Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Menstrual Cycle
2.4. Anthropometrics and Body Composition
2.5. Maximal Incremental Exercise Test
2.6. Nutritional Assessment
2.7. Sample Collection
2.8. Zn Determination
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-Camacho, J.D.; Vicente-García, C.; Parsons, D.S.; Navas-Enamorado, I. Zinc at the Crossroads of Exercise and Proteostasis. Redox Biol. 2020, 35, 101529. [Google Scholar]
- Cousins, R.J.; Liuzzi, J.P.; Lichten, L.A. Mammalian Zinc Transport, Trafficking, and Signals. J. Biol. Chem. 2006, 281, 24085–24089. [Google Scholar] [PubMed]
- Krotkiewski, M.; Gudmundsson, M.; Backstrom, P.; Mandroukas, K. Zinc and Muscle Strength and Endurance. Acta Physiol. Scand. 1982, 116, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fan, B.; Wu, Z.; Xu, M.; Luo, Y. Serum Zinc Is Associated with Plasma Leptin and Cu–Zn SOD in Elite Male Basketball Athletes. J. Trace Elem. Med. Biol. 2015, 30, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Petocz, P.; Samman, S. Plasma/Serum Zinc Status during Aerobic Exercise Recovery: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 127–134. [Google Scholar]
- Kenney, W.L.; Wilmore, J.; Costill, D. Physiology of Sport and Exercise, 6th ed.; Human Kinetics: Champaign, IL, USA, 2015; ISBN 1450477674. [Google Scholar]
- Cordova, A.; Navas, F.J. Effect of Training on Zinc Metabolism: Changes in Serum and Sweat Zinc Concentrations in Sportsmen. Ann. Nutr. Metab. 1998, 42, 274–282. [Google Scholar] [CrossRef]
- Chu, A.; Samman, S. Zinc Homeostasis in Exercise: Implications for Physical Performance. Vitam. Miner. 2014, 3, 40–42. [Google Scholar]
- Bangsbo, J. The Physiology of Soccer—With Special Reference to Intense Intermittent Exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Brites, F.; Evelson, P.; Christiansen, M.; Nicol, M.; Basílico, M.; Wikinski, R.; Llesuy, S. Soccer Players under Regular Training Show Oxidative Stress but an Improved Plasma Antioxidant Status. Clin. Sci. 1999, 96, 381–385. [Google Scholar]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Muñoz, D.; Robles, M.C.; Maynar-Mariño, M. Influence of a High-Temperature Programme on Serum, Urinary and Sweat Levels of Selenium and Zinc. J. Therm. Biol. 2020, 88, 102492. [Google Scholar] [CrossRef]
- Siquier Coll, J.; Muñoz Marín, D.; Grijota Pérez, F.J.; Bartolomé Sánchez, I.; Robles Gil, M.C.; Montero Arroyo, J.; Maynar Mariño, M. Influencia del Entrenamiento en Fútbol Sobre Parámetros de Estrés Oxidativo en Eritrocitos. Nutr. Hosp. 2019, 36, 926–930. [Google Scholar] [PubMed]
- Spirlandeli, A.L.; Deminice, R.; Jordao, A.A. Plasma Malondialdehyde as Biomarker of Lipid Peroxidation: Effects of Acute Exercise. Int. J. Sports Med. 2014, 35, 14–18. [Google Scholar] [PubMed]
- Toro-Román, V.; Robles-Gil, M.C.; Muñoz, D.; Bartolomé, I.; Siquier-Coll, J.; Maynar-Mariño, M. Extracellular and Intracellular Concentrations of Molybdenum and Zinc in Soccer Players: Sex Differences. Biology 2022, 11, 1710. [Google Scholar] [CrossRef]
- Silva, J.; Rebelo, A.; Marques, F.; Pereira, L.; Seabra, A.; Ascensão, A.; Magalhães, J. Biochemical Impact of Soccer: An Analysis of Hormonal, Muscle Damage, and Redox Markers during the Season. Appl. Physiol. Nutr. Metab. 2014, 39, 432–438. [Google Scholar]
- Rodriguez Tuya, I.; Pinilla Gil, E.; Maynar Mariño, M.; García-Moncó Carra, R.M.; Sánchez Misiego, A. Evaluation of the Influence of Physical Activity on the Plasma Concentrations of Several Trace Metals. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 299–303. [Google Scholar]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Influence of Physical Training on Intracellular and Extracellular Zinc Concentrations. J. Int. Soc. Sports Nutr. 2022, 19, 110–125. [Google Scholar]
- Bordin, D.; Sartorelli, L.; Bonanni, G.; Mastrogiacomo, I.; Scalco, E. High Intensity Physical Exercise Induced Effects on Plasma Levels of Copper and Zinc. Biol. Trace Elem. Res. 1993, 36, 129–134. [Google Scholar] [CrossRef]
- Tipton, K.; Green, N.R.; Haymes, E.M.; Waller, M. Zinc Loss in Sweat of Athletes Exercising in Hot and Neutral Temperatures. Int. J. Sport Nutr. Exerc. Metab. 1993, 3, 261–271. [Google Scholar]
- Cuthbertson, D.P.; Fell, G.S.; Smith, C.M.; Tilstone, W.J. Metabolism after Injury. 1: Effects of Severity, Nutrition, and Environmental Temperature on Protein Potassium, Zinc, and Creatine. Br. J. Surg. 1972, 59, 925–931. [Google Scholar]
- Rakhra, G.; Masih, D.; Vats, A.; Verma, S.K.; Singh, V.K.; Rana, R.T.; Kirar, V.; Singh, S.N. Effect of Physical Activity and Age on Plasma Copper, Zinc, Iron, and Magnesium Concentration in Physically Active Healthy Males. Nutrition 2017, 43–44, 75–82. [Google Scholar] [CrossRef]
- Maynar, M.; Bartolomé, I.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Munõz, D. Influence of a 6-Month Physical Training Program on Serum and Urinary Concentrations of Trace Metals in Middle Distance Elite Runners. J. Int. Soc. Sports Nutr. 2019, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Balas, A. Efectos de las Fases del Ciclo Menstrual sobre la Condición Física, Parámetros Fisiológicos y Psicológicos en Mujeres Jóvenes Moderadamente Entrenadas. Ph.D. Thesis, University of Extremadura, Badajoz, Spain, 2014; 310p. [Google Scholar]
- Michos, C.; Kalfakakou, V.; Karkabounas, S.; Kiortsis, D.; Evangelou, A. Changes in Copper and Zinc Plasma Concentrations during the Normal Menstrual Cycle in Women. Gynecol. Endocrinol. 2010, 26, 250–255. [Google Scholar] [CrossRef]
- Deuster, P.; Dolev, E.; Bernier, L.L.; Trostmann, U.H. Magnesium and Zinc Status during the Menstrual Cycle. Am. J. Obstet. Gynecol. 1987, 157, 964–968. [Google Scholar]
- Porta, J.; Galiano, D.; Tejedo, A.; González, J.M. Valoración de la Composición Corporal. Utopías y Realidades. In Manual de Cineantropometría; Esparza Ros, F., Ed.; Grupo Español de Cineantropometría: Madrid, Spain, 1993; pp. 113–170. [Google Scholar]
- Moreiras, O. Tablas de Composición de Alimentos, 16th ed.; Ed. Pirámide: Madrid, Spain, 2013. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [PubMed]
- Solomons, N.W. On the Assessment of Zinc and Copper Nutriture in Man. Am. J. Clin. Nutr. 1979, 32, 856–871. [Google Scholar]
- Wieringa, F.T.; Dijkhuizen, M.A.; Fiorentino, M.; Laillou, A.; Berger, J. Determination of Zinc Status in Humans: Which Indicator Should We Use? Nutrients 2015, 7, 3252–3263. [Google Scholar] [CrossRef]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of Serum Zinc Concentration as an Indicator of Population Zinc Status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.A.; Ritchey, S.J.; Culley, P.; Sandoval, W.; Moak, S.; Schilling, P. Erythrocyte and Dietary Zinc in Adolescent Females. Am. J. Clin. Nutr. 1984, 39, 446–451. [Google Scholar] [PubMed]
- Oakes, E.J.C.; Lyon, T.D.B.; Duncan, A.; Gray, A.; Talwar, D.; O’Reilly, D.S.J. Acute Inflammatory Response Does Not Affect Erythrocyte Concentrations of Copper, Zinc and Selenium. Clin. Nutr. 2008, 27, 115–120. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Biomonitoring of 30 Trace Elements in Urine of Children and Adults by ICP-MS. Clin. Chim. Acta 2006, 365, 310–318. [Google Scholar]
- Heitland, P.; Köster, H.D. Human Biomonitoring of 73 Elements in Blood, Serum, Erythrocytes and Urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar]
- Volpe, S.L. Micronutrient Requirements for Athletes. Clin. Sports Med. 2007, 26, 119–130. [Google Scholar] [PubMed]
- Calleja, C.A.; Hurtado, M.M.C.; Daschner, Á.; Escámez, P.F.; Abuín, C.M.F.; Pons, R.M.G.; Fandos, M.E.G.; Muñoz, M.J.G.; López-García, E.; Vinuesa, J.M. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la Población Española. Rev. Com. Cient. AESAN 2019, 29, 43–68. [Google Scholar]
- Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Assessment of the Dietary Intake of High-Rank Professional Male Football Players during a Preseason Training Week. Int. J. Environ. Res. Public Health 2020, 17, 8567. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M. Comparison of Urine and Blood Zinc Levels of Futsal Players before and after the Match. Asian J. Chem. 2008, 20, 3203–3208. [Google Scholar]
- Maynar, M.; Llerena, F.; Grijota, F.J.; Pérez-Quintero, M.; Bartolomé, I.; Alves, J.; Robles, M.C.; Muñoz, D. Serum Concentration of Cobalt, Molybdenum and Zinc in Aerobic, Anaerobic and Aerobic-Anaerobic Sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Coates, P.M.; Betz, J.M.; Blackman, M.R.; Cragg, G.M.; Levine, M.; Moss, J.; White, J.D. Encyclopedia of Dietary Supplements, 2nd ed.; Paul, M.C., Ed.; CRC Press: London, UK, 2010; ISBN 1498702252. [Google Scholar]
- Siquier-Coll, J.; Bartolomé, I.; Perez-Quintero, M.; Grijota, F.J.; Arroyo, J.; Muñoz, D.; Maynar-Mariño, M. Serum, Erythrocyte and Urinary Concentrations of Iron, Copper, Selenium and Zinc Do Not Change during an Incremental Test to Exhaustion in Either Normothermic or Hyperthermic Conditions. J. Therm. Biol. 2019, 86, 102425. [Google Scholar] [CrossRef]
- Fell, G.S.; Cuthbertson, D.P.; Morrison, C.; Fleck, A.; Queen, K.; Bessent, R.G.; Husain, S.L. Urinary Zinc Levels as an Indication of Muscle Catabolism. Lancet 1973, 301, 280–282. [Google Scholar]
- Granell, J. Zinc and Copper Changes in Serum and Urine after Aerobic Endurance and Muscular Strength Exercise. J. Sports Med. Phys. Fit. 2014, 54, 232–237. [Google Scholar]
- Buchman, A.L.; Keen, C.; Commisso, J.; Killip, D.; Ou, C.N.; Rognerud, C.L.; Dennis, K.; Dunn, J.K. The Effect of a Marathon Run on Plasma and Urine Mineral and Metal Concentrations. J. Am. Coll. Nutr. 1998, 17, 124–127. [Google Scholar]
- Muñoz, D.; Maynar, M.; Barrientos, G.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Robles, M.C. Influence of an Acute Exercise Until Exhaustion on Serum and Urinary Concentrations of Molybdenum, Selenium, and Zinc in Athletes. Biol. Trace Elem. Res. 2019, 186, 361–369. [Google Scholar]
- Foley, B.; Johnson, S.A.; Hackley, B.; Smith Jr, J.; Halsted, J.A. Zinc Content of Human Platelets. Proc. Soc. Exp. Biol. Med. 1968, 128, 265–269. [Google Scholar] [PubMed]
- Chooi, M.K.; Todd, J.K.; Boyd, N.D. Influence of Age and Sex on Plasma Zinc Levels in Normal and Diabetic Individuals. Ann. Nutr. Metab. 1976, 20, 135–142. [Google Scholar]
- Chou, T.-Y.; Nosaka, K.; Chen, T.C. Muscle Damage and Performance after Single and Multiple Simulated Matches in University Elite Female Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 4134. [Google Scholar] [CrossRef] [PubMed]
- Lazarim, F.L.; Antunes-Neto, J.M.F.; Da Silva, F.O.C.; Nunes, L.A.S.; Bassini-Cameron, A.; Cameron, L.-C.; Alves, A.A.; Brenzikofer, R.; de Macedo, D.V. The Upper Values of Plasma Creatine Kinase of Professional Soccer Players during the Brazilian National Championship. J. Sci. Med. Sport. 2009, 12, 85–90. [Google Scholar] [PubMed]
- Bradley, P.S.; Dellal, A.; Mohr, M.; Castellano, J.; Wilkie, A. Gender Differences in Match Performance Characteristics of Soccer Players Competing in the UEFA Champions League. Hum. Mov. Sci. 2014, 33, 159–171. [Google Scholar]
- Killilea, D.W.; Rohner, F.; Ghosh, S.; Otoo, G.E.; Smith, L.; Siekmann, J.H.; King, J.C. Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration. J. Nutr. 2017, 147, 1218–1225. [Google Scholar]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar]
- Vallee, B.L.; Gibson, J.G. The Zinc Content of Normal Human Whole Blood, Plasma, Leucocytes, and Erythrocytes. J. Biol. Chem. 1948, 176, 445–457. [Google Scholar]
- Marques, A.G.; Sarni, R.O.S.; Lopes, L.A.; Lopes, E.; Amancio, O.M.S. Erythrocyte Zinc and Serum Copper in Male and Female Adolescents According to Puberty Stage at Different Growth Phases. Nutrire 2016, 41, 9. [Google Scholar]
- Toro-Román, V.; Bartolomé, I.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level. Nutrients 2022, 14, 1857. [Google Scholar] [CrossRef] [PubMed]
- Mundie, T.G.; Hare, B. Effects of Resistance Exercise on Plasma, Erythrocyte, and Urine Zn. Biol. Trace Elem. Res. 2001, 79, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Van Wouwe, J.P.; Veldhuizen, M.; De Goeij, J.J.M.; Van den Hamer, C.J.A. In Vitro Exchangeable Erythrocytic Zinc. Biol. Trace Elem. Res. 1990, 25, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Bolonchuk, W.; Klevay, L.; Milne, D.; Sandstead, H. Changes in Plasma Zinc Content after Exercise in Men Fed a Low-Zinc Diet. Am. J. Physiol.—Endocrinol. Metab. 1984, 247, E88–E93. [Google Scholar]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength. Cond. Res. 2023, 37, 494–536. [Google Scholar]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar]
Male Soccer Players | Female Soccer Players | |
---|---|---|
Total training (n) | 128.27 ± 18.59 | 133.54 ± 25.86 |
Total training (min) | 11,814.23 ± 1673.4 | 10,578.46 ± 3227.80 |
Injuries (n) | 7 | 8 |
Absence from training (days) | 12.07 ± 9.34 | 14.14 ± 10.79 |
Female Soccer Players | ||
---|---|---|
Age at menarche (years) | 13.5 ± 1.15 | |
Regular menses (%) | 100.00 | |
Duration of bleeding (days) | 4.77 ± 1.47 | |
Menstrual cycle (days) | 27.93 ± 2.78 | |
Cessation of menses (%) | Never | 88.88 |
Occasionally | 12.22 |
Matrix | Limits of Detection (µg/L) | Limits of Quantification (µg/L) |
---|---|---|
Plasma | 0.056 | 0.56 |
Urine | 0.019 | 0.19 |
Erythrocytes | 0.034 | 0.34 |
Platelets | 0.157 | 1.57 |
Male Soccer Players | Female Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Height (m) | 1st assessment | 1.76 ± 0.061 | 1.65 ± 0.06 ++ | - | - | - |
- | - | - | ||||
- | - | - | ||||
Weight (kg) | 1st assessment | 71.50 ± 5.93 | 59.58 ± 7.17 | <0.001 | 0.748 | 0.931 |
2nd assessment | 71.95 ± 5.87 | 60.44 ± 6.77 | ||||
3rd assessment | 72.80 ± 5.68 | 66.39 ± 8.99 | ||||
Σ6 Skinfold (mm) | 1st assessment | 60.34 ± 12.35 | 94.62 ± 18.54 | <0.001 | 0.009 | 0.016 |
2nd assessment | 60.12 ± 12.61 | 76.72 ± 15.13 * | ||||
3rd assessment | 56.85 ± 12.12 | 83.81 ± 18.75 |
Male Soccer Players | Female Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Time (min) | 1st assessment | 12.41 ± 1.58 | 9.18 ± 1.12 | <0.001 | 0.117 | 0.345 |
2nd assessment | 12.38 ± 1.48 | 8.57 ± 1.21 | ||||
3rd assessment | 12.16 ± 1.89 | 8.11 ± 1.64 | ||||
Maximum speed (km/h) | 1st assessment | 19.17 ± 1.72 | 15.73 ± 1.16 | <0.001 | 0.289 | 0.315 |
2nd assessment | 19.22 ± 1.44 | 15.20 ± 1.10 | ||||
3rd assessment | 19.15 ± 1.98 | 14.91 ± 1.37 | ||||
VO2max (L/min) | 1st assessment | 2.10 ± 0.20 | 1.40 ± 0.25 | <0.001 | 0.337 | 0.296 |
2nd assessment | 2.15 ± 0.22 | 1.48 ± 0.18 | ||||
3rd assessment | 2.00 ± 0.29 | 1.48 ± 0.17 | ||||
RER | 1st assessment | 1.12 ± 0.03 | 1.16 ± 0.04 | 0.042 | <0.001 | 0.017 |
2nd assessment | 1.07 ± 0.02 ** | 1.08 ± 0.02 ** | ||||
3rd assessment | 1.08 ± 0.02 ++ | 1.09 ± 0.03 ++ | ||||
HR (bpm) | 1st assessment | 187.78 ± 6.52 | 183.33 ± 7.34 | <0.001 | 0.177 | 0.204 |
2nd assessment | 188.90 ± 5.82 | 179.75 ± 8.11 | ||||
3rd assessment | 186.90 ± 7.42 | 176.90 ± 8.00 | ||||
Oxygen pulse (mL/beat) | 1st assessment | 19.44 ± 1.85 | 12.48 ± 2.24 | <0.001 | 0.109 | 0.287 |
2nd assessment | 20.08 ± 2.34 | 13.80 ± 1.63 | ||||
3rd assessment | 19.21 ± 2.221 | 13.90 ± 1.66 | ||||
VE (L/min) | 1st assessment | 134.73 ± 13.75 | 81.40 ± 15.89 | <0.001 | 0.304 | 0.542 |
2nd assessment | 136.04 ± 17.07 | 89.90 ± 12.06 | ||||
3rd assessment | 134.65 ± 15.93 | 83.40 ± 11.36 |
Male Soccer Players | Female Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Energy (kcal) | 1st assessment | 1796.0 ± 420.0 | 1578.1 ± 316.2 | 0.038 | 0.497 | 0.317 |
2nd assessment | 1932.2 ± 312.5 | 1681.5 ± 427.3 | ||||
3rd assessment | 1882.7 ± 358.6 | 1697.3 ± 386.1 | ||||
Proteins (g) | 1st assessment | 106.1 ± 25.5 | 90.4 ± 21.6 | 0.047 | 0.469 | 0.218 |
2nd assessment | 115.5 ± 23.4 | 96.2 ± 18.3 | ||||
3rd assessment | 108.9 ± 24.8 | 92.6 ± 20.4 | ||||
Lipids (g) | 1st assessment | 54.8 ± 19.1 | 48.3 ± 12.3 | 0.116 | 0.241 | 0.471 |
2nd assessment | 64.1 ± 15.4 | 55.6 ± 15.3 | ||||
3rd assessment | 58.6 ± 17.4 | 60.3 ± 20.6 | ||||
Carbohydrates (g) | 1st assessment | 231.0 ± 69.1 | 206.1 ± 81.3 | 0.471 | 0.856 | 0.683 |
2nd assessment | 235.8 ± 60.3 | 241.5 ± 56.1 | ||||
3rd assessment | 242.0 ± 57.0 | 235.8 ± 61.7 | ||||
Zn (mg) | 1st assessment | 10.7 ± 3.1 | 9.3 ± 2.5 | 0.367 | 0.732 | 0.581 |
2nd assessment | 11.4 ± 2.4 | 10.1 ± 3.4 | ||||
3rd assessment | 11.1 ± 2.9 | 10.5 ± 2.7 |
Male Soccer Players | Female Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
Erythrocytes (millions) | 1st assessment | 4.92 ± 0.36 | 4.37 ± 0.22 | <0.001 | 0.031 | 0.063 |
2nd assessment | 4.83 ± 0.32 ** | 4.19 ± 0.27 ** | ||||
3rd assessment | 4.99 ± 0.29 ++ | 4.35 ± 0.27 ++ | ||||
Platelets (thousands) | 1st assessment | 204.50 ± 57.65 | 196.00 ± 38.01 | 0.274 | 0.542 | 0.222 |
2nd assessment | 196.60 ± 39.79 | 219.08 ± 34.19 | ||||
3rd assessment | 195.13 ± 37.82 | 204.39 ± 31.52 |
Female Soccer Players | p | ||
---|---|---|---|
Progesterone (ng/mL) | 1st assessment | 2.65 ± 3.88 | 0.998 |
2nd assessment | 2.38 ± 3.21 | ||
3rd assessment | 2.31 ± 2.89 | ||
Estradiol-17beta (pg/mL) | 1st assessment | 74.04 ± 45.30 | 0.894 |
2nd assessment | 71.32 ± 39.25 | ||
3rd assessment | 68.30 ± 40.93 |
Male Soccer Players (CI 95%) | Female Soccer Players (CI 95%) | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Plasma (µg/L) | 1st assessment | 956.70 ± 194.36 (897.66–1098.54) | 775.15 ± 121.60 (729.45–848.36) | <0.001 # | 0.124 $ | 0.676 |
2nd assessment | 998.69 ± 175.85 (890.26–1050.70) | 839.28 ± 136.61 (742.47–908.80) | ||||
3rd assessment | 994.87 ± 79.55 ^ (974.39–1142.98) | 874.09 ± 80.18 ^ (854.97–950.56) | ||||
Urine (µg/L) | 1st assessment | 874.48 ± 334.83 (757.02–1116.13) | 734.16 ± 277.19 (634.67–865.13) | <0.001 # | 0.001 # | 0.058 $ |
2nd assessment | 1172.75 ± 413.28 ^^ (1087.97–1664.66) | 300.59 ± 235.07 ^^ (238.99–430.65) | ||||
3rd assessment | 554.54 ± 149.19 ++ (549.69–825.91) | 533.80 ± 275.50 ++ (477.64–796.41) | ||||
Absolute erythrocytes (mg/L) | 1st assessment | 9.80 ± 1.10 (9.00–10.30) | 9.90 ± 1.89 (9.21–11.16) | 0.556 | 0.301 | 0.475 |
2nd assessment | 10.34 ± 1.02 (10.85–12.05) | 10.67 ± 1.78 (10.78–12.33) | ||||
3rd assessment | 10.72 ± 1.14 (10.57–11.88) | 10.44 ± 1.21 (9.07–11.32) | ||||
Relative erythrocytes (µg/cell−6) | 1st assessment | 2.08 ± 0.12 (1.22–1.96) | 2.37 ± 0.47 (2.19–2.67) | <0.001 # | 0.218 | 0.740 |
2nd assessment | 2.29 ± 0.27 (2.23–2.60) | 2.63 ± 0.48 (2.43–2.84) | ||||
3rd assessment | 2.18 ± 0.35 (2.09–2.42) | 2.42 ± 0.31 (2.06–2.61) | ||||
Absolute platelets (µg/L) | 1st assessment | 270.85 ± 55.02 (196.05–271.84) | 287.79 ± 48.33 (215.28–312.39) | 0.087 # | <0.001 # | 0.204 |
2nd assessment | 272.90 ± 79.39 ^^ (246.34–315.28) | 187.65 ± 66.91 ** (154.91–207.71) | ||||
3rd assessment | 204.73 ± 61.69 ++ (179.05–271.15) | 184.53 ± 58.54 ++ (152.96–227.82) | ||||
Relative platelets (pg/cell−3) | 1st assessment | 1.53 ± 0.50 (0.82–1.64) | 1.45 ± 0.26 (1.11–1.68) | 0.002 # | <0.001 # | 0.163 |
2nd assessment | 1.35 ± 0.25 ^^ (1.28–1.60) | 0.855 ± 0.269 ** (0.71–0.91) | ||||
3rd assessment | 1.02 ± 0.24 ++ (0.90–1.47) | 0.919 ± 0.360 ++ (0.74–1.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Román, V.; Siquier-Coll, J.; Grijota Pérez, F.J.; Maynar-Mariño, M.; Bartolomé-Sánchez, I.; Robles-Gil, M.C. Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players. Nutrients 2024, 16, 2789. https://doi.org/10.3390/nu16162789
Toro-Román V, Siquier-Coll J, Grijota Pérez FJ, Maynar-Mariño M, Bartolomé-Sánchez I, Robles-Gil MC. Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players. Nutrients. 2024; 16(16):2789. https://doi.org/10.3390/nu16162789
Chicago/Turabian StyleToro-Román, Víctor, Jesús Siquier-Coll, Fco. Javier Grijota Pérez, Marcos Maynar-Mariño, Ignacio Bartolomé-Sánchez, and María C. Robles-Gil. 2024. "Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players" Nutrients 16, no. 16: 2789. https://doi.org/10.3390/nu16162789
APA StyleToro-Román, V., Siquier-Coll, J., Grijota Pérez, F. J., Maynar-Mariño, M., Bartolomé-Sánchez, I., & Robles-Gil, M. C. (2024). Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players. Nutrients, 16(16), 2789. https://doi.org/10.3390/nu16162789