Effect of the Intake of Solid Block Dairy Products Like Cheese on Serum Uric Acid in Children: A Preliminary Mechanistic Investigation
Highlights
- The intake of solid-block dairy products resulted in decreased serum uric acid levels.
- A two-sample Mendelian randomization (TSMR) analysis supports a negative causal relationship between cheese intake and serum uric acid levels.
- The JAK-STAT signaling pathway and autophagy regulatory mechanisms are potential mechanisms underlying this relationship.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcome Variables
2.3. Exposure Variable
2.4. Covariates
2.5. Statistical Analysis
2.6. TSMR Analysis
2.7. Bioinformatics Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association Analysis of Diverse Dairy Products and Serum Uric Acid Levels
3.3. Two-Sample Mendelian Randomization Analysis of PM2.5 and Sodium in Urine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Shen, Z.; Zhu, B.; Zhang, H.; Zhang, X.; Ding, X. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: A systematic review and meta-analysis. Glob. Health Action 2021, 14, 1874652. [Google Scholar] [CrossRef]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef]
- Wang, R.; Halimulati, M.; Huang, X.; Ma, Y.; Li, L.; Zhang, Z. Sulforaphane-driven reprogramming of gut microbiome and metabolome ameliorates the progression of hyperuricemia. J. Adv. Res. 2023, 52, 19–28. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, Z.F.; Lu, Y.; Du, Y.; Shao, J.; Wang, L.; Wu, Q.; Pan, B.; Zhu, W.; Zhao, Q.; et al. Elevated serum uric acid, hyperuricaemia and dietary patterns among adolescents in mainland China. J. Pediatr. Endocrinol. Metab. 2020, 33, 487–493. [Google Scholar] [CrossRef]
- Yamanaka, H. Gout and hyperuricemia in young people. Curr. Opin. Rheumatol. 2011, 23, 156–160. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 9221. [Google Scholar] [CrossRef]
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Crawley, W.T.; Jungels, C.G.; Stenmark, K.R.; Fini, M.A. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biol. 2022, 51, 102271. [Google Scholar] [CrossRef]
- Dalbeth, N.; Wong, S.; Gamble, G.D.; Horne, A.; Mason, B.; Pool, B.; Fairbanks, L.; McQueen, F.M.; Cornish, J.; Reid, I.R.; et al. Acute effect of milk on serum urate concentrations: A randomised controlled crossover trial. Ann. Rheum. Dis. 2010, 69, 1677–1682. [Google Scholar] [CrossRef]
- Dalbeth, N.; Palmano, K. Effects of dairy intake on hyperuricemia and gout. Curr. Rheumatol. Rep. 2011, 13, 132–137. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, X.; Huang, Z.; Li, X.; Zhao, Y.; Wang, Y.; Zhu, H.; Fang, A.; Giovannucci, E.L. Cheese consumption and multiple health outcomes: An umbrella review and updated meta-analysis of prospective studies. Adv. Nutr. 2023, 14, 1170–1186. [Google Scholar] [CrossRef]
- Silva, M.; Diniz, M.; Coelho, C.G.; Vidigal, P.G.; Telles, R.W.; Barreto, S.M. Intake of selected foods and beverages and serum uric acid levels in adults: ELSA-Brasil (2008–2010). Public Health Nutr. 2020, 23, 506–514. [Google Scholar] [CrossRef]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef]
- Mena-Sanchez, G.; Babio, N.; Becerra-Tomas, N.; Martinez-Gonzalez, M.A.; Diaz-Lopez, A.; Corella, D.; Zomeno, M.D.; Romaguera, D.; Vioque, J.; Alonso-Gomez, A.M.; et al. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 214–222. [Google Scholar] [CrossRef]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Regulations on the Classification of Urban and Rural Areas in Statistics. National Bureau of Statistics. Available online: https://www.stats.gov.cn/zs/tjws/tjbz/202301/t20230101_1903381.html (accessed on 27 October 2024).
- El, R.R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493. [Google Scholar]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef]
- Maesaka, J.K.; Fishbane, S. Regulation of renal urate excretion: A critical review. Am. J. Kidney Dis. 1998, 32, 917–933. [Google Scholar] [CrossRef]
- Lipkowitz, M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep. 2012, 14, 179–188. [Google Scholar] [CrossRef]
- Merriman, T.R.; Dalbeth, N. The genetic basis of hyperuricaemia and gout. Jt. Bone Spine 2011, 78, 35–40. [Google Scholar] [CrossRef]
- Li, F.; Yang, W.; Sun, S.; He, W.; Xu, S.; Han, B.; Ma, M. Dietary factors and hypertension: A Mendelian randomization analysis. Food Sci. Nutr. 2024, 12, 2502–2510. [Google Scholar] [CrossRef]
- Haug, A.; Hostmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef]
- Garrel, D.R.; Verdy, M.; PetitClerc, C.; Martin, C.; Brule, D.; Hamet, P. Milk- and soy-protein ingestion: Acute effect on serum uric acid concentration. Am. J. Clin. Nutr 1991, 53, 665–669. [Google Scholar] [CrossRef]
- Fumeron, F.; Lamri, A.; Emery, N.; Bellili, N.; Jaziri, R.; Porchay-Balderelli, I.; Lantieri, O.; Balkau, B.; Marre, M. Dairy products and the metabolic syndrome in a prospective study, DESIR. J. Am. Coll. Nutr. 2011, 30 (Suppl. S1), 454S–463S. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; van Woudenbergh, G.J.; Oude, E.S.; Singh-Povel, C.M.; Hofman, A.; Dehghan, A.; Franco, O.H.; Feskens, E.J. Intake of different types of dairy and its prospective association with risk of type 2 diabetes: The Rotterdam Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 987–995. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yuan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct. Target. Ther. 2023, 8, 204. [Google Scholar] [CrossRef]
- Sarapultsev, A.; Gusev, E.; Komelkova, M.; Utepova, I.; Luo, S.; Hu, D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023, 4, 40. [Google Scholar] [CrossRef]
- Hu, Q.; Bian, Q.; Rong, D.; Wang, L.; Song, J.; Huang, H.S.; Zeng, J.; Mei, J.; Wang, P.Y. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol. 2023, 11, 1110765. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, M.; Lu, G.; Yang, Z.; Ji, H.; Hu, Q. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed. Pharmacother. 2017, 96, 727–735. [Google Scholar] [CrossRef]
- Li, D.; Yuan, S.; Deng, Y.; Wang, X.; Wu, S.; Chen, X.; Li, Y.; Ouyang, J.; Lin, D.; Quan, H.; et al. The dysregulation of immune cells induced by uric acid: Mechanisms of inflammation associated with hyperuricemia and its complications. Front. Immunol. 2023, 14, 1282890. [Google Scholar] [CrossRef]
- Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017, 77, 521–546. [Google Scholar] [CrossRef]
- Collotta, D.; Franchina, M.P.; Carlucci, V.; Collino, M. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front. Pharmacol. 2023, 14, 1245535. [Google Scholar] [CrossRef]
- Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 651–662. [Google Scholar] [CrossRef]
- Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy 2017, 13, 997–1003. [Google Scholar] [CrossRef]
- Kimura, T.; Takahashi, A.; Takabatake, Y.; Namba, T.; Yamamoto, T.; Kaimori, J.Y.; Matsui, I.; Kitamura, H.; Niimura, F.; Matsusaka, T.; et al. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress. Autophagy 2013, 9, 1876–1886. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, Y.; Chen, H.; Tao, M.; Zhou, X.; Li, J.; Ma, X.; Wang, Y.; Liu, N. Blockade of Autophagy Prevents the Progression of Hyperuricemic Nephropathy Through Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Front. Immunol. 2022, 13, 858494. [Google Scholar] [CrossRef]
- Wen, L.; Yang, H.; Ma, L.; Fu, P. The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol. Cell. Biochem. 2021, 476, 1377–1386. [Google Scholar] [CrossRef]
- Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 Inflammasome and Autophagy. Front. Immunol. 2020, 11, 591803. [Google Scholar] [CrossRef]
- Liu, T.; Wang, L.; Liang, P.; Wang, X.; Liu, Y.; Cai, J.; She, Y.; Wang, D.; Wang, Z.; Guo, Z.; et al. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell. Mol. Immunol. 2021, 18, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Livingston, M.J.; Liu, Z.; Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 2020, 16, 489–508. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Male | Female | p Value |
---|---|---|---|---|
Gender, n (%) | 3568 | 1775 (49.75) | 1793 (50.25) | |
Age (years) | 11.38 ± 3.16 | 11.42 ± 3.15 | 11.34 ± 3.16 | 0.449 |
Height (cm) | 150.52 ± 16.70 | 152.60 ± 18.20 | 148.46 ± 14.80 | <0.001 |
Weight (kg) | 45.13 ± 16.55 | 47.58 ± 18.27 | 42.71 ± 14.24 | <0.001 |
BMI (kg/m2) | 19.38 ± 5.87 | 19.82 ± 6.07 | 18.94 ± 5.63 | <0.001 |
Residence [17] | 0.899 | |||
Rural, n (%) | 1936 (54.26) | 965 (54.37) | 971 (54.16) | |
Urban, n (%) | 1632 (45.74) | 810 (45.63) | 822 (45.84) | |
Solid block dairy products consumption (g/day) | 7.03 ± 28.77 | 7.58 ± 29.43 | 6.50 ± 28.10 | 0.261 |
Liquid milk consumption (g/day) | 77.96 ± 118.99 | 75.24 ± 130.50 | 80.66 ± 106.34 | 0.174 |
Powder milk consumption (g/day) | 1.80 ± 15.21 | 1.71 ± 16.29 | 1.90 ± 14.07 | 0.708 |
Yogurt consumption (g/day) | 55.18 ± 92.28 | 57.73 ± 82.09 | 52.66 ± 101.68 | 0.102 |
Protein intake (g/day) | 139.81 ± 131.59 | 143.42 ± 150.25 | 136.24 ± 109.97 | 0.104 |
Fat intake (g/day) | 52.15 ± 76.18 | 52.29 ± 71.11 | 52.00 ± 80.91 | 0.911 |
Carbohydrate intake (g/day) | 393.96 ± 335.17 | 409.88 ± 361.78 | 378.21 ± 305.85 | 0.005 |
Energy intake (kcal/day) | 2391.81 ± 2102.69 | 2466.79 ± 2140.31 | 2317.59 ± 2062.69 | 0.034 |
Physical Activity (min) | 39.41 ± 46.60 | 42.42 ± 48.65 | 36.42 ± 44.29 | <0.001 |
Exposure days to secondhand smoke per week (days) | 4.33 ± 1.19 | 4.26 ± 1.26 | 4.40 ± 1.11 | <0.001 |
Alcohol consumption | <0.001 | |||
Consumed alcohol within a month | 105 (2.94) | 85 (4.79) | 20 (1.12) | |
Consumed alcohol within the past month | 170 (4.76) | 109 (6.14) | 61 (3.40) | |
Never | 3292 (92.26) | 1581 (89.07) | 1711 (95.43) | |
Serum Uric Acid (mmol/L) | 316.51 ± 82.52 | 338.75 ± 90.25 | 294.49 ± 67.20 | <0.001 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | 95% CI | p Value | Coefficient | 95% CI | p Value | Coefficient | 95% CI | p Value | |
The intake of solid block dairy products like cheese (g/day) | −0.098 | −0.192, −0.003 | 0.042 | −0.163 | −0.244, −0.081 | <0.001 | −0.182 | −0.269, −0.095 | <0.001 |
The intake of liquid milk (g/day) | −0.005 | −0.028, 0.017 | 0.649 | −0.001 | −0.021, 0.019 | 0.939 | 0.002 | −0.019, 0.022 | 0.860 |
The intake of powdered milk (g/day) | −0.008 | −0.186, 0.170 | 0.927 | −0.022 | −0.176, 0.133 | 0.783 | −0.002 | −0.159, 0.155 | 0.978 |
The intake of yogurt (g/day) | 0.028 | −0.001, 0.057 | 0.060 | 0.015 | −0.010, 0.041 | 0.235 | 0.027 | −0.001, 0.054 | 0.058 |
N (%) | Coefficient | 95% Cl | p Value | p for Interaction | |
---|---|---|---|---|---|
Gender | 0.235 | ||||
Male | 1775 (49.75) | −0.179 | −0.307, −0.052 | 0.006 | |
Female | 1793 (50.25) | −0.227 | −0.339, −0.115 | <0.001 | |
Age | 0.987 | ||||
≤11 | 1874 (52.52) | −0.113 | −0.270, 0.044 | 0.158 | |
>11 | 1694 (47.48) | −0.222 | −0.330, −0.113 | <0.001 | |
Overweight or obese | 0.267 | ||||
No | 2637 (73.93) | −0.134 | −0.248, −0.020 | 0.022 | |
Yes | 930 (26.07) | −0.014 | −0.179, 0.152 | 0.869 | |
Residence | 0.545 | ||||
Rural | 1936 (54.26) | −0.225 | −0.443, −0.007 | 0.043 | |
Urban | 1632 (45.74) | −0.174 | −0.271, −0.077 | <0.001 | |
Energy intake | 0.827 | ||||
≤P50 | 1784 (50.00) | 0.177 | −0.191, 0.545 | 0.346 | |
>P50 | 1784 (50.00) | −0.178 | −0.263, −0.092 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Tang, Z.; Guo, X.; Liu, L.; Cheng, X.; Yu, L.; Cheng, G. Effect of the Intake of Solid Block Dairy Products Like Cheese on Serum Uric Acid in Children: A Preliminary Mechanistic Investigation. Nutrients 2024, 16, 3864. https://doi.org/10.3390/nu16223864
Lu Z, Tang Z, Guo X, Liu L, Cheng X, Yu L, Cheng G. Effect of the Intake of Solid Block Dairy Products Like Cheese on Serum Uric Acid in Children: A Preliminary Mechanistic Investigation. Nutrients. 2024; 16(22):3864. https://doi.org/10.3390/nu16223864
Chicago/Turabian StyleLu, Zhongting, Zhenchuang Tang, Xin Guo, Lei Liu, Xuemei Cheng, Lianlong Yu, and Guangyan Cheng. 2024. "Effect of the Intake of Solid Block Dairy Products Like Cheese on Serum Uric Acid in Children: A Preliminary Mechanistic Investigation" Nutrients 16, no. 22: 3864. https://doi.org/10.3390/nu16223864
APA StyleLu, Z., Tang, Z., Guo, X., Liu, L., Cheng, X., Yu, L., & Cheng, G. (2024). Effect of the Intake of Solid Block Dairy Products Like Cheese on Serum Uric Acid in Children: A Preliminary Mechanistic Investigation. Nutrients, 16(22), 3864. https://doi.org/10.3390/nu16223864