whole Sample n = 105 | Boys n = 47 | Girls n = 58 | p-Value |
---|---|---|---|---|
Age | 15.05 ± 1.26 | 15.02 ± 1.29 | 15.07 ± 1.25 | 0.85 |
Girls, n (%) | 58 (55.2) | |||
BMI categories, n (%) | 0.50 | |||
Underweight | 38 (36.2) | 18 (38.3) | 20 (34.5) | |
Healthy weight | 59 (56.2) | 27 (57.4) | 32 (55.2) | |
Overweight/obese | 8 (7.6) | 2 (4.3) | 6 (10.3) | |
Nutritional biomarkers | ||||
Zn (µg/L) | 5231.17 ± 1033.40 | 5181.64 ± 966.24 | 5271.31 ± 1091.50 | 0.66 |
Cu (µg/L) | 794.56 ± 100.11 | 776.20 ± 95.51 | 809.44 ± 102.08 | 0.09 |
Se (µg/L) | 129.43 ± 26.15 | 129.90 ± 22.95 | 129.05 ± 28.67 | 0.87 |
Mg (mg/L) | 29.69 ± 3.43 | 30.88 ± 3.92 | 28.96 ± 2.95 | 0.10 |
Fe (mg/L) | 370.12 ± 55.65 | 392.95 ± 62.74 | 356.22 ± 46.99 | 0.07 |
Composite Minerals Scores | ||||
3-NM score (continuous) | 1.5 ± 0.8 | 1.5 ± 0.9 | 1.5 ± 0.78 | 0.97 |
3-NM Score categories, n (%) | 0.59 | |||
0 | 10 (9.5%) | 5 (10.6%) | 5 (8.6%) | |
1 | 43 (41%) | 20 (42.6%) | 23 (39.7%) | |
2 | 40 (38.1%) | 15 (31.95) | 25 (43.1%) | |
3 | 12 (11.4%) | 7 (14.9%) | 5 (8.6%) | |
5-NM score (continuous) | 2.6 ± 1.5 | 2.4 ± 1.7 | 2.6 ± 1.3 | 0.66 |
5-NM score (categories, n (%) | 0.42 | |||
0 | 4 (10.8%) | 3 (21.4%) | 1 (4.3%) | |
1 | 6 (16.2%) | 1(7.1%) | 5 (21.7%) | |
2 | 6 (16.2%) | 3 (21.4%) | 3 (13.0%) | |
3 | 9 (24.3%) | 2 (14.3%) | 7 (30.4%) | |
4 | 10 (27.0%) | 4 (28.6%) | 6 (26.1%) | |
5 | 2 (5.45%) | 1 (7.1%) | 1 (4.3%) |
Variable | Whole Sample n = 105 | Boys n = 47 | Girls n = 58 | p-Value |
---|---|---|---|---|
SRT Latency (ms) | 328.4 ± 40.1 | 330.3 ± 38.9 | 326.8 ± 41.2 | 0.66 |
SDT Latency (ms) | 2749.75 ± 616.20 | 2955.72 ± 662.33 | 2582.84 ± 524.83 | <0.05 |
DST forward (count) | 4.79 ± 1.07 | 4.77 ± 1.1 | 4.8 ± 1.0 | 0.83 |
DST reverse (count) | 3.36 ± 1.45 | 3.36 ± 1.4 | 3.36 ± 1.5 | 0.99 |
CPT Latency (ms) | 327.12 ± 66.99 | 318.5 ± 76.4 | 334.1 ± 58.0 | 0.25 |
MTS count score | 17.06 ± 1.88 | 17.0 ± 1.9 | 17.14 ± 1.8 | 0.63 |
MTS Latency (ms) | 2747.34 ± 470.26 | 2863.45 ± 488.12 | 2653.26 ± 437.13 | <0.05 |
Variable | Zn (µg/L) (n = 105) | Cu (µg/L) (n = 105) | Se (µg/L) (n = 105) | Mg (mg/L) (n = 37) | Fe (mg/L) (n = 37) |
---|---|---|---|---|---|
SRT Latency (ms) | −0.07 | 0.17 | −0.10 | −0.17 | −0.27 |
SDT Latency (ms) | −0.11 | 0.12 | −0.04 | −0.03 | 0.05 |
DST forward (count) | −0.17 | −0.02 | 0.04 | 0.16 | 0.11 |
DST reverse (count) | 0.05 | −0.03 | −0.1 | 0.11 | 0.01 |
CPT Latency (ms) | −0.17 | 0.04 | −0.07 | 0.21 | −0.42 * |
MTS count score | −0.09 | −0.05 | 0.32 ** | 0.25 | 0.06 |
MTS Latency (ms) | −0.19 | −0.1 | 0.02 | −0.04 | −0.18 |
CPT Latency (ms) | MTS Latency (ms) | SRT Latency (ms) | SDT Latency (ms) | DST Forward | DST Reverse | MTS Count | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | Crude Model b (95% CI) | Adjusted Model b (95% CI) | |
Zn (µg/L) | −0.01 (−0.02, 0.00) | −0.02 * (−0.03, 0.00) | −0.09 * (−0.17, 0.00) | −0.08 (−0.17, 0.01) | −0.00 (−0.01, 0.01) | −0.01 (−0.01, 0.01) | −0.067 (−0.18, 0.05) | −0.02 (−0.13, 0.09) | 0.00 (0.00, 0.00) | 0.00 * (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (−0.00, 0.00) | 0.00 (−0.00, 0.00) |
Cu (µg/L) | 0.02 (−0.11, 0.16) | 0.03 (−0.11, 0.16) | −0.46 (−1.37, 0.46) | −0.15 (−1.07, 0.77) | 0.06 (−0.01, 0.15) | 0.07 (−0.01, 0.15) | 0.76 (−0.43, 1.96) | 0.90 (−0.25, 2.05) | 0.00 (−0.00, 0.00) | 0.00 (−0.00, 0.00) | 0.00 (−0.00, 0.00) | 0.00 (−0.00, 0.00) | −0.00 (−0.01, 0.00) | −0.00 (−0.01, 0.00) |
Se (µg/L) | −0.17 (−0.67, 0.33) | −0.18 (−0.68, 0.33) | 0.43 (−3.09, 3.94) | 0.59 (−2.82, 3.99) | −0.15 (−0.45, 0.14) | −0.16 (−0.46, 0.14) | −0.96 (−5.56, 3.64) | −0.86 (−5.17, 3.45) | 0.00 (−0.01, 0.01) | 0.00 (−0.01, 0.01) | −0.01 (−0.02, 0.01) | −0.01 (−0.02, 0.01) | 0.02 *** (0.01, 0.04) | 0.02 *** (0.01, 0.04) |
Composite Score (3 Metals) | −15.71 * (−31.34, −0.08) | −16.39 * (−32.27, −0.50) | −120.07 * (−229.41, −10.73) | −100.41 (−208.70, 7.88) | −1.80 (−11.33, 7.72) | −2.89 (−12.64, 6.86) | −97.46 (−242.76, 47.83) | −92.62 (−230.99, 45.75) | 0.10 (−0.15, 0.36) | 0.10 (−0.17, 0.36) | 0.01 (−0.34, 0.35) | −0.01 (−0.36, 0.34) | 0.40 (−0.04, 0.84) | 0.46 * (0.003, 0.91) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahi, B.; Rashid, F.; Sultana, R.; Benoit, J.; Parvez, F.; Khan, K. Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study. Nutrients 2024, 16, 3865. https://doi.org/10.3390/nu16223865
Rahi B, Rashid F, Sultana R, Benoit J, Parvez F, Khan K. Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study. Nutrients. 2024; 16(22):3865. https://doi.org/10.3390/nu16223865
Chicago/Turabian StyleRahi, Berna, Fahmida Rashid, Rasheda Sultana, Julia Benoit, Faruque Parvez, and Khalid Khan. 2024. "Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study" Nutrients 16, no. 22: 3865. https://doi.org/10.3390/nu16223865
APA StyleRahi, B., Rashid, F., Sultana, R., Benoit, J., Parvez, F., & Khan, K. (2024). Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study. Nutrients, 16(22), 3865. https://doi.org/10.3390/nu16223865