The Modification of Dietary Protein with Ammonium Hydroxide Enhancement Improves Longevity and Metabolic Outcomes in a Sex-Dependent Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Study and Diets
2.2. Histology
2.3. Statistical Analysis
2.4. Lipid Droplet Size Assessment Trainable Weka Workflow
3. Results
3.1. Weekly Change in Total Mass
3.2. Kaplan–Meier Analysis of C3H/HeJ Mice Maintained on High-Fat Beef or Casein Protein ± AHE
3.3. Analysis of Female Mass Composition Compared with T0 Baseline
3.4. Analysis of Male Mass Composition Compared with T0
3.5. Age-Associated Change in Female Fat and Lean Mass Depots
3.6. Age-Associated Change in Male Mass Fat and Lean Mass Depots
3.7. Assessment of Echo MRI Mass Composition in C3H/HeJ Females Using Two-Way ANOVA on Fixed-Effects Model
3.8. Assessment of Echo MRI Mass Composition in C3H/HeJ Males Using Three-Way ANOVA on Fixed-Effects Model
3.9. Lipid Droplet Liver Infiltration (Steatosis) Assessed Using Weka Segmentation
3.10. Tumor Incidence and Type
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221–2236. [Google Scholar]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar]
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly Used Animal Models. Princ. Anim. Res. Grad. Undergrad. Stud. 2017, 2017, 117–175. [Google Scholar]
- Reed, D.R.; Bachmanov, A.A.; Tordoff, M.G. Forty mouse strain survey of body composition. Physiol. Behav. 2007, 91, 593–600. [Google Scholar] [PubMed]
- Menikdiwela, K.R.; Guimarães, J.P.T.; Scoggin, S.; Gollahon, L.S.; Moustaid-Moussa, N. Dietary pH Enhancement Improves Metabolic Outcomes in Diet-Induced Obese Male and Female Mice: Effects of Beef vs. Casein Proteins. Nutrients 2022, 14, 2583. [Google Scholar] [CrossRef]
- Rendina-Ruedy, E.; Hembree, K.D.; Sasaki, A.; Davis, M.R.; Lightfoot, S.A.; Clarke, S.L.; Lucas, E.A.; Smith, B.J. A Comparative Study of the Metabolic and Skeletal Response of C57BL/6J and C57BL/6N Mice in a Diet-Induced Model of Type 2 Diabetes. J. Nutr. Metab. 2015, 2015, 758080. [Google Scholar]
- Lempesis, I.G.; Tsilingiris, D.; Liu, J.; Dalamaga, M. Of mice and men: Considerations on adipose tissue physiology in animal models of obesity and human studies. Metab. Open 2022, 15, 100208. [Google Scholar]
- de Moura, M.E.D.; Reis, S.A.D.; da Conceição, L.L.; de Oliveira Sediyama, C.M.N.; Pereira, S.S.; de Oliveira, L.L.; Peluzio, M.D.C.G.; Martinez, J.A. Diet-induced obesity in animal models: Points to consider and influence on metabolic markers. Diabetol. Metab. Syndr. 2021, 13, 32. [Google Scholar]
- Williamson, M.; Moustaid-Moussa, N.; Gollahon, L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). Front. Mol. Med. 2021, 1, 777088. [Google Scholar]
- Baker, J.S.; Supriya, R.; Dutheil, F.; Gao, Y. Obesity: Treatments, Conceptualizations, and Future Directions for a Growing Problem. Biology 2022, 11, 160. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The role of protein in weight loss and maintenance234. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [PubMed]
- Remer, T.; Manz, F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994, 59, 1356–1361. [Google Scholar] [PubMed]
- Sebastian, A.; Frassetto, L.A.; E Sellmeyer, D.; Merriam, R.L.; Morris, R.C. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am. J. Clin. Nutr. 2002, 76, 1308–1316. [Google Scholar] [PubMed]
- Poupin, N.; Calvez, J.; Lassale, C.; Chesneau, C.; Tomé, D. Impact of the diet on net endogenous acid production and acid-base balance. Clin. Nutr. 2012, 31, 313–321. [Google Scholar]
- Baum, S.J.; Kris-Etherton, P.M.; Willett, W.C.; Lichtenstein, A.H.; Rudel, L.L.; Maki, K.C.; Whelan, J.; Ramsden, C.E.; Block, R.C. Fatty acids in cardiovascular health and disease: A comprehensive update. J. Clin. Lipidol. 2012, 6, 216–234. [Google Scholar]
- Lv, X.; Zhou, C.; Yan, Q.; Tan, Z.; Kang, J.; Tang, S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: Effect on human health. Nutrition 2022, 103–104, 111797. [Google Scholar]
- Pixner, T.; Stummer, N.; Schneider, A.M.; Lukas, A.; Gramlinger, K.; Julian, V.; Thivel, D.; Mörwald, K.; Maruszczak, K.; Mangge, H.; et al. The Role of Macronutrients in the Pathogenesis, Prevention and Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) in the Paediatric Population—A Review. Life 2022, 12, 839. [Google Scholar] [CrossRef]
- Rives, C.; Martin, C.M.P.; Evariste, L.; Polizzi, A.; Huillet, M.; Lasserre, F.; Alquier-Bacquie, V.; Perrier, P.; Gomez, J.; Lippi, Y.; et al. Dietary Amino Acid Source Elicits Sex-Specific Metabolic Response to Diet-Induced NAFLD in Mice. Mol. Nutr. Food Res. 2024, 68, e2300491. [Google Scholar]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef]
- Asp, M.L.; Richardson, J.R.; Collene, A.L.; Droll, K.R.; Belury, M.A. Dietary protein and beef consumption predict for markers of muscle mass and nutrition status in older adults. J. Nutr. Health Aging 2012, 16, 784–790. [Google Scholar]
- Binnie, M.A.; Barlow, K.; Johnson, V.; Harrison, C. Red meats: Time for a paradigm shift in dietary advice. Meat Sci. 2014, 98, 445–451. [Google Scholar] [PubMed]
- Downer, S.; Berkowitz, S.A.; Harlan, T.S.; Olstad, D.L.; Mozaffarian, D. Food is medicine: Actions to integrate food and nutrition into healthcare. BMJ 2020, 369, m2482. [Google Scholar] [PubMed]
- Roth, E. Method for Modifying pH within Meat Products; Freezing Machines, Inc.: East Moline, IL, USA, 2006; pp. 1–9. [Google Scholar]
- Chen, H.; Wang, W.; Xue, L.; Chen, C.; Liu, G.; Zhang, R. Effects of Ammonia on Anaerobic Digestion of Food Waste: Process Performance and Microbial Community. Energy Fuels 2016, 30, 5749–5757. [Google Scholar]
- Garrison, E.C.; Brown, A.M.V.; Salazar, M.M.; Barr, B.; Moustaid-Moussa, N.; Gollahon, L.S. Microbiome Taxonomic and Functional Differences in C3H/HeJ Mice Fed a Long-Term High-Fat Diet with Beef Protein ± Ammonium Hydroxide Supplementation. Nutrients 2024, 16, 1613. [Google Scholar] [CrossRef]
- Maurer, M.; Riesen, W.; Muser, J.; Hulter, H.N.; Krapf, R. Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am. J. Physiol. Physiol. 2003, 284, F32–F40. [Google Scholar]
- Raghunand, N.; Gillies, R.J. pH and chemotherapy. Novartis Found. Symp. 2001, 240, 199–211; discussion 265–268. [Google Scholar] [PubMed]
- Mandel, E.I.; Curhan, G.C.; Hu, F.B.; Taylor, E.N. Plasma bicarbonate and risk of type 2 diabetes mellitus. Can. Med Assoc. J. 2012, 184, E719–E725. [Google Scholar]
- Goraya, N.; Munoz-Maldonado, Y.; Simoni, J.; Wesson, D.E. Fruit and Vegetable Treatment of Chronic Kidney Disease-Related Metabolic Acidosis Reduces Cardiovascular Risk Better than Sodium Bicarbonate. Am. J. Nephrol. 2019, 49, 438–448. [Google Scholar]
- Wahlsten, D.; Metten, P.; Crabbe, J.C. A rating scale for wildness and ease of handling laboratory mice: Results for 21 inbred strains tested in two laboratories. Genes Brain Behav. 2003, 2, 71–79. [Google Scholar]
- Barr, B.; Gollahon, L. The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice. Obesities 2024, 4, 314–328. [Google Scholar] [CrossRef]
- Sampias, C.; Rolls, G. An Intro to H&E Staining: Protocol, Best Practices, Steps & More. Available online: https://www.leicabiosystems.com/us/knowledge-pathway/he-staining-overview-a-guide-to-best-practices/ (accessed on 8 August 2024).
- Team, R.C. R: A Language and Environment for Statistical Computing. (v4.3.1). 2023. Available online: https://www.R-project.org/ (accessed on 8 August 2024).
- Sjoberg, D.D.; Baillie, M.; Fruechtenicht, C.; Haesendonckx, S.; Treis, T. ggsurvfit: Flexible Time-to-Event Figures. (v1.1.0). 2024. Available online: https://www.danieldsjoberg.com/ggsurvfit/ (accessed on 8 August 2024).
- Therneau, T.M. A Package for Survival Analysis in R. (v3.6-4). 2024. Available online: https://CRAN.R-project.org/package=survival (accessed on 8 August 2024).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (v1.10.2). 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 August 2024).
- Cheng, J.; Wang, W. Association of Dietary Acid Load with Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in US Adults: Evidence from NHANES 1999–2018. Risk Manag. Healthc. Policy 2023, 16, 2819–2832. [Google Scholar]
- Gibson, A.A.; Sainsbury, A. Strategies to Improve Adherence to Dietary Weight Loss Interventions in Research and Real-World Settings. Behav. Sci. 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J. Metabolic Acidosis in Chronic Kidney Disease: Pathogenesis, Clinical Consequences, and Treatment. Electrolytes Blood Press. 2021, 19, 29–37. [Google Scholar]
- Kim, H.; Andrade, F.C. Diagnostic status of hypertension on the adherence to the Dietary Approaches to Stop Hypertension (DASH) diet. Prev. Med. Rep. 2016, 4, 525–531. [Google Scholar] [PubMed]
- Gleason, P.P.; Urick, B.Y.; Marshall, L.Z.; Friedlander, N.; Qiu, Y.; Leslie, R.S. Real-world persistence and adherence to glucagon-like peptide-1 receptor agonists among obese commercially insured adults without diabetes. J. Manag. Care Spéc. Pharm. 2024, 30, 1–8. [Google Scholar]
- Valentin-Escalera, J.; Leclerc, M.; Calon, F. High-Fat Diets in Animal Models of Alzheimer’s Disease: How Can Eating Too Much Fat Increase Alzheimer’s Disease Risk? J. Alzheimers Dis. 2024, 97, 977–1005. [Google Scholar]
- Aires, V.; Labbé, J.; Deckert, V.; De Barros, J.-P.P.; Boidot, R.; Haumont, M.; Maquart, G.; Le Guern, N.; Masson, D.; Prost-Camus, E.; et al. Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Sci. Rep. 2019, 9, 9134. [Google Scholar]
- De Chiara, F.; Checcllo, C.U.; Azcón, J.R. High Protein Diet and Metabolic Plasticity in Non-Alcoholic Fatty Liver Disease: Myths and Truths. Nutrients 2019, 11, 2985. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Bizzaro, D.; Gonta, A.; Shalaby, S.; Gambato, M.; Morelli, M.C.; Trapani, S.; Floreani, A.; Marra, F.; Brunetto, M.R.; et al. Clinical impact of sexual dimorphism in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Liver Int. 2021, 41, 1713–1733. [Google Scholar] [PubMed]
- Heaney, R.P.; Layman, D.K. Amount and type of protein influences bone health1. Am. J. Clin. Nutr. 2008, 87, 1567S–1570S. [Google Scholar] [PubMed]
- Aoyama, S.; Hirooka, R.; Shimoda, T.; Shibata, S. Effect of different sources of dietary protein on muscle hypertrophy in functionally overloaded mice. Biochem. Biophys. Rep. 2019, 20, 100686. [Google Scholar]
- Pontifex, M.G.; Vauzour, D.; Muller, M. Sexual dimorphism in the context of nutrition and health. Proc. Nutr. Soc. 2024, 83, 109–119. [Google Scholar]
- Dai, Y.; Zhu, J.; Meng, D.; Yu, C.; Li, Y. Association of homocysteine level with biopsy-proven non-alcoholic fatty liver disease: A meta-analysis. J. Clin. Biochem. Nutr. 2016, 58, 76–83. [Google Scholar] [PubMed]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar]
- Chen, K.; Guo, J.; Zhang, T.; Gu, J.; Li, H.; Wang, J. The Role of Dyslipidemia in Colitis-Associated Colorectal Cancer. J. Oncol. 2021, 2021, 6640384. [Google Scholar]
- Frasca, D.; Blomberg, B.B.; Paganelli, R. Aging, Obesity, and Inflammatory Age-Related Diseases. Front. Immunol. 2017, 8, 1745. [Google Scholar]
- Berben, L.; Floris, G.; Wildiers, H.; Hatse, S. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers 2021, 13, 1400. [Google Scholar] [CrossRef]
- Dhamija, E.; Paul, S.B.; Kedia, S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J. Med Res. 2019, 149, 9–17. [Google Scholar] [PubMed]
- Brunt, E.M.; Kleiner, D.E.; Wilson, L.A.; Belt, P.; Neuschwander-Tetri, B.A.; for the NASH Clinical Research Network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: Distinct clinicopathologic meanings. Hepatology 2011, 53, 810–820. [Google Scholar] [PubMed]
Age (Mon) | (n) | Fat ± SE | % Fat | % ∆ Fat | Lean ± SE | % Lean | % ∆ Lean | Mass ± SE | % ∆ Total | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 1 | 8 | 1.19 ± 0.24 | 6.90 | 15.31 ± 0.68 | 88.99 | 17.2 ± 0.59 | |||
HFC | 6 | 19 | 6.4 ± 0.56 | 21.11 | 437.82 | 15.92 ± 0.43 | 52.51 | 3.98 | 30.32 ± 1.11 | 76.28 |
12 | 13 | 13.85 ± 2.02 | 35.47 | 1063.87 | 23.45 ± 0.56 | 60.05 | 53.17 | 39.05 ± 2.37 | 127.03 | |
18 | 8 | 7.83 ± 2.23 | 24.43 | 557.98 | 22.09 ± 0.68 | 68.92 | 44.28 | 32.05 ± 2.77 | 86.34 | |
HFCN | 6 | 17 | 7.76 ± 0.81 | 24.13 | 552.10 | 17.53 ± 0.52 | 54.51 | 14.50 | 32.16 ± 1.02 | 86.98 |
12 | 14 | 16.43 ± 1.6 | 39.79 | 1280.67 | 23.82 ± 0.49 | 57.69 | 55.58 | 41.29 ± 2.02 | 140.06 | |
18 | 12 | 12.25 ± 2.09 | 33.23 | 929.41 | 23.58 ± 0.58 | 63.97 | 54.02 | 36.86 ± 2.7 | 114.30 | |
HFB | 6 | 18 | 9.08 ± 0.59 | 28.93 | 663.03 | 19.38 ± 0.49 | 61.74 | 26.58 | 31.39 ± 0.82 | 82.50 |
12 | 10 | 9.37 ± 0.8 | 25.04 | 687.39 | 16.45 ± 0.67 | 43.96 | 7.45 | 37.42 ± 1.56 | 117.56 | |
18 | 9 | 9.59 ± 1.17 | 26.87 | 705.88 | 23.42 ± 0.53 | 65.62 | 52.97 | 35.69 ± 1.39 | 107.50 | |
HFBN | 6 | 22 | 7 ± 0.85 | 23.26 | 488.24 | 19.75 ± 0.46 | 65.64 | 29.00 | 30.09 ± 1.19 | 74.94 |
12 | 14 | 10.88 ± 1.22 | 29.94 | 814.29 | 18.62 ± 0.57 | 51.24 | 21.62 | 36.34 ± 1.8 | 111.28 | |
18 | 10 | 5.77 ± 0.7 | 18.12 | 384.87 | 17.04 ± 0.98 | 53.50 | 11.30 | 31.85 ± 1.64 | 85.17 |
Age (Mon) | (n) | Fat ± SE | % Fat | % ∆ Fat | Lean ± SE | % Lean | % ∆ Lean | Mass ± SE | % ∆ Total | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 1 | 8 | 1.44 ± 0.58 | 6.60 | 19.09 ± 2.14 | 87.65 | 21.78 ± 2.61 | |||
HFC | 6 Months | 24 | 11.05 ± 0.48 | 26.63 | 667.36 | 28.58 ± 0.47 | 68.88 | 49.71 | 41.49 ± 0.91 | 90.50 |
12 Months | 15 | 9.35 ± 0.91 | 24.22 | 549.31 | 29.52 ± 0.59 | 76.46 | 54.64 | 38.61 ± 1.79 | 77.27 | |
18 Months | 11 | 7.52 ± 1.21 | 20.91 | 422.22 | 27.27 ± 0.62 | 75.83 | 42.85 | 35.96 ± 1.76 | 65.11 | |
HFCN | 6 Months | 16 | 11.1 ± 0.8 | 25.73 | 670.83 | 28.86 ± 0.52 | 66.90 | 51.18 | 43.14 ± 0.78 | 98.07 |
12 Months | 11 | 12.29 ± 0.93 | 28.29 | 753.47 | 29.82 ± 0.73 | 68.65 | 56.21 | 43.44 ± 1.7 | 99.45 | |
18 Months | 10 | 8.14 ± 1.19 | 21.44 | 465.28 | 28.56 ± 0.58 | 75.22 | 49.61 | 37.97 ± 1.7 | 74.33 | |
HFB | 6 Months | 18 | 9.39 ± 0.55 | 22.62 | 552.08 | 23.91 ± 0.5 | 57.60 | 25.25 | 41.51 ± 0.98 | 90.59 |
12 Months | 10 | 8.72 ± 1.54 | 23.14 | 505.56 | 27.81 ± 1.13 | 73.79 | 45.68 | 37.69 ± 2.29 | 73.05 | |
18 Months | 4 | 8.31 ± 1.45 | 21.60 | 477.08 | 28.15 ± 0.53 | 73.15 | 47.46 | 38.48 ± 1.81 | 76.68 | |
HFBN | 6 Months | 23 | 7.57 ± 0.86 | 18.81 | 425.69 | 30.98 ± 0.7 | 76.97 | 62.28 | 40.25 ± 0.69 | 84.80 |
12 Months | 13 | 10.67 ± 0.87 | 23.83 | 640.97 | 29.62 ± 0.37 | 66.16 | 55.16 | 44.77 ± 1.28 | 105.56 | |
18 Months | 12 | 9.39 ± 1.04 | 23.12 | 552.08 | 30.14 ± 0.46 | 74.22 | 57.88 | 40.61 ± 1.35 | 86.46 |
Female Tissue of Tumor Origin | HFC | HFCN | HFB | HFBN |
---|---|---|---|---|
Liver | 2 | 2 | 1 | 1 |
Lung | 4 | 2 | 3 | 4 |
Mammary | 4 | 2 | ||
Ovary | 5 | 4 | 1 | 3 |
Total | 11 | 8 | 9 | 10 |
Male Tissue of Tumor Origin | HFC | HFCN | HFB | HFBN |
---|---|---|---|---|
Liver | 13 | 9 | 4 | 8 |
Lung | 1 | |||
Total | 13 | 9 | 5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barr, B.; Gollahon, L. The Modification of Dietary Protein with Ammonium Hydroxide Enhancement Improves Longevity and Metabolic Outcomes in a Sex-Dependent Manner. Nutrients 2024, 16, 2787. https://doi.org/10.3390/nu16162787
Barr B, Gollahon L. The Modification of Dietary Protein with Ammonium Hydroxide Enhancement Improves Longevity and Metabolic Outcomes in a Sex-Dependent Manner. Nutrients. 2024; 16(16):2787. https://doi.org/10.3390/nu16162787
Chicago/Turabian StyleBarr, Benjamin, and Lauren Gollahon. 2024. "The Modification of Dietary Protein with Ammonium Hydroxide Enhancement Improves Longevity and Metabolic Outcomes in a Sex-Dependent Manner" Nutrients 16, no. 16: 2787. https://doi.org/10.3390/nu16162787
APA StyleBarr, B., & Gollahon, L. (2024). The Modification of Dietary Protein with Ammonium Hydroxide Enhancement Improves Longevity and Metabolic Outcomes in a Sex-Dependent Manner. Nutrients, 16(16), 2787. https://doi.org/10.3390/nu16162787