The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Search Strategies
2.3. Eligibility Criteria
- -
- P (Population): Athletes, exercisers, or any individuals capable of participating in physical activity;
- -
- I (Intervention): The consumption of caffeine-containing substances and engagement in sports or exercise in a pre-defined hot environment;
- -
- C (Comparison): Comparisons between caffeine use and non-caffeine, placebo, or other nutritional supplements;
- -
- O (Outcomes): Any outcome measures related to physical performance or human health;
- -
- S (Study design): No restrictions, including controlled trials, observational studies, and reviews.
2.4. Analysis
3. Results
3.1. Bibliometric Analysis
- (1)
- Upper Right Quadrant: Motor Themes—These are mature themes that are crucial to the structure of the research field, characterized by high centrality and density.
- (2)
- Lower Right Quadrant: Basic Themes—These clusters are linked by numerous keywords but exhibit significant variability between them. They represent emerging or past themes with potential within the discipline.
- (3)
- Upper Left Quadrant: Niche Themes—These are mature but very specialized themes, playing a minor role in the broader field.
- (4)
- Lower Left Quadrant: Emerging or Declining Themes—These themes have the potential to evolve toward greater centrality or density. They could signify new trends or developments in the field [68].
3.2. Theme Analysis
3.2.1. The Role of Caffeine on Exercise Performance
3.2.2. The Role of Caffeine on Thermoregulation
3.2.3. The Role of Caffeine on Fluid Balance
3.2.4. The Role of Caffeine on Physiological Responses
3.2.5. The Role of Caffeine on Immune Responses
3.2.6. Synergistic Effects of Caffeine with Other Compounds
3.2.7. Influence of Individual Differences on Caffeine’s Effects
4. Discussion
4.1. Current Research Status and Characteristics
4.2. Major Research Themes
4.3. Mechanisms of Caffeine’s Impact on Exercise or Sports
4.4. Practical Indications and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahoney, C.R.; Giles, G.E.; Marriott, B.P.; Judelson, D.A.; Glickman, E.L.; Geiselman, P.J.; Lieberman, H.R. Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 2019, 38, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Torga, G.N.; Spers, E.E. Chapter 2—Perspectives of global coffee demand. In Coffee Consumption and Industry Strategies in Brazil; de Almeida, L.F., Spers, E.E., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 21–49. [Google Scholar]
- Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’Meyer, R.B.; Panchal, S.K.; Brown, L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023, 15, 994. [Google Scholar] [CrossRef] [PubMed]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
- Fiani, B.; Zhu, L.; Musch, B.L.; Briceno, S.; Andel, R.; Sadeq, N.; Ansari, A.Z. The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant Effects on Cognitive Function. Cureus 2021, 13, e15032. [Google Scholar] [CrossRef]
- van Duinen, H.; Lorist, M.M.; Zijdewind, I. The effect of caffeine on cognitive task performance and motor fatigue. Psychopharmacology 2005, 180, 539–547. [Google Scholar] [CrossRef]
- Nehlig, A. Is Caffeine a Cognitive Enhancer? J. Alzheimer’s Dis. 2010, 20, S85–S94. [Google Scholar] [CrossRef]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Rivers, W.; Webber, H. The action of caffeine on the capacity for muscular work. J. Physiol. 1907, 36, 33. [Google Scholar] [CrossRef] [PubMed]
- Diel, P. Caffeine and Doping—What Have We Learned since 2004. Nutrients 2020, 12, 2167. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Tallis, J.; Guimaraes-Ferreira, L.; Clarke, N.D. Not Another Caffeine Effect on Sports Performance Study—Nothing New or More to Do? Nutrients 2022, 14, 4696. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Szerej, K.; Dorobek, W.; Stankiewicz, K.; Świeczkowski-Feiz, J. The Role of Caffeine in Enhancing Physical Performance: From Metabolism to Muscle Function. J. Educ. Health Sport 2024, 59, 158–165. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Wightman, E.L. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med. 2022, 52, 69–90. [Google Scholar] [CrossRef]
- Aguiar, A.S.; Speck, A.E.; Canas, P.M.; Cunha, R.A. Neuronal adenosine A2A receptors signal ergogenic effects of caffeine. Sci. Rep. 2020, 10, 13414. [Google Scholar] [CrossRef]
- Alves, A.C.d.B.; Santos, N.d.S.; Santos, A.P.T.; Panatta, G.d.; Speck, A.E.; Cunha, R.A.; Aguiar, A.S. Adenosine A2A and dopamine D2 receptor interaction controls fatigue resistance. Front. Pharmacol. 2024, 15, 1390187. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.P.L.F.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef]
- Ruddock, A.; Robbins, B.; Tew, G.; Bourke, L.; Purvis, A. Practical Cooling Strategies During Continuous Exercise in Hot Environments: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 517–532. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Casa, D.J.; Maresh, C.M.; Ganio, M.S. Caffeine, Fluid-Electrolyte Balance, Temperature Regulation, and Exercise-Heat Tolerance. Exerc. Sport Sci. Rev. 2007, 35, 135–140. [Google Scholar] [CrossRef]
- Armstrong, L.E. Caffeine, body fluid-electrolyte balance, and exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Naulleau, C.; Jeker, D.; Pancrate, T.; Claveau, P.; Deshayes, T.A.; Burke, L.M.; Goulet, E.D. Effect of pre-exercise caffeine intake on endurance performance and core temperature regulation during exercise in the heat: A systematic review with meta-analysis. Sports Med. 2022, 52, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Kawuki, J.; Yu, X.; Musa, T.H. Bibliometric Analysis of Ebola Research Indexed in Web of Science and Scopus (2010-2020). BioMed Res. Int. 2020, 2020, 5476567. [Google Scholar] [CrossRef]
- Alviz-Meza, A.; Orozco-Agamez, J.; Quinayá, D.C.; Alviz-Amador, A. Bibliometric analysis of fourth industrial revolution applied to material sciences based on Web of Science and Scopus databases from 2017 to 2021. ChemEngineering 2023, 7, 2. [Google Scholar] [CrossRef]
- Manriquez, J.; Andino-Navarrete, R.; Cataldo-Cerda, K.; Harz-Fresno, I. Bibliometric characteristics of systematic reviews in dermatology: A cross-sectional study through Web of Science and Scopus. Dermatol. Sin. 2015, 33, 154–156. [Google Scholar] [CrossRef]
- Akintunde, T.Y.; Musa, T.H.; Musa, H.H.; Chen, S.; Ibrahim, E.; Muhideen, S.; Kawuki, J. Mapping the global research output on Ebola vaccine from research indexed in web of science and scopus: A comprehensive bibliometric analysis. Hum. Vaccines Immunother. 2021, 17, 4246–4258. [Google Scholar] [CrossRef]
- Khosravi, H.; Shafie, M.R.; Hajiabadi, M.; Raihan, A.S.; Ahmed, I. Chatbots and ChatGPT: A bibliometric analysis and systematic review of publications in Web of Science and Scopus databases. Int. J. Data Min. Model. Manag. 2024, 16, 113–147. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The effect of acute caffeine ingestion on endurance performance: A systematic review and meta–analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Shen, J.G.; Brooks, M.B.; Cincotta, J.; Manjourides, J.D. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J. Sci. Med. Sport 2019, 22, 232–238. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 386. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Derviş, H. Bibliometric analysis using bibliometrix an R package. J. Scientometr. Res. 2019, 8, 156–160. [Google Scholar] [CrossRef]
- Rother, E.T. Systematic literature review X narrative review. Acta Paul. Enferm. 2007, 20, v–vi. [Google Scholar] [CrossRef]
- Hanson, N.J.; Martinez, S.C.; Byl, E.N.; Maceri, R.M.; Miller, M.G. Increased rate of heat storage, and no performance benefits, with caffeine ingestion before a 10-km run in hot, humid conditions. Int. J. Sports Physiol. Perform. 2019, 14, 196–202. [Google Scholar] [CrossRef]
- Rutherford, M.M.; Palmer, M.S. Effects of Caffeine and Menstrual Phase on Performance of Female Athletes during Heat Stress. FASEB J. 2018, 32, lb262. [Google Scholar] [CrossRef]
- Suvi, S.; Timpmann, S.; Tamm, M.; Aedma, M.; Kreegipuu, K.; Ööpik, V. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat. Appl. Physiol. Nutr. Metab. 2017, 42, 68–76. [Google Scholar] [CrossRef]
- Eaton, T.R.; Potter, A.; Billaut, F.; Panchuk, D.; Pyne, D.B.; Gore, C.J.; Chen, T.-T.; McQuade, L.; Stepto, N.K. A combination of amino acids and caffeine enhances sprint running capacity in a hot, hypoxic environment. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 33–45. [Google Scholar] [CrossRef]
- Ping, W.C.; Keong, C.C.; Bandyopadhyay, A. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate. Indian J. Med. Res. 2010, 132, 36–41. [Google Scholar]
- Roti, M.W.; Casa, D.J.; Pumerantz, A.C.; Watson, G.; Judelson, D.A.; Dias, J.C.; Ruffin, K.; Armstrong, L.E. Thermoregulatory responses to exercise in the heat: Chronic caffeine intake has no effect. Aviat. Space Environ. Med. 2006, 77, 124–129. [Google Scholar] [PubMed]
- Dias, J.C.; Roti, M.W.; Pumerantz, A.C.; Watson, G.; Judelson, D.A.; Casa, D.J.; Armstrong, L.E. Rehydration after exercise dehydration in heat: Effects of caffeine intake. J. Sport Rehabil. 2005, 14, 294–300. [Google Scholar] [CrossRef]
- Roti, M.W.; Pumerantz, A.C.; Watson, G.; Judelson, D.A.; Larsen, M.S.; Sokmen, B.; Dias, J.C.; Ruffin, K.; Casa, D.J.; Armstrong, L.E. Influence of Caffeine Ingestion on Fluid-Electrolyte, Psychological and Physiological Responses During an Exercise Heat-Tolerance Test. Med. Sci. Sports Exerc. 2004, 36, S17–S18. [Google Scholar] [CrossRef]
- Cohen, B.S.; Nelson, A.G.; Prevost, M.C.; Thompson, G.D.; Marx, B.D.; Morris, G.S. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 358–363. [Google Scholar] [CrossRef]
- Yu, P.; Fan, Y.; Wu, H. Effects of Caffeine-Taurine Co-Ingestion on Endurance Cycling Performance in High Temperature and Humidity Environments. Sports Health 2024, 16, 19417381241231627. [Google Scholar] [CrossRef]
- Bell, D.G.; Jacobs, I.; McLellan, T.M.; Miyazaki, M.; Sabiston, C.M. Thermal regulation in the heat during exercise after caffeine and ephedrine ingestion. Aviat. Space Environ. Med. 1999, 70, 583–588. [Google Scholar]
- John, K.; Kathuria, S.; Peel, J.; Page, J.; Aitkenhead, R.; Felstead, A.; Heffernan, S.M.; Jeffries, O.; Tallent, J.; Waldron, M. Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males. Eur. J. Appl. Physiol. 2024, 124, 2489–2502. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, H.; Han, Y. Effects of caffeinated beverage ingestion on salivary antimicrobial proteins responses to acute exercise in the heat. Front. Nutr. 2022, 9, 973003. [Google Scholar] [CrossRef]
- Hunt, L.A.; Hospers, L.; Smallcombe, J.W.; Mavros, Y.; Jay, O. Caffeine alters thermoregulatory responses to exercise in the heat only in caffeine-habituated individuals: A double-blind placebo-controlled trial. J. Appl. Physiol. 2021, 131, 1300–1310. [Google Scholar] [CrossRef]
- Nakamura, D.; Tanabe, Y.; Arimitsu, T.; Hasegawa, H.; Takahashi, H. Low caffeine dose improves intermittent sprint performance in hot and humid environments. J. Therm. Biol. 2020, 93, 102698. [Google Scholar] [CrossRef]
- Bach, C.W.; Ransone, J.W. Caffeine does not increase heat stress during endurance exercise in a hot, humid environment. Med. Sci. Sport Exer. 2018, 50, 599. [Google Scholar] [CrossRef]
- Chapman, C.L.; Johnson, B.D.; Sackett, J.R.; Parker, M.D.; Schlader, Z.J. Consumption of a Caffeinated Soft Drink during Exercise in the Heat Worsens Dehydration. In Proceedings of the International Journal of Exercise Science: Conference Proceedings, 4–5 November 2017; University at Buffalo: Buffalo, NY, USA, 2017; p. 20. [Google Scholar]
- Beaumont, R.E.; James, L.J. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J. Sci. Med. Sport 2017, 20, 1024–1028. [Google Scholar] [CrossRef]
- Beaumont, R.; Brown, D.; Stephenson, B.; Freeman, C.; Watson, P. The effect of a low dose of caffeine on exercise performance and thermoregulation during endurance exercise in the heat. Proc. Nutr. Soc. 2015, 74, E28. [Google Scholar] [CrossRef]
- Pitchford, N.W.; Fell, J.W.; Leveritt, M.D.; Desbrow, B.; Shing, C.M. Effect of caffeine on cycling time-trial performance in the heat. J. Sci. Med. Sport 2014, 17, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Ely, B.R.; Ely, M.R.; Cheuvront, S.N. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 65–70. [Google Scholar] [CrossRef]
- Ganio, M.S.; Johnson, E.C.; Klau, J.F.; Anderson, J.M.; Casa, D.J.; Maresh, C.M.; Volek, J.S.; Armstrong, L.E. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur. J. Appl. Physiol. 2011, 111, 1135–1146. [Google Scholar] [CrossRef]
- Ganio, M.S.; Johnson, E.C.; Lopez, R.M.; Stearns, R.L.; Emmanuel, H.; Anderson, J.M.; Casa, D.J.; Maresh, C.M.; Volek, J.S.; Armstrong, L.E. Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiol. Behav. 2011, 102, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Roelands, B.; Buyse, L.; Pauwels, F.; Delbeke, F.; Deventer, K.; Meeusen, R. No effect of caffeine on exercise performance in high ambient temperature. Eur. J. Appl. Physiol. 2011, 111, 3089–3095. [Google Scholar] [CrossRef]
- Brunning, R.; Luetkemeier, M.J.; Davis, J.E. Caffeinated and Decaffeinated Beverages Equally Restore Fluid Balance After Exercise in the Heat: 945: June 4 2:30 PM–2:45 PM. Med. Sci. Sports Exerc. 2010, 42, 112–113. [Google Scholar] [CrossRef]
- Del Coso, J.; Estevez, E.; Mora-Rodriguez, R. Caffeine during exercise in the heat: Thermoregulation and fluid-electrolyte balance. Med. Sci. Sports Exerc. 2009, 41, 164–173. [Google Scholar] [CrossRef]
- Coso, J.d.; Estevez, E.; Mora-Rodriguez, R. Caffeine effects on short-term performance during prolonged exercise in the heat. Med. Sci. Sports Exerc. 2008, 40, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, C.L.; Daniels, J.W.; Lewis, W. Effects of caffeine and high ambient temperature on haemodynamic and body temperature responses to dynamic exercise. Clin. Physiol. 2001, 21, 528–533. [Google Scholar] [CrossRef]
- Anderson, D.E.; Hickey, M.S. Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C. Med. Sci. Sports Exerc. 1994, 26, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Callon, M.; Courtial, J.P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Rani, M.; Ducoli, S.; Federici, S.; Depero, L.E. Influx of Near-Infrared Technology in Microplastic Community: A Bibliometric Analysis. Microplastics 2023, 2, 107–121. [Google Scholar] [CrossRef]
- Chapman, C.L.; Johnson, B.D.; Sackett, J.R.; Parker, M.D.; Schlader, Z.J. Renal Injury is Worsened when Consuming a Caffeinated Soft-Drink during and after Exercise in the Heat. FASEB J. 2018, 32, 763–765. [Google Scholar] [CrossRef]
- Contreras-Barraza, N.; Madrid-Casaca, H.; Salazar-Sepúlveda, G.; Garcia-Gordillo, M.Á.; Adsuar, J.C.; Vega-Muñoz, A. Bibliometric Analysis of Studies on Coffee/Caffeine and Sport. Nutrients 2021, 13, 3234. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Del Coso, J.; Espada, M.C.; Hernández-Beltrán, V.; Ferreira, C.C.; Varillas-Delgado, D.; Mendoza Laiz, N.; Roberts, J.D.; Gamonales, J.M. Research Trends in the Effect of Caffeine Intake on Fat Oxidation: A Bibliometric and Visual Analysis. Nutrients 2023, 15, 4320. [Google Scholar] [CrossRef]
- Zinn, J.; Sekiguchi, Y.; Vingren, J.; Luk, H.; Wright, S.S.; Munoz, C.X.; McKenxie, A.L.; Ganio, M.S.; McDermott, B.P.; Armstrong, L.E.; et al. LPS-induced TLR4 activation during a 164 km and 100 km cycling event in a hot and humid environment. Asian Exerc. Sport Sci. J. 2023, 7, 72–80. [Google Scholar]
- Navarro, J.S.; Morrissey, M.C.; Dierickx, E.E.; Casa, D.J. Physiological And Thermoregulatory Responses Of Body Cooling During Cycling In A Hot Environment: 992. Med. Sci. Sports Exerc. 2022, 54, 246. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Trabelsi, K.; Ammar, A.; Glenn, J.M.; Chtourou, H. Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2996. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.; Morales, A.P.; Sampaio-Jorge, F.; Tinoco, F.D.S.; Leite, T.C. Acute effects of caffeine intake on athletic performance: A systematic review and meta-analysis. Rev. Chil. Nutr. 2017, 44, 283–291. [Google Scholar] [CrossRef]
- Van Schaik, L.; Kettle, C.; Green, R.; Irving, H.R.; Rathner, J.A. Effects of Caffeine on Brown Adipose Tissue Thermogenesis and Metabolic Homeostasis: A Review. Front. Neurosci. 2021, 15, 621356. [Google Scholar] [CrossRef]
- Antonio, J.; Newmire, D.E.; Stout, J.R.; Antonio, B.; Gibbons, M.; Lowery, L.M.; Harper, J.; Willoughby, D.; Evans, C.; Anderson, D.; et al. Common questions and misconceptions about caffeine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2024, 21, 2323919. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; da Costa, L.R.; de Souza, R.A.S.; Barreto, G.; Marticorena, F.M. Chapter Three—Caffeine and sport. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 106, pp. 95–127. [Google Scholar]
- Conger, S.A.; Tuthill, L.M.; Millard-Stafford, M.L. Does caffeine increase fat metabolism? A systematic review and meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2022, 33, 112–120. [Google Scholar] [CrossRef]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Merellano-Navarro, E.; Coso, J.D. Effect of Acute Caffeine Intake on the Fat Oxidation Rate during Exercise: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3603. [Google Scholar] [CrossRef]
- Fernández-Sánchez, J.; Trujillo-Colmena, D.; Rodríguez-Castaño, A.; Lavín-Pérez, A.M.; Del Coso, J.; Casado, A.; Collado-Mateo, D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 207. [Google Scholar] [CrossRef]
- Kobayashi-Hattori, K.; Mogi, A.; Matsumoto, Y.; Takita, T. Effect of Caffeine on the Body Fat and Lipid Metabolism of Rats Fed on a High-Fat Diet. Biosci. Biotechnol. Biochem. 2005, 69, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Wong, W.-Y.; Kauter, K.; Ward, L.C.; Brown, L. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 2012, 28, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.E.; Jentjens, R.L.; Wallis, G.A.; Jeukendrup, A.E. Caffeine increases exogenous carbohydrate oxidation during exercise. J. Appl. Physiol. 2005, 99, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Beedie, C.J.; Stuart, E.M.; Coleman, D.A.; Foad, A.J. Placebo effects of caffeine on cycling performance. Med. Sci. Sports Exerc. 2006, 38, 2159. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 1994:2024 |
Sources (Journals, Books, etc.) | 19 |
Documents | 35 |
Annual Growth Rate % | 2.34 |
Document Average Age | 11.8 |
Average citations per doc | 16.66 |
References | 657 |
Study | Design | Subjects | Nutriention Settings | Caffeine Dosage (mg/kg) | Environment | Exercise |
---|---|---|---|---|---|---|
Yu, et al. [46] | Controlled trial | 12 college students | Placebo vs. Taurine (TAU) vs. Caffeine (CAF) vs. TAU + CAF | 35 °C, 65% RH | Cycling | |
John, et al. [48] | Controlled trial | 12 healthy caffeine-habituated and unacclimatised males | Placebo vs. Caffeine | 5 | 35 °C, 40% RH | Cycling |
Naulleau, et al. [23] | Review | 52 and 205 endurance-trained individuals | Placebo vs. Caffeine | 3 to 9 | >27 °C | Endurance Exercise |
Cheng, et al. [49] | Controlled trial | 12 endurance-trained male collegiate athletes | Placebo vs. Caffeine | 6 | 33 °C, 64% RH | Cycling |
Hunt, et al. [50] | Controlled trial | 28 habituated nonhabituated individuals (10 females) | Placebo vs. Caffeine | 5 | 30.6 °C, 31% RH | Cycling |
Nakamura, et al. [51] | 18 male soccer players | Placebo vs. Caffeine | 3 | 32 °C, 70% RH | Cycling | |
Hanson, et al. [37] | Controlled trial | 10 trained endurance runners | Placebo vs. Caffeine | 3 and 6 | 30.6 °C, 50% RH | Running |
Bach and Ransone [52] | Controlled trial | 21 healthy male subjects | Placebo vs. Caffeine | 6 | 36.37 °C, 59.46% RH | A Maximal Graded Exercise Test (GXT) And Two Endurance Exercise Tests (EET) |
Chapman, et al. [53] | Controlled trial | 12 healthy subjects (3 females) | Caffeinated Soft Drink vs. Water | n.a. | 35 °C, 65% RH | Cycling |
Rutherford and Palmer [38] | Controlled trial | 6 recreationally active female subjects concurrently taking oral contraceptive steroids | Placebo vs. Caffeine | 5.5 | 29.6 °C, 55.8% | Walking |
Beaumont and James [54] | Controlled trial | 8 healthy and recreationally active males | Placebo vs. Caffeine | 6 | 30 °C, 50% RH | Cycling |
Suvi, et al. [39] | Controlled trial | 23 subjects (10 female) | Placebo vs. Caffeine | 6 | 42 °C, 20% RH | Walking |
Eaton, et al. [40] | Controlled trial | 8 subelite male team sport athletes | Double placebo vs. Essential amino acid (EAC) + placebo vs. Caffeine (CAF) + placebo vs. CAF + EAC | 3 | 30 °C, 20% RH | Running |
Beaumont, et al. [55] | Controlled trial | 8 recreationally active males | Placebo vs. Caffeine | 3 or 1.5 × 2 times | 30 °C, 50% RH | Incremental Exercise Test |
Pitchford, et al. [56] | Controlled trial | 9 well-trained male subjects | Placebo vs. Caffeine | 3 | 35 °C, 25% RH | Cycling |
Ely, et al. [57] | Controlled trial | 10 not heat-acclimated and not habitual caffeine males | Placebo vs. Caffeine | 9 | 40 °C, 25% RH | Cycling |
Ganio, et al. [58] | Controlled trial | 11 male cyclists | Placebo vs. Caffeine | 3 | 33 °C, 41% RH | Cycling |
Ganio, et al. [59] | Controlled trial | 11 male cyclists | Placebo vs. Caffeine | 3 | 12 °C and 33 °C | Cycling |
Roelands, et al. [60] | Controlled trial | 8 healthy trained male cyclists | Placebo vs. Caffeine | 6 | 30 °C | Cycling |
Ping, et al. [41] | Controlled trial | 9 heat adapted recreational male runners | Placebo vs. Caffeine | 5 | 31 °C, 70% RH | Running |
[61] | Controlled trial | 6 males | Caffeinated vs. Non-caffeinated beverages | n.a. | 30 °C, 44% RH | n.a. |
Del Coso, et al. [62] | Controlled trial | 7 endurance-trained heat-acclimated cyclists | Caffeine (CAF) vs. CAF + water vs. CAF + carbohydrate-electrolytes solution | 6 | 36 °C, 29% RH | Cycling |
Coso, et al. [63] | Controlled trial | 7 endurance-trained cyclists | Caffeine (CAF) vs. CAF + water vs. CAF + carbohydrate-electrolytes solution | 6 | 36 °C, 29% RH | Cycling |
Armstrong, et al. [21] | Review | n.a. | n.a. | n.a. | n.a. | n.a. |
Roti, et al. [42] | Controlled trial | 59 active college-aged males | Placebo vs. Caffeine | 0, 3, or 6 | 37.7 °C, 56.3% RH | Walking |
Dias, et al. [43] | Controlled trial | 59 active college-aged males | Placebo vs. Caffeine | 0, 3, or 6 | 37.7 °C, 56.3% RH | Walking |
Roti, et al. [44] | Controlled trial | 59 active college-aged males | Placebo vs. Caffeine | 0, 3, or 6 | 37.7 °C, 56.3% RH | Walking |
Stebbins, et al. [64] | Controlled trial | 11 caffeine-naive and active men | Placebo vs. Caffeine | 6 | 38 °C | Cycling |
Bell, et al. [47] | Controlled trial | 10 healthy and non-heat-acclimated males | Placebo vs. Caffeine + ephedrine | 5 | 40 °C, 30% RH | n.a. |
Cohen, et al. [45] | Controlled trial | 7 endurance-trained competitive road racers (2 famles) | Placebo vs. Caffeine | 0, 5, or 9 | 24–28 °C | Runing |
Anderson and Hickey [65] | Controlled trial | 8 healthy males | Placebo vs. Caffeine | 5 | 28 °C, 50% RH or 5 °C, 70% RH | Cycling |
Paper | DOI | Total Citations | Citation per Year |
---|---|---|---|
Armstrong, et al. [21] | 10.1097/jes.0b013e3180a02cc1 | 83 | 4.61 |
Coso, et al. [63] | 10.1249/MSS.0b013e3181621336 | 64 | 3.76 |
Cohen, et al. [45] | 10.1007/BF02425499 | 53 | 1.83 |
Del Coso, et al. [62] | 10.1249/MSS.0b013e318184f45e | 51 | 3.19 |
Roelands, et al. [60] | 10.1007/s00421-011-1945-9 | 50 | 3.57 |
Roti, et al. [42] | n.a. | 36 | 1.89 |
Ganio, et al. [58] | 10.1007/s00421-010-1734-x | 31 | 2.21 |
Stebbins, et al. [64] | 10.1046/j.1365-2281.2001.00365.x | 25 | 1.04 |
Pitchford, et al. [56] | 10.1016/j.jsams.2013.07.004 | 24 | 2.18 |
Ely, et al. [57] | 10.1123/ijsnem.21.1.65 | 22 | 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, Y.; Liu, Q.; Liu, L.; Zhang, G.; Zhang, X.; Yin, M.; Cao, Y. The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study. Nutrients 2024, 16, 3692. https://doi.org/10.3390/nu16213692
Li H, Yang Y, Liu Q, Liu L, Zhang G, Zhang X, Yin M, Cao Y. The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study. Nutrients. 2024; 16(21):3692. https://doi.org/10.3390/nu16213692
Chicago/Turabian StyleLi, Hansen, Ying Yang, Qian Liu, Liming Liu, Guodong Zhang, Xing Zhang, Mingyue Yin, and Yang Cao. 2024. "The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study" Nutrients 16, no. 21: 3692. https://doi.org/10.3390/nu16213692
APA StyleLi, H., Yang, Y., Liu, Q., Liu, L., Zhang, G., Zhang, X., Yin, M., & Cao, Y. (2024). The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study. Nutrients, 16(21), 3692. https://doi.org/10.3390/nu16213692