The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Chemical Analyses
2.3. Statistical Analysis
3. Results
3.1. Protein Fraction in the Milk
3.2. Fat Fraction in the Milk
3.2.1. Fatty Acids
3.2.2. TAS and Lipophilic Vitamins
4. Discussion
4.1. Protein Fraction in the Milk
4.2. Fat Fraction in the Milk
4.2.1. Fatty Acids
4.2.2. TAS and Lipophilic Vitamins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- FAO. Gateway to Dairy Production and Products. Available online: https://www.fao.org/dairy-production-products/production/dairy-animals/en (accessed on 22 October 2024).
- Antunes, I.C.; Bexiga, R.; Pinto, C.; Roseiro, L.C.; Quaresma, M.A.G. Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods 2023, 12, 99. [Google Scholar] [CrossRef]
- Kanekanian, A. The Health Benefits of Bioactive Compounds from Milk and Dairy Products. In Milk and Dairy Products as Functional Foods; Wiley: Hoboken, NJ, USA, 2014; pp. 1–22. [Google Scholar]
- Bielecka, M.; Cichosz, G.; Czeczot, H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates—A review. Int. Dairy. J. 2022, 127, 105208. [Google Scholar] [CrossRef]
- Usman, K.; Zeliha, S. Nutritional and Medical Perspectives of Whey Protein: A Historical Overview. J. Pharm. Care 2020, 7, 112–117. [Google Scholar] [CrossRef]
- Power, O.; Jakeman, P.; FitzGerald, R. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino. Acids 2013, 44, 797–820. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Li, Y.; Wang, Q. Cationic beta-lactoglobulin nanoparticles as a bioavailability enhancer: Effect of surface properties and size on the transport and delivery in vitro. Food Chem. 2016, 204, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Simões, L.S.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A.; Ramos, O.L. β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Res. Int. 2020, 131, 108979. [Google Scholar] [CrossRef]
- Broersen, K. Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Foods 2020, 9, 874. [Google Scholar] [CrossRef]
- Perez, M.D.; Sanchez, L.; Aranda, P.; Ena, J.; Oria, R.; Calvo, M. Effect of β-lactoglobulin on the activity of pregastric lipase. A possible role for this protein in ruminant milk. Biochim. Biophys. Acta 1992, 1123, 151–155. [Google Scholar] [CrossRef]
- Silva, F.G.; Silva, S.R.; Pereira, A.M.F.; Cerqueira, J.L.; Conceição, C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals 2024, 14, 1130. [Google Scholar] [CrossRef]
- Sawyer, L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front. Physiol. 2021, 12, 678080. [Google Scholar] [CrossRef] [PubMed]
- Koohi Moftakhari Esfahani, M.; Alavi, S.E.; Cabot, P.J.; Islam, N.; Izake, E.L. β-Lactoglobulin-Modified Mesoporous Silica Nanoparticles: A Promising Carrier for the Targeted Delivery of Fenbendazole into Prostate Cancer Cells. Pharmaceutics 2022, 14, 884. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.K.; Lönnerdal, B.; Fernstrom, J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018, 76, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, G. History of Whey Production and Whey Protein Manufacturing; Wiley: Hoboken, NJ, USA, 2019; pp. 1–12. [Google Scholar]
- Permyakov, E.A.; Berliner, L.J. α-Lactalbumin: Structure and function. FEBS Lett. 2000, 473, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H.S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; et al. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J. Funct. Foods 2021, 87, 104760. [Google Scholar] [CrossRef]
- Gallo, V.; Arienzo, A.; Tomassetti, F.; Antonini, G. Milk Bioactive Compounds and Gut Microbiota Modulation: The Role of Whey Proteins and Milk Oligosaccharides. Foods 2024, 13, 907. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Bovine milk allergens: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Berlutti, F.; Pantanella, F.; Natalizi, T.; Frioni, A.; Paesano, R.; Polimeni, A.; Valenti, P. Antiviral Properties of Lactoferrin—A Natural Immunity Molecule. Molecules 2011, 16, 6992–7018. [Google Scholar] [CrossRef]
- Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.; Hyndman, M.E.; Hancock, R.E.; Vogel, H.J. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem. Cell Biol. 2017, 95, 91–98. [Google Scholar] [CrossRef]
- Drago-Serrano, M.E.; Campos-Rodriguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin and peptide-derivatives: Antimicrobial agents with potential use in nonspecific immunity modulation. Curr. Pharm. Des. 2018, 24, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Flemmig, J.; Gau, J.; Schlorke, D.; Arnhold, J. Lactoperoxidase as a potential drug target. Expert Opin. Ther. Targets 2016, 20, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, J.; Malle, E. Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants 2022, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Boots, J.W.; Floris, R. Lactoperoxidase: From catalytic mechanism to practical applications. Int. Dairy J. 2006, 16, 1272–1276. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.K.; Kaushik, S.; Sinha, M.; Singh, R.P.; Sharma, P.; Sirohi, H.; Kaur, P.; Singh, T.P. Lactoperoxidase: Structural insights into the function, ligand binding and inhibition. Int. J. Biochem. Mol. Biol. 2013, 4, 108–128. [Google Scholar]
- Céré, C.; Delord, B.; Kenfack Ymbe, P.; Vimbert, L.; Chapel, J.-P.; Stines-Chaumeil, C. A Bacterial Myeloperoxidase with Antimicrobial Properties. BioTech 2023, 12, 33. [Google Scholar] [CrossRef]
- Urtasun, N.; Baieli, M.F.; Hirsch, D.B.; Martínez-Ceron, M.C.; Cascone, O.; Wolman, F.J. Lactoperoxidase purification from whey by using dye affinity chromatography. Food Bioprod. Process 2017, 103, 58–65. [Google Scholar] [CrossRef]
- Al-Shehri, S.S.; Duley, J.A.; Bansal, N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol. 2020, 34, 101524. [Google Scholar] [CrossRef]
- Costa, C.; Azoia, N.G.; Coelho, L.; Freixo, R.; Batista, P.; Pintado, M. Proteins Derived from the Dairy Losses and By-Products as Raw Materials for Non-Food Applications. Foods 2021, 10, 135. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, Q.; Wu, D.; Hu, Y.; Chen, S.; Ding, T.; Ye, X.; Liu, D.; Chen, J. What is new in lysozyme research and its application in food industry? A review. Food Chem. 2019, 274, 698–709. [Google Scholar] [CrossRef]
- Leśnierowski, G.; Yang, T. Lysozyme and its modified forms: A critical appraisal of selected properties and potential. Trends Food Sci. Technol. 2021, 107, 333–342. [Google Scholar] [CrossRef]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Lindmark Månsson, H. Fatty acids in bovine milk fat. Food Nutri. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.-P.; De Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef]
- Muñoz-Alvarez, K.Y.; Gutiérrez-Aguilar, R.; Frigolet, M.E. Metabolic effects of milk fatty acids: A literature review. Nutr. Bull. 2024, 49, 19–39. [Google Scholar] [CrossRef]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef]
- Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The Effects of Conjugated Linoleic Acids on Cancer. Processes 2021, 9, 454. [Google Scholar] [CrossRef]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Maximiliano, J.-E.; et al. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef]
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Łukasiewicz, M.; Przysucha, T.; Puppel, K. Effect of Breed on the Level of the Nutritional and Health-Promoting Quality of Semimembranosus Muscle in Purebred and Crossbred Bulls. Animals 2020, 10, 1822. [Google Scholar] [CrossRef]
- Solarczyk, P.; Sakowski, T.; Gołębiewski, M.; Slósarz, J.; Grodkowski, G.; Grodkowska, K.; Biondi, L.; Lanza, M.; Natalello, A.; Puppel, K. The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms. Agriculture 2023, 13, 1829. [Google Scholar] [CrossRef]
- Gaucheron, F. Milk and Dairy Products: A Unique Micronutrient Combination. J. Am. Coll. Nutr. 2011, 30, 400S–409S. [Google Scholar] [CrossRef]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of Vitamins in Skin Health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Kutner, A.; Brown, G. Vitamins D: Relationship between Structure and Biological Activity. Int. J. Mol. Sci. 2018, 19, 2119. [Google Scholar] [CrossRef]
- Liao, S.; Omage, S.O.; Börmel, L.; Kluge, S.; Schubert, M.; Wallert, M.; Lorkowski, S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants 2022, 11, 1785. [Google Scholar] [CrossRef]
- Staudinger, J.L.; Mahroke, A.; Patel, G.; Dattel, C.; Reddy, S. Pregnane X Receptor Signaling Pathway and Vitamin K: Molecular Mechanisms and Clinical Relevance in Human Health. Cells 2024, 13, 681. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Puppel, K.; Gołębiewski, M.; Solarczyk, P.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Balcerak, M.; Przysucha, T.; Kalińska, A.; Kuczyńska, B. The relationship between plasma β-hydroxybutyric acid and conjugated linoleic acid in milk as a biomarker for early diagnosis of ketosis in postpartum Polish Holstein-Friesian cows. BMC Vet. Res. 2019, 15, 367. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Solarczyk, P.; Kostusiak, P.; Klopčič, M.; Sakowski, T. Use of somatic cell count as an indicator of colostrum quality. PLoS ONE 2020, 15, e0237615. [Google Scholar] [CrossRef] [PubMed]
- IBM Corporation. IBM SPSS Statistics, version 29; IBM: Armonk, NY, USA, 2024. [Google Scholar]
- Council of the European Union. Council Directive 92/46/EEC of 16 June 1992 laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products. Off. J. Eur. Communities 1992, 268, 1–32. [Google Scholar]
- Fazio, E.; Bionda, A.; Liotta, L.; Amato, A.; Chiofalo, V.; Crepaldi, P.; Satué, K.; Lopreiato, V. Changes of acute-phase proteins, glucose, and lipid metabolism during pregnancy in lactating dairy cows. Arch. Anim. Breed. 2022, 65, 329–339. [Google Scholar] [CrossRef]
- Sack, G.H. Serum Amyloid A (SAA) Proteins. In Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins; Hoeger, U., Harris, J.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 421–436. [Google Scholar]
- Chen, W.C.; Huang, W.C.; Chiu, C.C.; Chang, Y.K.; Huang, C.C. Whey protein improves exercise performance and biochemical profiles in trained mice. Med. Sci. Sports Exerc. 2014, 46, 1517–1524. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Choi, B.H.; Hyun, S.; Koo, S.-H. The role of BCAA metabolism in metabolic health and disease. Exp. Mol. Med. 2024, 56, 1552–1559. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 2019, 11, 1771. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Fondén, R.; Pettersson, H.-E. Composition of Swedish dairy milk. Int. Dairy J. 2003, 13, 409–425. [Google Scholar] [CrossRef]
- Puppel, K.; Bogusz, E.; Gołębiewski, M.; Nałęcz-Tarwacka, T.; Kuczyńska, B.; Slósarz, J.; Budziński, A.; Solarczyk, P.; Kunowska-Slósarz, M.; Przysucha, T. Effect of Dairy Cow Crossbreeding on Selected Performance Traits and Quality of Milk in First Generation Crossbreds. J. Food Sci. 2018, 83, 229–236. [Google Scholar] [CrossRef]
- Gustavsson, F.; Buitenhuis, A.J.; Johansson, M.; Bertelsen, H.P.; Glantz, M.; Poulsen, N.A.; Lindmark Månsson, H.; Stålhammar, H.; Larsen, L.B.; Bendixen, C.; et al. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. J. Dairy Sci. 2014, 97, 3866–3877. [Google Scholar] [CrossRef]
- Nawaz, N.; Wen, S.; Wang, F.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022, 27, 6305. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2022, 9, 1018336. [Google Scholar] [CrossRef]
- Magacz, M.; Kędziora, K.; Sapa, J.; Krzyściak, W. The Significance of Lactoperoxidase System in Oral Health: Application and Efficacy in Oral Hygiene Products. Int. J. Mol. Sci. 2019, 20, 1443. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.-S.; Ariton, A.-M. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering 2022, 9, 608. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Milk Proteins. In Dairy Chemistry and Biochemistry; Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 145–239. [Google Scholar]
- Maurmayr, A.; Pegolo, S.; Malchiodi, F.; Bittante, G.; Cecchinato, A. Milk protein composition in purebred Holsteins and in first/second-generation crossbred cows from Swedish Red, Montbeliarde and Brown Swiss bulls. Animal 2018, 12, 2214–2220. [Google Scholar] [CrossRef]
- Djordjevic, J.; Ledina, T.; Baltic, M.Z.; Trbovic, D.; Babic, M.; Bulajic, S. Fatty acid profile of milk. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012057. [Google Scholar] [CrossRef]
- German, J.B.; Dillard, C.J. Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Crit. Rev. Food Sci. Nutr. 2006, 46, 57–92. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Grodkowski, G.; Kostusiak, P.; Grodkowska, K.; Madras-Majewska, B.; Sakowski, T. The Influence of Cold-Pressed Linseed Cake Supplementation on Fatty-Acid Profile and Fat-Soluble Vitamins of Cows’ Milk in an Organic Production System. Animals 2023, 13, 1631. [Google Scholar] [CrossRef]
- Puppel, K.; Solarczyk, P.; Kuczynska, B.; Madras-Majewska, B. Oleic acid as a biomarker for early diagnosis of elevated blood levels of non-esterified fatty acids and beta-hydroxybutyric acid in the early stages of lactation in high-yielding Polish Holstein cows. Anim. Sci. Pap. Rep. 2017, 35, 387–396. [Google Scholar]
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Puppel, K. Interaction between the Concentration of β-Hydroxybutyric Acid and the Content of Long-Chain Fatty Acids in the Early Stage of Lactation––Comparing Multiparous and Primiparous Cows. Appl. Sci. 2023, 13, 7870. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Philipsson, J.; Lindhé, B. Experiences of including reproduction and health traits in Scandinavian dairy cattle breeding programmes. Livest. Prod. Sci. 2003, 83, 99–112. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef]
- Mu, T.; Hu, H.; Ma, Y.; Feng, X.; Zhang, J.; Gu, Y. Regulation of Key Genes for Milk Fat Synthesis in Ruminants. Front. Nutr. 2021, 8, 765147. [Google Scholar] [CrossRef]
- Saran Netto, A.; Salles, M.S.V.; Roma Júnior, L.C.; Cozzolino, S.M.F.; Gonçalves, M.T.M.; Freitas Júnior, J.E.d.; Zanetti, M.A. Increasing Selenium and Vitamin E in Dairy Cow Milk Improves the Quality of the Milk as Food for Children. Nutrients 2019, 11, 1218. [Google Scholar] [CrossRef]
- Bramley, P.M.; Elmadfa, I.; Kafatos, A.; Kelly, F.J.; Manios, Y.; Roxborough, H.E.; Schuch, W.; Sheehy, P.J.A.; Wagner, K.-H. Vitamin E. J. Sci. Food Agric. 2000, 80, 913–938. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition--a review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Sakowski, T.; Kuczyńska, B.; Grodkowski, G.; Gołębiewski, M.; Barszczewski, J.; Wróbel, B.; Budziński, A.; Kapusta, A.; Balcerak, M. Degrees of Antioxidant Protection: A 2-Year Study of the Bioactive Properties of Organic Milk in Poland. J. Food Sci. 2017, 82, 523–528. [Google Scholar] [CrossRef]
PHF (n = 30) | PHF×SRB (n = 30) | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
DMP [kg] | 30.08 | 0.146 | 27.45 | 0.149 | 0.000 |
Lactose [%] | 5.06 | 0.009 | 4.79 | 0.009 | 0.000 |
SCC [103/mL] | 116 | 9.396 | 124 | 9.553 | 0.570 |
F/P | 1.18 | 0.015 | 1.14 | 0.015 | 0.098 |
BHBA [mmol/L] | 0.79 | 0.015 | 0.673 | 0.015 | 0.000 |
NEFA [mmol/L] | 0.39 | 0.016 | 0.20 | 0.016 | 0.000 |
Glucose [mg/dL] | 64.56 | 0.315 | 63.63 | 0.320 | 0.039 |
PHF | PHF×SRB | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
Protein [%] | 3.28 | 0.016 | 3.53 | 0.016 | 0.000 |
Casein [%] | 2.78 | 0.011 | 2.90 | 0.011 | 0.000 |
Whey protein [%] | 0.50 | 0.030 | 0.63 | 0.042 | 0.000 |
Lz [μg/L] | 20.18 | 0.510 | 16.59 | 0.518 | 0.000 |
Lf [μg/L] | 0.38 | 0.023 | 0.17 | 0.024 | 0.000 |
ALA [g/L] | 1.68 | 0.022 | 1.72 | 0.022 | 0.228 |
BSA [g/L] | 0.18 | 0.005 | 0.23 | 0.005 | 0.000 |
BLG [g/L] | 2.40 | 0.046 | 3.48 | 0.047 | 0.000 |
Lp [mg/L] | 0.34 | 0.010 | 0.39 | 0.010 | 0.003 |
PHF | PHF×SRB | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
Fat [%] | 3.84 | 0.046 | 3.97 | 0.047 | 0.045 |
Selected fatty acid [g/100 g fat] | |||||
SFA | 64.50 | 0.193 | 64.12 | 0.196 | 0.161 |
C4:0 | 2.60 | 0.026 | 2.68 | 0.026 | 0.026 |
C6:0 | 1.53 | 0.017 | 1.47 | 0.018 | 0.017 |
C8:0 | 1.02 | 0.014 | 1.01 | 0.014 | 0.370 |
C10:0 | 2.05 | 0.034 | 2.39 | 0.034 | 0.000 |
C12:0 | 2.51 | 0.035 | 2.75 | 0.035 | 0.000 |
C14:0 | 8.99 | 0.068 | 9.27 | 0.069 | 0.003 |
C16:0 | 30.71 | 0.150 | 30.48 | 0.152 | 0.277 |
C18:0 | 12.19 | 0.089 | 11.16 | 0.091 | 0.000 |
C16:1 c9 | 1.63 | 0.015 | 1.71 | 0.016 | 0.001 |
C18:1 t11 | 2.69 | 0.043 | 2.76 | 0.044 | 0.279 |
C18:1 c9 | 25.25 | 0.168 | 23.77 | 0.171 | 0.000 |
C18:1 c11 | 1.24 | 0.009 | 1.17 | 0.009 | 0.000 |
PUFA | 3.94 | 0.018 | 3.77 | 0.018 | 0.000 |
C18:2 c9,c12 n-6 | 2.16 | 0.014 | 2.04 | 0.014 | 0.000 |
C18:3 n-6 | 0.04 | 0.002 | 0.06 | 0.002 | 0.000 |
C18:3 n-3 | 0.34 | 0.003 | 0.32 | 0.003 | 0.000 |
C18:2 c9,t11 | 0.53 | 0.005 | 0.51 | 0.005 | 0.000 |
C18:2 t10,c12 | 0.03 | 0.001 | 0.02 | 0.001 | 0.000 |
C18:2 c9,t13 | 0.21 | 0.003 | 0.16 | 0.003 | 0.000 |
C20:2 n-6 | 0.02 | 0.001 | 0.04 | 0.001 | 0.000 |
C20:4 n-6 | 0.15 | 0.002 | 0.16 | 0.002 | 0.001 |
C20:5 n-3 | 0.10 | 0.002 | 0.08 | 0.002 | 0.000 |
C22:5 n-3 | 0.07 | 0.001 | 0.07 | 0.001 | 0.392 |
C22:6 n-3 | 0.01 | 0.001 | 0.02 | 0.001 | 0.000 |
PHF | PHF×SRB | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
TAS [mmol/L] | 1.70 | 0.037 | 1.49 | 0.037 | 0.000 |
β-carotene [mg/L] | 0.25 | 0.006 | 0.24 | 0.006 | 0.292 |
A [mg/L] | 0.73 | 0.013 | 0.75 | 0.013 | 0.233 |
E [mg/L] | 0.97 | 0.024 | 0.71 | 0.025 | 0.000 |
D [μg/L] | 5.04 | 0.145 | 4.37 | 0.147 | 0.001 |
K [μg/L] | 8.04 | 0.133 | 7.30 | 0.135 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solarczyk, P.; Slósarz, J.; Gołębiewski, M.; Natalello, A.; Musati, M.; Luciano, G.; Priolo, A.; Puppel, K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024, 16, 3634. https://doi.org/10.3390/nu16213634
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients. 2024; 16(21):3634. https://doi.org/10.3390/nu16213634
Chicago/Turabian StyleSolarczyk, Paweł, Jan Slósarz, Marcin Gołębiewski, Antonio Natalello, Martino Musati, Giuseppe Luciano, Alessandro Priolo, and Kamila Puppel. 2024. "The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows" Nutrients 16, no. 21: 3634. https://doi.org/10.3390/nu16213634
APA StyleSolarczyk, P., Slósarz, J., Gołębiewski, M., Natalello, A., Musati, M., Luciano, G., Priolo, A., & Puppel, K. (2024). The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients, 16(21), 3634. https://doi.org/10.3390/nu16213634