Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review
Abstract
:1. Introduction
2. Article Search Methodology
3. Health-Promoting Properties of Fruit Pomace
3.1. Antioxidant Properties
3.2. Anti-Diabetic Properties
3.3. Anti-Inflammatory Properties
3.4. Antibacterial Properties
4. The Use of Fruit Pomace in the Food Industry
4.1. Bread
4.2. Sweet Snack Products
4.3. Extruded Snacks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martin-Dominguez, V.; Garcia-Montalvo, J.; Garcia-Martin, A.; Ladero, M.; Santos, V.E. Fumaric Acid Production by R. Arrhizus NRRL 1526 Using Apple Pomace Enzymatic Hydrolysates: Kinetic Modelling. Processes 2022, 10, 2624. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and Health Functionality of Plant Cell Wall Fibers from Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Ampese, L.C.; Ziero, H.D.D.; Sganzerla, W.G.; Forster-Carneiro, T. Apple Pomace Biorefinery: Integrated Approaches for the Production of Bioenergy, Biochemicals, and Value-Added Products–An Updated Review. J. Environ. Chem. Eng. 2022, 10, 108358. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S.H. Valorization of Bioactive Compounds in Fruit Pomace from Agro-Fruit Industries: Present Insights and Future Challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. Effect Application of Apple Pomace on Yield of Spring Wheat in Potting Experiment. Agronomy 2023, 13, 1526. [Google Scholar] [CrossRef]
- Krasowska, M.; Kowczyk-Sadowy, M.; Szatyłowicz, E.; Obidziński, S. Analysis of the Possibility of Heavy Metal Ions Removal from Aqueous Solutions on Fruit Pomace. J. Ecol. Eng. 2023, 24, 169–177. [Google Scholar] [CrossRef]
- dos Santos, L.F.; Lopes, S.T.; Nazari, M.T.; Biduski, B.; Pinto, V.Z.; dos Santos, J.S.; Bertolin, T.E.; dos Santos, L.R. Fruit Pomace as a Promising Source to Obtain Biocompounds with Antibacterial Activity. Crit. Rev. Food Sci. Nutr. 2023, 63, 12597–12609. [Google Scholar] [CrossRef]
- Kultys, E.; Moczkowska-Wyrwisz, M. Effect of Using Carrot Pomace and Beetroot-Apple Pomace on Physicochemical and Sensory Properties of Pasta. LWT 2022, 168, 113858. [Google Scholar] [CrossRef]
- Negi, T.; Vaidya, D.; Tarafdar, A.; Samkaria, S.; Chauhan, N.; Sharma, S.; Sirohi, R. Physico-Functional Evaluation, Process Optimization and Economic Analysis for Preparation of Muffin Premix Using Apple Pomace as Novel Supplement. Syst. Microbiol. Biomanuf. 2021, 1, 302–310. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential Application of Waste Fruit Peels (Orange, Yellow Lemon and Banana) as Wide Range Natural Antimicrobial Agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues Cv. Tupy. J. Food Qual. 2018, 2018, 5950761. [Google Scholar] [CrossRef]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants 2022, 11, 190. [Google Scholar] [CrossRef]
- Raczkowska, E.; Wojdyło, A.; Nowicka, P. The Use of Blackcurrant Pomace and Erythritol to Optimise the Functional Properties of Shortbread Cookies. Sci. Rep. 2024, 14, 3788. [Google Scholar] [CrossRef] [PubMed]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Munir, A.; Sultana, B.; Bashir, A.; Ghaffar, A.; Munir, B.; Shar, G.A.; Nazir, A.; Iqbal, M. Evaluation of Antioxidant Potential of Vegetables Waste. Pol. J. Environ. Stud. 2018, 27, 947–952. [Google Scholar] [CrossRef]
- Rodríguez-Muela, C.; Rodríguez, H.E.; Arzola, C.; Díaz-Plascencia, D.; Ramírez-Godínez, J.A.; Flores-Mariñelarena, A.; Mancillas-Flores, P.F.; Corral, G. Antioxidant Activity in Plasma and Rumen Papillae Development in Lambs Fed Fermented Apple Pomace. J. Anim. Sci. 2015, 93, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Juśkiewicz, J.; Zary-Sikorska, E.; Zduńczyk, Z.; Król, B.; Jarosławska, J.; Jurgoński, A. Effect of Dietary Supplementation with Unprocessed and Ethanol-Extracted Apple Pomaces on Caecal Fermentation, Antioxidant and Blood Biomarkers in Rats. Br. J. Nutr. 2012, 107, 1138–1146. [Google Scholar] [CrossRef]
- Radić, K.; Vinković Vrček, I.; Pavičić, I.; Čepo, D.V. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020, 25, 5027. [Google Scholar] [CrossRef]
- Choleva, M.; Matalliotaki, E.; Antoniou, S.; Asimomyti, E.; Drouka, A.; Stefani, M.; Yannakoulia, M.; Fragopoulou, E. Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2022, 15, 156. [Google Scholar] [CrossRef]
- Acute Effects of Thermally Processed Pili (Canarium Ovatum, Engl.) Pomace Drink on Plasma Antioxidant and Polyphenol Status in Humans-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29062808/ (accessed on 11 July 2024).
- Sihag, S.; Pal, A.; Ravikant; Saharan, V. Antioxidant Properties and Free Radicals Scavenging Activities of Pomegranate (Punica granatum L.) Peels: An in-Vitro Study. Biocatal. Agric. Biotechnol. 2022, 42, 102368. [Google Scholar] [CrossRef]
- Saucier, C.T.; Waterhouse, A.L. Synergetic Activity of Catechin and Other Antioxidants. J. Agric. Food Chem. 1999, 47, 4491–4494. [Google Scholar] [CrossRef]
- Diñeiro García, Y.; Valles, B.S.; Picinelli Lobo, A. Phenolic and Antioxidant Composition of By-Products from the Cider Industry: Apple Pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Guzman, G.; Xiao, D.; Liska, D.A.; Mah, E.; Sanoshy, K.; Mantilla, L.; Replogle, R.; Boileau, T.W.; Burton-Freeman, B.M.; Edirisinghe, I. Addition of Orange Pomace Attenuates the Acute Glycemic Response to Orange Juice in Healthy Adults. J. Nutr. 2021, 151, 1436–1442. [Google Scholar] [CrossRef]
- Huang, Y.; Park, E.; Replogle, R.; Boileau, T.; Shin, J.E.; Burton-Freeman, B.M.; Edirisinghe, I. Enzyme-Treated Orange Pomace Alters Acute Glycemic Response to Orange Juice. Nutr. Diabetes 2019, 9, 24. [Google Scholar] [CrossRef]
- Oliver Chen, C.Y.; Rasmussen, H.; Kamil, A.; Du, P.; Blumberg, J.B. Orange Pomace Improves Postprandial Glycemic Responses: An Acute, Randomized, Placebo-Controlled, Double-Blind, Crossover Trial in Overweight Men. Nutrients 2017, 9, 130. [Google Scholar] [CrossRef]
- Dong, H.; Sargent, L.J.; Chatzidiakou, Y.; Saunders, C.; Harkness, L.; Bordenave, N.; Rowland, I.; Spencer, J.P.E.; Lovegrove, J.A. Orange Pomace Fibre Increases a Composite Scoring of Subjective Ratings of Hunger and Fullness in Healthy Adults. Appetite 2016, 107, 478–485. [Google Scholar] [CrossRef]
- Dong, H.; Rendeiro, C.; Kristek, A.; Sargent, L.J.; Saunders, C.; Harkness, L.; Rowland, I.; Jackson, K.G.; Spencer, J.P.E.; Lovegrove, J.A. Addition of Orange Pomace to Orange Juice Attenuates the Increases in Peak Glucose and Insulin Concentrations after Sequential Meal Ingestion in Men with Elevated Cardiometabolic Risk. J. Nutr. 2016, 146, 1197–1203. [Google Scholar] [CrossRef]
- Campos, F.; Peixoto, A.F.; Fernandes, P.A.R.; Coimbra, M.A.; Mateus, N.; de Freitas, V.; Fernandes, I.; Fernandes, A. The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021, 13, 4495. [Google Scholar] [CrossRef]
- Costabile, G.; Vitale, M.; Luongo, D.; Naviglio, D.; Vetrani, C.; Ciciola, P.; Tura, A.; Castello, F.; Mena, P.; Del Rio, D.; et al. Grape Pomace Polyphenols Improve Insulin Response to a Standard Meal in Healthy Individuals: A Pilot Study. Clin. Nutr. 2019, 38, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Maqueda, D.; Zapatera, B.; Gallego-Narbón, A.; Vaquero, M.P.; Saura-Calixto, F.; Pérez-Jiménez, J. A 6-Week Supplementation with Grape Pomace to Subjects at Cardiometabolic Risk Ameliorates Insulin Sensitivity, without Affecting Other Metabolic Syndrome Markers. Food Funct. 2018, 9, 6010–6019. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, I.F.; de Diego, E.H.; Riomoros-Arranz, M.; Reynoso-Camacho, R.; Saura-Calixto, F.; Pérez-Jiménez, J. Effects of Acute Intake of Grape/Pomegranate Pomace Dietary Supplement on Glucose Metabolism and Oxidative Stress in Adults with Abdominal Obesity. Int. J. Food Sci. Nutr. 2020, 71, 94–105. [Google Scholar] [CrossRef]
- Makarova, E.; Górnaś, P.; Konrade, I.; Tirzite, D.; Cirule, H.; Gulbe, A.; Pugajeva, I.; Seglina, D.; Dambrova, M. Acute Anti-Hyperglycaemic Effects of an Unripe Apple Preparation Containing Phlorizin in Healthy Volunteers: A Preliminary Study. J. Sci. Food Agric. 2014, 95, 560–568. [Google Scholar] [CrossRef]
- Ohta, T.; Morinaga, H.; Yamamoto, T.; Yamada, T.; Ohta, T.; Morinaga, H.; Yamamoto, T.; Yamada, T. Effect of Phlorizin on Metabolic Abnormalities in Spontaneously Diabetic Torii (SDT) Rats. Open J. Anim. Sci. 2012, 2, 113–118. [Google Scholar] [CrossRef]
- Mei, X.; Li, Y.; Zhang, X.; Zhai, X.; Yang, Y.; Li, Z.; Li, L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. J. Agric. Food Chem. 2024, 72, 4703–4725. [Google Scholar] [CrossRef] [PubMed]
- Hardman, T.C.; Rutherford, P.; Dubrey, S.W.; Wierzbicki, A.S. Sodium-Glucose Co-Transporter 2 Inhibitors: From Apple Tree to “Sweet Pee”. Curr. Pharm. Des. 2010, 16, 3830–3838. [Google Scholar] [CrossRef] [PubMed]
- Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigné, C.; Rémésy, C. Bioavailability of Phloretin and Phloridzin in Rats. J. Nutr. 2001, 131, 3227–3230. [Google Scholar] [CrossRef] [PubMed]
- Bajerska, J.; Mildner-Szkudlarz, S.; Górnaś, P.; Seglina, D. The Effects of Muffins Enriched with Sour Cherry Pomace on Acceptability, Glycemic Response, Satiety and Energy Intake: A Randomized Crossover Trial. J. Sci. Food Agric. 2016, 96, 2486–2493. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Gámbaro, A.; Medrano-Fernandez, A.; Del Castillo, M.D. In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits. Molecules 2021, 26, 3480. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.C.; Kuo, C.T. Hesperidin, Nobiletin, and Tangeretin Are Collectively Responsible for the Anti-Neuroinflammatory Capacity of Tangerine Peel (Citri Reticulatae Pericarpium). Food Chem. Toxicol. 2014, 71, 176–182. [Google Scholar] [CrossRef]
- Mohammadi, N.; Guo, Y.; Wang, K.; Granato, D. Macroporous Resin Purification of Phenolics from Irish Apple Pomace: Chemical Characterization, and Cellular Antioxidant and Anti-Inflammatory Activities. Food Chem. 2024, 437, 137815. [Google Scholar] [CrossRef]
- Urquiaga, I.; Troncoso, D.; Mackenna, M.J.; Urzúa, C.; Pérez, D.; Dicenta, S.; de la Cerda, P.M.; Amigo, L.; Carreño, J.C.; Echeverría, G.; et al. The Consumption of Beef Burgers Prepared with Wine Grape Pomace Flour Improves Fasting Glucose, Plasma Antioxidant Levels, and Oxidative Damage Markers in Humans: A Controlled Trial. Nutrients 2018, 10, 1388. [Google Scholar] [CrossRef]
- Han, H.J.; Jung, U.J.; Kim, H.J.; Cho, S.J.; Kim, A.H.; Han, Y.; Choi, M.S. Combined Supplementation with Grape Pomace and Omija Fruit Ethanol Extracts Dose-Dependently Improves Body Composition, Plasma Lipid Profiles, Inflammatory Status, and Antioxidant Capacity in Overweight and Obese Subjects. J. Med. Food 2016, 19, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Lengsfeld, C.; Deters, A.; Faller, G.; Hensel, A. High Molecular Weight Polysaccharides from Black Currant Seeds Inhibit Adhesion of Helicobacter Pylori to Human Gastric Mucosa. Planta Med. 2004, 70, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Paturi, G.; Butts, C.A.; Monro, J.A.; Hedderley, D. Effects of Blackcurrant and Dietary Fibers on Large Intestinal Health Biomarkers in Rats. Plant Foods Hum. Nutr. 2018, 73, 54–60. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Grootaert, C.; Van Camp, J.; Šarkinas, A.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Rimantas Venskutonis, P. Chemical Composition, Antioxidant, Antimicrobial and Antiproliferative Activities of the Extracts Isolated from the Pomace of Rowanberry (Sorbus aucuparia L.). Food Res. Int. 2020, 136, 109310. [Google Scholar] [CrossRef]
- Costa, J.R.; Amorim, M.; Vilas-Boas, A.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M. Impact of: In Vitro Gastrointestinal Digestion on the Chemical Composition, Bioactive Properties, and Cytotoxicity of Vitis vinifera L. Cv. Syrah Grape Pomace Extract. Food Funct. 2019, 10, 1856–1869. [Google Scholar] [CrossRef]
- Das, Q.; Lepp, D.; Yin, X.; Ross, K.; McCallum, J.L.; Warriner, K.; Marcone, M.F.; Diarra, M.S. Transcriptional Profiling of Salmonella Enterica Serovar Enteritidis Exposed to Ethanolic Extract of Organic Cranberry Pomace. PLoS ONE 2019, 14, e0219163. [Google Scholar] [CrossRef] [PubMed]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant Antimicrobial Polyphenols as Potential Natural Food Preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the Glycemic Index of Short Dough Biscuits by Using Apple Pomace as a Functional Ingredient. LWT 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Domínguez-Avila, B.S.; Robles-Sánchez, J.A.; Ayala-Zavala, R.M.; Mannino, G.; Shain Zuñiga-Martínez, B.; Abraham Domínguez-Avila, J.; Robles-Sánchez, R.M.; Fernando Ayala-Zavala, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-Industrial Fruit Byproducts as Health-Promoting Ingredients Used to Supplement Baked Food Products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef] [PubMed]
- Raczkowska, E.; Bienkiewicz, M.; Gajda, R. Modulation of the Glycaemic Index Value of Shortbread Cookies by the Use of Erythritol and Fruit Pomace. Sci. Rep. 2024, 14, 14215. [Google Scholar] [CrossRef]
- Krajewska, A.; Dziki, D.; Yilmaz, M.A.; Özdemir, F.A. Physicochemical Properties of Dried and Powdered Pear Pomace. Molecules 2024, 29, 742. [Google Scholar] [CrossRef] [PubMed]
- Meena, L.; Neog, R.; Yashini, M.; Sunil, C.K. Pineapple Pomace Powder (Freeze-Dried): Effect on the Texture and Rheological Properties of Set-Type Yogurt. Food Chem. Adv. 2022, 1, 100101. [Google Scholar] [CrossRef]
- Gumul, D.; Berski, W.; Zięba, T. The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks. Appl. Sci. 2023, 13, 4818. [Google Scholar] [CrossRef]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from Fruit Pomace: A Review of Applications in Cereal-Based Products. Food Rev. Int. 2018, 34, 162–181. [Google Scholar] [CrossRef]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jiménez, D.; Lamuela-Raventós, R.; Buxaderas, S.; Codina, C. An Industrial Approach in the Search of Natural Antioxidants from Vegetable and Fruit Wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; et al. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary Fibre Fractions from Fruit and Vegetable Processing Waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Cantero, L.; Salmerón, J.; Miranda, J.; Larretxi, I.; Fernández-Gil, M.D.P.; Bustamante, M.Á.; Matias, S.; Navarro, V.; Simón, E.; Martínez, O. Performance of Apple Pomace for Gluten-Free Bread Manufacture: Effect on Physicochemical Characteristics and Nutritional Value. Appl. Sci. 2022, 12, 5934. [Google Scholar] [CrossRef]
- (PDF) Effect of Apple Pomace Powder on Rheological Properties of Dough and Sangak Bread Texture. Available online: https://www.researchgate.net/publication/327012173_Effect_of_apple_pomace_powder_on_rheological_properties_of_dough_and_Sangak_bread_texture (accessed on 11 July 2024).
- Mildner-Szkudlarz, S.; Bajerska, J. Protective Effect of Grape By-Product-Fortified Breads against Cholesterol/Cholic Acid Diet-Induced Hypercholesterolaemia in Rats. J. Sci. Food Agric. 2013, 93, 3271–3278. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.T.; Chang, Y.H.; Shiau, S.Y. Rheological, Antioxidative and Sensory Properties of Dough and Mantou (Steamed bread) Enriched with Lemon Fiber. LWT Food Sci. Technol. 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Bhol, S.; Lanka, D.; Bosco, S.J.D. Quality Characteristics and Antioxidant Properties of Breads Incorporated with Pomegranate Whole Fruit Bagasse. J. Food Sci. Technol. 2016, 53, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Kurhade, A.; Patil, S.; Sonawane, S.K.; Waghmare, J.S.; Arya, S.S. Effect of Banana Peel Powder on Bioactive Constituents and Microstructural Quality of Chapatti: Unleavened Indian Flat Bread. J. Food Meas. Charact. 2016, 10, 32–41. [Google Scholar] [CrossRef]
- Pathak, D.; Majumdar, J.; Raychaudhuri, U.; Chakraborty, R. Characterization of Physicochemical Properties in Whole Wheat Bread after Incorporation of Ripe Mango Peel. J. Food Meas. Charact. 2016, 10, 554–561. [Google Scholar] [CrossRef]
- Zubia, C.S.; Babaran, G.M.O.; Duque, S.M.M.; Mopera, L.E.; Flandez, L.E.L.; Castillo-Israel, K.A.T.; Reginio, F.C. Impact of Drying on the Bioactive Compounds and Antioxidant Properties of Bignay [Antidesma bunius (L.) Spreng.] Pomace. Food Prod. Process. Nutr. 2023, 5, 11. [Google Scholar] [CrossRef]
- O’Shea, N.; Rößle, C.; Arendt, E.; Gallagher, E. Modelling the Effects of Orange Pomace Using Response Surface Design for Gluten-Free Bread Baking. Food Chem. 2015, 166, 223–230. [Google Scholar] [CrossRef]
- Sudha, M.L.; Dharmesh, S.M.; Pynam, H.; Bhimangouder, S.V.; Eipson, S.W.; Somasundaram, R.; Nanjarajurs, S.M. Antioxidant and Cyto/DNA Protective Properties of Apple Pomace Enriched Bakery Products. J. Food Sci. Technol. 2016, 53, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Pazhouhandeh, F. Production of Enriched Cakes by Apple Pulp and Peel Powder and Evaluation of Chemical, Functional and Textural Properties. Vitae 2023, 30. [Google Scholar] [CrossRef]
- Goranova, Z.; Manev, Z. Investigation of the effect of apple pomace on the textural characteristics, fibre content, and moisture content of sponge cakes. Food Sci. Technol. 2022, 16, 15–21. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of Baking on Dietary Fibre and Phenolics of Muffins Incorporated with Apple Skin Powder. Food Chem. 2008, 107, 1217–1224. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef]
- Baldán, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape Pomace Powder Valorization: A Novel Ingredient to Improve the Nutritional Quality of Gluten-Free Muffins. Biomass Convers. Biorefin. 2023, 13, 9997–10009. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of Grape Pomace (Cv. Muscat) for Development of Functional Cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Topkaya, C.; Isik, F. Effects of Pomegranate Peel Supplementation on Chemical, Physical, and Nutritional Properties of Muffin Cakes. J. Food Process. Preserv. 2019, 43, e13868. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.A.; Ahmed, A.R. Utilization of Watermelon Rinds and Sharlyn Melon Peels as a Natural Source of Dietary Fiber and Antioxidants in Cake. Ann. Agric. Sci. 2013, 58, 83–95. [Google Scholar] [CrossRef]
- de Toledo, N.M.V.; Nunes, L.P.; da Silva, P.P.M.; Spoto, M.H.F.; Canniatti-Brazaca, S.G. Influence of Pineapple, Apple and Melon by-Products on Cookies: Physicochemical and Sensory Aspects. Int. J. Food Sci. Technol. 2017, 52, 1185–1192. [Google Scholar] [CrossRef]
- El-Araby, G.M.; Mark, C. Processing Untraditional Formula from Snacks Using Apple and Tomato Pomace Powder as a Source of Dietary Fiber and Antioxidants. J. Food Dairy Sci. 2022, 13, 59–64. [Google Scholar] [CrossRef]
- Selani, M.M.; Brazaca, S.G.C.; Dos Santos Dias, C.T.; Ratnayake, W.S.; Flores, R.A.; Bianchini, A. Characterisation and Potential Application of Pineapple Pomace in an Extruded Product for Fibre Enhancement. Food Chem. 2014, 163, 23–30. [Google Scholar] [CrossRef]
- Fontes-Zepeda, A.; Domínguez-Avila, J.A.; Lopez-Martinez, L.X.; Cruz-Valenzuela, M.R.; Robles-Sánchez, R.M.; Salazar-López, N.J.; Ramírez-Wong, B.; López-Díaz, J.A.; Pareek, S.; Villegas-Ochoa, M.A.; et al. The Addition of Mango and Papaya Peels to Corn Extrudates Enriches Their Phenolic Compound Profile and Maintains Their Sensory Characteristics. Waste Biomass Valorization 2023, 14, 751–764. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the Chemistry of Apple Pomace Polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Suárez, B.; Álvarez, Á.L.; García, Y.D.; del Barrio, G.; Lobo, A.P.; Parra, F. Phenolic Profiles, Antioxidant Activity and in Vitro Antiviral Properties of Apple Pomace. Food Chem. 2010, 120, 339–342. [Google Scholar] [CrossRef]
- Min, B.; Bae, I.Y.; Lee, H.G.; Yoo, S.H.; Lee, S. Utilization of Pectin-Enriched Materials from Apple Pomace as a Fat Replacer in a Model Food System. Bioresour. Technol. 2010, 101, 5414–5418. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, L.; Bortolini, D.G.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Effect of Addition of Phenolic Compounds Recovered from Apple Pomace on Cider Quality. LWT 2019, 100, 348–354. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, Y.B.; Hwang, K.E.; Song, D.H.; Ham, Y.K.; Kim, H.W.; Sung, J.M.; Kim, C.J. Effect of Apple Pomace Fiber and Pork Fat Levels on Quality Characteristics of Uncured, Reduced-Fat Chicken Sausages. Poult. Sci. 2016, 95, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Development of Complete Hydrolysis of Pectins from Apple Pomace. Food Chem. 2015, 172, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of Agro Industrial Wastes as Immobilization Carrier for Solid-State Fermentation. Ind. Crop. Prod 2009, 30, 24–27. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Lü, X. Pectin Extracted from Apple Pomace and Citrus Peel by Subcritical Water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the Extraction of Phenolic Compounds from Apples Using Response Surface Methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A.; Kolniak, J. Effect of Pectinase Treatment on Extraction of Antioxidant Phenols from Pomace, for the Production of Puree-Enriched Cloudy Apple Juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Han, K.N.; Meral, H.; Demirdöven, A. Recovery of Carotenoids as Bioactive Compounds from Peach Pomace by an Eco-Friendly Ultrasound-Assisted Enzymatic Extraction. J. Food Sci. Technol. 2024, 1, 1–13. [Google Scholar] [CrossRef]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [Google Scholar] [CrossRef]
- Issar, K.; Sharma, P.C.; Gupta, A. Utilization of Apple Pomace in the Preparation of Fiber-Enriched Acidophilus Yoghurt. J. Food Process. Preserv. 2017, 41, e13098. [Google Scholar] [CrossRef]
- Górnaś, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Mišina, I.; Pugajeva, I.; Soliven, A.; Segliņa, D. The Impact of Different Baking Conditions on the Stability of the Extractable Polyphenols in Muffins Enriched by Strawberry, Sour Cherry, Raspberry or Black Currant Pomace. LWT 2016, 65, 946–953. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Jasutiene, I.; Venskutonis, P.R.; Viskelis, P. HPLC Determination of the Composition and Stability of Blackcurrant Anthocyanins. J. Chromatogr. Sci. 2005, 43, 478–482. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Kammerer, D.R.; Carle, R. Matrix Dependent Impact of Sugar and Ascorbic Acid Addition on Color and Anthocyanin Stability of Black Carrot, Elderberry and Strawberry Single Strength and from Concentrate Juices upon Thermal Treatment. Food Res. Int. 2009, 42, 1023–1033. [Google Scholar] [CrossRef]
- Ho, L.H.; Abdul Aziz, N.A.; Azahari, B. Physico-Chemical Characteristics and Sensory Evaluation of Wheat Bread Partially Substituted with Banana (Musa acuminata × Balbisiana Cv. Awak) Pseudo-Stem Flour. Food Chem. 2013, 139, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Hayta, M.; Özuǧur, G.; Etgü, H.; Şeker, I.T. Effect of Grape (Vitis vinifera L.) Pomace on the Quality, Total Phenolic Content and Anti-Radical Activity of Bread. J. Food Process. Preserv. 2014, 38, 980–986. [Google Scholar] [CrossRef]
- Niero, M.; Bartoli, G.; De Colle, P.; Scarcella, M.; Zanetti, M. Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients 2023, 15, 2365. [Google Scholar] [CrossRef]
- Bulsiewicz, W.J. The Importance of Dietary Fiber for Metabolic Health. Am. J. Lifestyle Med. 2023, 17, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Baky, M.H.; Salah, M.; Ezzelarab, N.; Shao, P.; Elshahed, M.S.; Farag, M.A. Insoluble Dietary Fibers: Structure, Metabolism, Interactions with Human Microbiome, and Role in Gut Homeostasis. Crit. Rev. Food Sci. Nutr. 2024, 64, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, L.D.F.; Fabi, J.P. Dietary Fiber as a Wide Pillar of Colorectal Cancer Prevention and Adjuvant Therapy. Crit. Rev. Food Sci. Nutr. 2024, 64, 6177–6197. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Dang My Duyen, N.; Thanh Huyen, P.; Minh Hau, T. Effects of Powder from Passiflora Edulis Peel on Dough Properties and Bread Quality. J. Tech. Educ. Sci. 2022, 17, 20–27. [Google Scholar] [CrossRef]
- Ou, J. Incorporation of Polyphenols in Baked Products. Adv. Food Nutr. Res. 2021, 98, 207–252. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Rizzi, C.; Cervini, M.; Rainero, G.; Bianchi, F.; Giuberti, G.; Lucini, L.; Simonato, B. Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread. Foods 2021, 10, 507. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef]
- Bhat, I.M.; Wani, S.M.; Mir, S.A.; Naseem, Z. Effect of Microwave-Assisted Vacuum and Hot Air Oven Drying Methods on Quality Characteristics of Apple Pomace Powder. Food Prod. Process. Nutr. 2023, 5, 26. [Google Scholar] [CrossRef]
- Alibade, A.; Lalas, S.I.; Lakka, A.; Chatzilazarou, A.; Makris, D.P. The Combined Effect of Time and Temperature during Oven Drying on Red Grape Pomace Polyphenols, Pigments, and Antioxidant Properties. Acta Univ. Sapientiae Aliment. 2022, 15, 11–26. [Google Scholar] [CrossRef]
- Derevenko, V.; Kasyanov, G.; Pylypenko, L. Studying the properties of grape pomace as of an object of drying. Food Sci. Technol. 2018, 12, 39–45. [Google Scholar] [CrossRef]
- Alberici, N.; Fiorentini, C.; House, A.; Dordoni, R.; Bassani, A.; Spigno, G. Enzymatic Pre-Treatment of Fruit Pomace for Fibre Hydrolysis and Antioxidants Release. Chem. Eng. Trans. 2020, 79, 175–180. [Google Scholar] [CrossRef]
- Schmid, V.; Trabert, A.; Keller, J.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Defined Shear and Heat Treatment of Apple Pomace: Impact on Dietary Fiber Structures and Functional Properties. Eur. Food Res. Technol. 2021, 247, 2109–2122. [Google Scholar] [CrossRef]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality Characteristics of Wheat Flour Dough and Bread Containing Grape Pomace Flour. Food Sci. Technol. Int. 2017, 24, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Škrobot, D.; Janić Hajnal, E.; Belović, M.; Zhang, N. Sensory and Physico-Chemical Properties of Wholegrain Wheat Bread Prepared with Selected Food by-Products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Reißner, A.M.; Beer, A.; Struck, S.; Rohm, H. Pre-Hydrated Berry Pomace in Wheat Bread: An Approach Considering Requisite Water in Fiber Enrichment. Foods 2020, 9, 1600. [Google Scholar] [CrossRef]
- Chang, R.C.; Li, C.Y.; Shiau, S.Y. Physico-Chemical and Sensory Properties of Bread Enriched with Lemon Pomace Fiber. Czech J. Food Sci. 2015, 33, 180–185. [Google Scholar] [CrossRef]
- O’Shea, N.; Doran, L.; Auty, M.; Arendt, E.; Gallagher, E. The Rheology, Microstructure and Sensory Characteristics of a Gluten-Free Bread Formulation Enhanced with Orange Pomace. Food Funct. 2013, 4, 1856–1863. [Google Scholar] [CrossRef]
- Rosell, C.M.; Santos, E.; Collar, C. Mixing Properties of Fibre-Enriched Wheat Bread Doughs: A Response Surface Methodology Study. Eur. Food Res. Technol. 2006, 223, 333–340. [Google Scholar] [CrossRef]
- Incorporation of Dried Apple Pomace Pulp Powder in Bread. Available online: https://arccjournals.com/journal/asian-journal-of-dairy-and-food-research/ARCC5312 (accessed on 11 July 2024).
- Valková, V.; Ďúranová, H.; Štefániková, J.; Miškeje, M.; Tokár, M.; Gabríny, L.; Kowalczewski, P.L.; Kačániová, M. Wheat Bread with Grape Seeds Micropowder: Impact on Dough Rheology and Bread Properties. Appl. Rheol. 2020, 30, 138–150. [Google Scholar] [CrossRef]
- Wahyono, A.; Tifania, A.Z.; Kurniawati, E.; Kasutjianingati; Kang, W.W.; Chung, S.K. Physical Properties and Cellular Structure of Bread Enriched with Pumpkin Flour. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012054. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural Compounds from Grape By-Products Enhance Nutritive Value and Reduce Formation of CML in Model Muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Martinez, M.M. Fruit and Vegetable By-Products as Novel Ingredients to Improve the Nutritional Quality of Baked Goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Havrlentová, M.; Ivanišová, E.; Mezey, J.; Tóthová, Z.; Gabríny, L.; Kačániová, M. Selected Physico-Chemical, Nutritional, Antioxidant and Sensory Properties of Wheat Bread Supplemented with Apple Pomace Powder as a By-Product from Juice Production. Plants 2022, 11, 1256. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick Fortification with Red Grape Pomace: Effect on Nutritional, Technological and Sensory Properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Maganda, J.; Blancas-Benítez, F.J.; Zamora-Gasga, V.M.; García-Magaña, M.d.L.; Bello-Pérez, L.A.; Tovar, J.; Sáyago-Ayerdi, S.G. Nutritional Properties and Phenolic Content of a Bakery Product Substituted with a Mango (Mangifera indica) ‘Ataulfo’ Processing by-Product. Food Res. Int. 2015, 73, 117–123. [Google Scholar] [CrossRef]
- Sudha, M.L.; Indumathi, K.; Sumanth, M.S.; Rajarathnam, S.; Shashirekha, M.N. Mango Pulp Fibre Waste: Characterization and Utilization as a Bakery Product Ingredient. J. Food Meas. Charact. 2015, 9, 382–388. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Górnaś, P.; Segliņa, D.; Pilarska, A.; Jesionowski, T. Physical and Bioactive Properties of Muffins Enriched with Raspberry and Cranberry Pomace Powder: A Promising Application of Fruit By-Products Rich in Biocompounds. Plant Foods Hum. Nutr. 2016, 71, 165–173. [Google Scholar] [CrossRef]
- Bianchi, F.; Cervini, M.; Giuberti, G.; Rocchetti, G.; Lucini, L.; Simonato, B. Distilled Grape Pomace as a Functional Ingredient in Vegan Muffins: Effect on Physicochemical, Nutritional, Rheological and Sensory Aspects. Int. J. Food Sci. Technol. 2022, 57, 4847–4858. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, S.; Mehmood, A.; Bilal, M.; Patil, P.J.; Akram, K.; Farooq, U. Effect of Apple Pomace on Nutrition, Rheology of Dough and Cookies Quality. J. Food Sci. Technol. 2020, 57, 3244–3251. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The Effects of Dietary Fibre Addition on the Quality of Common Cereal Products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Romero-Lopez, M.R.; Osorio-Diaz, P.; Bello-Perez, L.A.; Tovar, J.; Bernardino-Nicanor, A. Fiber Concentrate from Orange (Citrus sinensis L.) Bagase: Characterization and Application as Bakery Product Ingredient. Int. J. Mol. Sci. 2011, 12, 2174–2186. [Google Scholar] [CrossRef] [PubMed]
- Struck, S.; Gundel, L.; Zahn, S.; Rohm, H. Fiber Enriched Reduced Sugar Muffins Made from Iso-Viscous Batters. LWT 2016, 65, 32–38. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple Pomace as a Source of Dietary Fiber and Polyphenols and Its Effect on the Rheological Characteristics and Cake Making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Grigor, J.M.; Brennan, C.S.; Hutchings, S.C.; Rowlands, D.S. The Sensory Acceptance of Fibre-Enriched Cereal Foods: A Meta-Analysis. Int. J. Food Sci. Technol. 2016, 51, 3–13. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of Apple, Orange and Carrot Pomace Powders on Gluten-Free Batter Rheology and Cake Properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Colantuono, A.; Ferracane, R.; Vitaglione, P. In Vitro Bioaccessibility and Functional Properties of Polyphenols from Pomegranate Peels and Pomegranate Peels-Enriched Cookies. Food Funct. 2016, 7, 4247–4258. [Google Scholar] [CrossRef]
- Gagneten, M.; Archaina, D.A.; Salas, M.P.; Leiva, G.E.; Salvatori, D.M.; Schebor, C. Gluten-Free Cookies Added with Fibre and Bioactive Compounds from Blackcurrant Residue. Int. J. Food Sci. Technol. 2021, 56, 1734–1740. [Google Scholar] [CrossRef]
- Camire, M.E.; Dougherty, M.P.; Briggs, J.L. Functionality of Fruit Powders in Extruded Corn Breakfast Cereals. Food Chem. 2007, 101, 765–770. [Google Scholar] [CrossRef]
- Karkle, E.L.; Alavi, S.; Dogan, H. Cellular Architecture and Its Relationship with Mechanical Properties in Expanded Extrudates Containing Apple Pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food Bioprocess Tech. 2014, 7, 1767–1782. [Google Scholar] [CrossRef]
- Wang, S.; Gu, B.J.; Ganjyal, G.M. Impacts of the Inclusion of Various Fruit Pomace Types on the Expansion of Corn Starch Extrudates. LWT 2019, 110, 223–230. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Impact of Defined Thermomechanical Treatment on the Structure and Content of Dietary Fiber and the Stability and Bioaccessibility of Polyphenols of Chokeberry (Aronia melanocarpa) Pomace. Food Res. Int. 2020, 134, 109232. [Google Scholar] [CrossRef] [PubMed]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion Processing of Pure Chokeberry (Aronia melanocarpa) Pomace: Impact on Dietary Fiber Profile and Bioactive Compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef]
- Schmid, V.; Trabert, A.; Schäfer, J.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Modification of Apple Pomace by Extrusion Processing: Studies on the Composition, Polymer Structures, and Functional Properties. Foods 2020, 9, 1385. [Google Scholar] [CrossRef]
- Viscidi, K.A.; Dougherty, M.P.; Briggs, J.; Camire, M.E. Complex Phenolic Compounds Reduce Lipid Oxidation in Extruded Oat Cereals. LWT Food Sci. Technol. 2004, 37, 789–796. [Google Scholar] [CrossRef]
- Dlamini, N.R.; Taylor, J.R.N.; Rooney, L.W. The Effect of Sorghum Type and Processing on the Antioxidant Properties of African Sorghum-Based Foods. Food Chem. 2007, 105, 1412–1419. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef]
- White, B.L.; Howard, L.R.; Prior, R.L. Polyphenolic Composition and Antioxidant Capacity of Extruded Cranberry Pomace †. J. Agric. Food Chem. 2009, 58, 4037–4042. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Schmid, V.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Karbstein, H.P.; Emin, M.A. Enrichment of Starch-Based Extruded Cereals with Chokeberry (Aronia melanocarpa) Pomace: Influence of Processing Conditions on Techno-Functional and Sensory Related Properties, Dietary Fibre and Polyphenol Content as Well as in Vitro Digestibility. LWT 2022, 154, 112610. [Google Scholar] [CrossRef]
- Liu, G.; Ying, D.; Guo, B.; Cheng, L.J.; May, B.; Bird, T.; Sanguansri, L.; Cao, Y.; Augustin, M. Extrusion of Apple Pomace Increases Antioxidant Activity upon in Vitro Digestion. Food Funct. 2019, 10, 951–963. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of Extrusion Process on Antioxidant Activity, Total Phenolics and β-Glucan Content of Extrudates Developed from Barley-Fruit and Vegetable by-Products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271. [Google Scholar] [CrossRef]
- Yaǧci, S.; Göǧüş, F. Response Surface Methodology for Evaluation of Physical and Functional Properties of Extruded Snack Foods Developed from Food-by-Products. J. Food Eng. 2008, 86, 122–132. [Google Scholar] [CrossRef]
- Karkle, E.L.; Keller, L.; Dogan, H.; Alavi, S. Matrix Transformation in Fiber-Added Extruded Products: Impact of Different Hydration Regimens on Texture, Microstructure and Digestibility. J. Food Eng. 2012, 108, 171–182. [Google Scholar] [CrossRef]
- Paraman, I.; Sharif, M.K.; Supriyadi, S.; Rizvi, S.S.H. Agro-Food Industry Byproducts into Value-Added Extruded Foods. Food Bioprod. Process. 2015, 96, 78–85. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Twin-Screw Extrusion of Barley–Grape Pomace Blends: Extrudate Characteristics and Determination of Optimum Processing Conditions. J. Food Eng. 2008, 89, 24–32. [Google Scholar] [CrossRef]
- Drozdz, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Pol. J. Chem. Technol. 2014, 16, 7–11. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; ZieBa, T.; Rój, E. The influence of addition of defatted blackcurrant seeds on pro-health constituents and texture of cereal extrudates. J. Food Qual. 2011, 34, 395–402. [Google Scholar] [CrossRef]
- Mäkilä, L.; Laaksonen, O.; Ramos Diaz, J.M.; Vahvaselkä, M.; Myllymäki, O.; Lehtomäki, I.; Laakso, S.; Jahreis, G.; Jouppila, K.; Larmo, P.; et al. Exploiting Blackcurrant Juice Press Residue in Extruded Snacks. LWT Food Sci. Technol. 2014, 57, 618–627. [Google Scholar] [CrossRef]
Type of Pomace | Type of Food Product | Addition of Pomace [%] | Type of Research | Obtained Technological Effect | Obtained Health Effect | Sensory Evaluation | References |
---|---|---|---|---|---|---|---|
grape | breadstick | 5 and 10 | physicochemical, nutritional value, and sensory analysis | ↑water absorption ↑tenacity ↓extensibility ↓swelling index ↓deformation energy ↓hardness ↓fracturability ↓volume | ↑DF ↑TPC ↑AA (FRAP and ABTS) | ↑odor ↑acidity ↑bitterness ↑astringency ↑hardness ↓regularity of alveolation ↓friability | [130] |
grape | bread | 4, 6, 8, and 10 | nutritional value and sensory analysis | not tested | ↑TPC ↑DF ↑AA(FRAP) ↓TC ↑HDLc ↓LDLc ↓glucose ↓leptin | ↓taste ↓volume ↑hardness ↓typical aroma maximum addition—6% | [65] |
grape | bread | 2, 5, and 10 | physicochemical and sensory analysis | ↓specific volume ↑hardness | ↑TPC ↑AA (DPPH) | maximum addition—5% | [104] |
grape | wheat based bread | 5 and 10 | chemical analysis | not tested | ↑TPC ↑anthocyanins ↑AA (FRAP and ABTS) ↓predicted GI | not tested | [111] |
grape | wheat bread | 6, 10, and 15 | physicochemical and sensory analysis | ↑firmness ↓volume | ↑TPC ↑AA (DPPH and FRAP) | ↓springiness ↓toughness ↓hardness ↑crumbliness ↑adhesivity ↑sand feeling | [118] |
grape | bread | 5, 10, and 15 | physicochemical and sensory analysis | ↓volume ↑chewiness ↑firmness | ↑TPC ↑AA (DPPH) ↑DF | maximum addition—10% | [66] |
grape | wheat bread | 1, 2, 5, and 8 | physicochemical and sensory analysis | ↓volume ↑dough stability | ↑TPC ↑minerals | the most favorable addition—1% | [125] |
black chokeberry | wheat bread | 1, 2, 3, 4, 5, and 6 | physicochemical and sensory analysis | ↑water absorption ↑crumb hardness ↓stability and weakening of the dough ↓volume | ↑minerals ↑DF ↑TPC ↑AA | maximum addition—3% | [62] |
apple | gluten-free bread | 5, 6, and 8 | physicochemical and nutritional value analysis | ↓hardness ↓chewiness ↓cohesiveness ↓springiness ↓resilience | ↑DF ↑minerals | not tested | [63] |
apple | gluten-free bread | 5, 10, and 15 | chemical and sensory analysis | not tested | ↑TPC ↑total flavonoids ↑AA (TEAC) | ↓color ↓elasticity of the bread ↓crumb porosity ↑taste ↑smell maximum addition—5% | [112] |
apple | wholegrain wheat bread | 10 and 20 | physicochemical and nutritional value analysis | ↓volume | ↓protein ↓fat | acceptable by consumers | [119] |
apple | sangak bread | 1, 3, 5, and 7 | rheological tests and sensory analysis | ↓cohesiveness | not tested | maximum addition—3% | [64] |
apple | wheat bread | 1, 2, 5, and 10 | physicochemical, nutritional value, and sensory analysis | ↓volume | ↑ash ↓protein ↓fat ↑carbohydrates ↓energy value ↑TPC ↑AA | acceptable by consumers | [129] |
banana | wheat bread | 10 | physicochemical, nutritional value, and sensory analysis | ↓specific volume ↑density ↓loaf height | ↑ash ↓protein ↓fat ↑crude fiber ↓carbohydrate ↑DF ↑TPC ↑AA (DPPH and FRAP) | ↓color other distinctions acceptable | [103] |
banana | chapatti (unleavened Indian flat bread) | 5, 10, 15, and 20 | physicochemicaland sensory analysis | ↑subjective score in kneading and ↑rollability ↑dough stickiness ↑dough strength ↓tear force | ↑TPC ↑flavonoid ↑AA (DPPH) | ↓color ↓texture ↓taste ↓overall acceptability | [69] |
lemon | steamed bread | 3 and 6 | physicochemical analysis | ↑stiffer ↓extensible ↑hardness ↓cohesiveness ↓specific volume ↓elasticity | ↑TPC ↑AA | not tested | [67] |
pomegranate | bread | 5 and 15 | physicochemical and nutritional value analysis | not tested | ↑DF ↓carbohydrate ↑minerals ↑TPC ↑AA (DPPH) | ↓appearance ↓color ↓taste ↑flavor ↓mouth feel ↓overall acceptability | [68] |
mango | whole wheat bread | 0, 1, 3, and 5 | physicochemicaland sensory analysis | ↑viscoelastic property ↓loaf height ↓weight loss percentage ↓specific volume ↑bread density ↑crumb moisture ↑brownness index ↑hardness, ↑cohesiveness ↑springiness | ↑TPC ↑AA (FRAP and DPPH) | ↓porosity ↓traditional bread aroma ↑fruity aroma ↓fruity taste ↑after taste ↑crumb color ↑hardness ↑stickiness | [70] |
passiflora edulis | bread | 5, 10, 15, and 20 | physicochemical, nutritional value, and sensory analysis | volume ↑specific gravity ↑cohesiveness ↓springiness ↑hardness | ↑energy value ↑DF ↑TPC | ↓overall acceptability maximum addition—10% | [109] |
blackcurrant | wheat bread | 10 | not tested | ↓volume ↑dough ↓resistance ↓extensibility ↓dough stickiness ↓dough pH ↓bread pH ↓bread volume ↑crumb moisture ↑crumb cell density ↑total cell area | not tested | not tested | [120] |
orange | gluten-free bread | 5.5 | physical and sensory analysis | ↑robustness ↓starch gelatinization | not tested | acceptable by consumers | [122] |
Type of Pomace | Type of Food Product | Addition of Pomace [%] | Type of Research | Obtained Technological Effect | Obtained Health Effect | Sensory Evaluation | References |
---|---|---|---|---|---|---|---|
apple and orange | rice-flour-based gluten-free cake | 0, 5, 10, and 15 | physicochemical, nutritional value, and sensory analysis | ↑viscosity ↑elastic ↑specific gravity ↑crumb hardness ↓specific volume of cakes | ↑DF | highest overall acceptance at 5% additive (highest with orange pomace) | [142] |
apple | short dough biscuit | 10 and 20 | nutritional value and sensory analysis | ↓volume ↓hardness ↑browning of cakes | ↑DF ↑TPC ↓GI | acceptable by consumers | [52] |
apple | cookie | 5, 10, and 15 | physicochemical, nutritional value, and sensory analysis | ↑water activity | ↑DF | high consumer acceptance with the addition of 15% | [82] |
↓ | |||||||
apple | bun | 10, 15, and 20 | physicochemicaland sensory analysis | ↓volume ↓crust color ↓crumb color ↓grain ↑texture | ↑free radical scavenging ↑cyto/DNA protective properties | maximum addition—15% | [73] |
apple | muffin | 10, 20, 30, and 40 | physicochemicaland sensory analysis | ↓volume ↓crust color ↓crumb color ↓grain ↓texture | ↑free radical scavenging ↑cyto/DNA protective properties | maximum addition—30% | [73] |
apple | cookie | 10, 20, and 30 | physicochemicaland sensory analysis | ↓spread ↓surface cracking ↓crumb color ↓texture | ↑free radical scavenging ↑cyto/DNA protective properties | maximum addition—20% | [73] |
apple | cake | 10, 20, and 30 | physicochemical and sensory analysis | ↑hardness ↓volume ↑density ↑gumminess ↑chewiness | ↑DF | maximum addition—10% | [74] |
apple | muffin | 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 | physicochemical, nutritional value, and sensory analysis | ↑water holding capacity ↑fat absorption capacity ↑swelling power ↓foam capacity | ↑ash ↑DF ↓crude protein ↓energy value | ↓crust color ↓crumb color and softness ↓crumb structure ↑fruity flavor ↓texture maximum addition—33% | [9] |
apple | cookie | 5, 10, 15, 20, and 25 | physicochemical, nutritional value, and sensory analysis | ↓thickness ↑spread factor ↓color of cookies with color meter ↓falling number | ↑ash ↑DF ↑TPC | ↓taste ↓mouth-feel of cookies ↓overall acceptability maximum addition—10% | [136] |
apple | muffin | 4, 8, 16, 24, and 32 | chemical and nutritional value analysis | not tested | ↓crude protein ↑DF ↑TPC ↑AA (FRAP and ORAC) | not tested | [76] |
apple | sponge cake | 15, 25, and 50 | physical and nutritional value analysis | ↑all textural characteristics ↑moisture ↓stickiness | ↑DF | not tested | [75] |
apple | cake | 5, 10, and 15 | physical and nutritional value analysis | ↑water absorption ↓dough stability ↑mixing tolerance index (weakening of the dough) ↑resistance to extension ↓in peak viscosity ↓volume | ↑DF ↑TPC | not tested | [140] |
grape | muffin | 15 (with different particle size fractions) | physicochemical and sensory analysis | particle fragmentation had a negative effect on muffin hardness and lightness and pore homogeneity | ↑ antioxidant compounds (regardless of particle size) ↑DF (regardless of particle size) ↑total anthocyanins ↑total phenol content ↑ AA (ABTS and DPPH, with a reduction in particle size) | ↓acceptability as pomace fineness increases | [77] |
grape | gluten-free muffin | 15 and 25 | physicochemical, nutritional value, and sensory analysis | ↓muffin volume at a higher addition an increase in pomace content led to a change in texture, with a higher percentage resulting in a more granular texture | ↑DF ↑protein | greater consumer acceptance with 15% addition | [78] |
grape | cookie | 2, 4, 6, and 8 | physicochemical, nutritional value, and sensory analysis | ↑browning of cakes | ↑DF ↑protein ↑ash ↑anthocyanins ↑TPC ↑AA | maximum addition—6% | [79] |
grape | muffin | 10, 15, and 20 | physicochemical and sensory analysis | ↓volume ↓springiness ↑firmness | ↑TPC ↑radical scavenging activity ↑DF | maximum addition—10% | [66] |
grape | brownie | 10, 15, 20, and 25 | physicochemical and sensory analysis | ↓volume ↑springiness | ↑DF | maximum addition—15% | [66] |
grape | vegan muffin | 5 and 10 | physicochemical, nutritional value, and sensory analysis | ↓pH ↑spread ratio ↓volume | ↑ash ↓total starch ↑DF ↑AA (FRAP and ABTS) ↑TPC | ↓typical smell of even baked cake ↑wine and the fruity odor ↑taste acceptable by consumers | [134] |
pomegranate | cookie | 7.5 | chemical analysis | not tested | ↓ellagitannin bioavailability ↑bioavailability gallic acid, ellagic acid ↑TPC ↑AA ↑inhibitory activity of α-glucosidase, α-amylase and lipase | not tested | [143] |
pomegranate | muffin | 5, 10, and 15 | physicochemical, nutritional value, and sensory analysis | ↑apparent viscosity ↑hardness ↓springiness | ↑DF ↑ total phenolics ↑Mg, Ca, and K ↑AA | ↓crumb cell structure ↓crumb color ↓crust color ↓chewiness | [80] |
pineapple | cookie | 5, 10, and 15 | physicochemical, nutritional value, and sensory analysis | ↑water activity | ↑DF | high consumer acceptance with an addition of 15% | [82] |
melon | cookie | 5, 10, and 15 | physicochemical, nutritional value, and sensory analysis | ↑water activity | ↑ash ↑DF | high consumer acceptance with an addition of 10% | [82] |
chokeberry | shortcrust pastry | 10, 30, and 50 | nutritional value and sensory analysis | not tested | ↑DF ↓energy value ↑TPC ↑AA ↑inhibitory activity of α-glucosidase, α-amylase and lipase | ↓acceptability with an increase in the percentage of pomace | [13] |
blackcurrant | shortbread cookie | 10, 30, and 50 | nutritional value and sensory analysis | not tested | ↑DF ↓energy value ↑TPC ↑AA ↑inhibitory activity of α-glucosidase, α-amylase and lipase | ↓acceptability with an increase in the percentage of pomace | [14] |
apple chokeberry blackcurrant | shortbread cookie | 10, 30, and 50 | nutritional value analysis | not tested | ↑DF ↓GI | not tested | [54] |
blackcurrant | gluten-free cookie | 3.75 | physicochemical, nutritional value, and sensory analysis | not tested | ↑DF ↑TPC ↑AA | ↓flavor | [144] |
mango | muffin | 50 and 75 | physicochemical analysis | ↑moisture ↓rate of starch hydrolysis | ↑ash ↑DF ↓ total soluble carbohydrates ↓available starch ↑total soluble polyphenol ↑AA (DPPH and FRAP) | not tested | [131] |
mango | muffin | 25 | physicochemicaland sensory analysis | ↓volume ↑specific gravity ↓firmness | ↑DF ↑ash ↑protein ↑lutein ↑β-carotene ↑TPC | ↓shape and appearance ↓grain ↓texture ↓overall quality | [132] |
cherry | muffin | 10, 20, 30, and 40 | chemical, nutritional value, and sensory analysis | not tested | ↑ash ↑DF ↓available carbohydrates ↑AA (FCR and DPPH) ↑TPC ↓AUC for hunger ↑AUC for fullness ↑AUC for satisfaction ↓AUC for prospective full intake ↓IAUC for blood glucose response ↓energy intake at subsequent meal | ↓color ↓appearance ↓texture ↓flavor ↓taste ↓overall acceptance | [39] |
raspberry | muffin | 10 and 20 | physicochemicalanalysis | no significant impact | ↑TPC | not tested | [133] |
cranberry | muffin | 10 and 20 | physicochemicalanalysis | ↑hardness ↑gumminess | ↑TPC | not tested | [133] |
watermelon | cake | 2.5, 5, and 7.5 (as a replacement for wheat flour) | physicochemicaland sensory analysis | ↓crumb—total color intensity | ↑ash ↓protein ↑TPC | ↓appearance ↓crust color ↓crumb color ↓crumb texture ↓taste ↓odor ↓overall acceptability maximum addition—5% | [81] |
5, 10, and 15 (as a replacement for fat) | ↑weight ↓crumb—total color intensity | ↑ash ↑TPC | maximum addition—10% | ||||
melon | cake | 2.5, 5, and 7.5 (as a replacement for wheat flour) | physicochemicaland sensory analysis | ↓crumb—total color intensity | ↑ash ↓protein ↑TPC | ↓appearance ↓crust color ↓crumb color ↓crumb texture ↓taste ↓odor ↓overall acceptability maximum addition—5% | [81] |
5, 10, and 15 (as a replacement for fat) | ↑weight ↓crumb—total color intensity | ↑ash ↑TPC | maximum addition—10% | ||||
orange | muffin | 10 and 15 | physicochemicaland sensory analysis | ↓moisture | ↑ash ↑DF ↑slowly digestible starch ↓resistant starch ↓GI | maximum addition—10% | [138] |
Type of Pomace | Type of Food Product | Addition of Pomace [%] | Type of Research | Obtained Technological Effect | Obtained Health Effect | Sensory Evaluation | References |
---|---|---|---|---|---|---|---|
mango | corn extrudate | 15 | chemical and sensory analysis | not tested | ↑TPC ↑AA ↑bioavailability | ↑color ↑flavor ↑texture ↑overall acceptability | [85] |
papaya | corn extrudate | 15 | chemical and sensory analysis | not tested | ↑carotenoid content ↑release of bioactive compounds and antioxidant capacity was highest during the intestinal stage | ↑color | [85] |
apple | expanded extrudate | 17, 22, and 28 | physical and nutritional value analysis | ↓expansion ratio ↑specific length ↓average cell diameter ↑cumulative volume ↑average crushing force ↑crispness work ↑spatial frequency of ruptures | ↑fat ↑DF | not tested | [146] |
apple | snack | 10 and 20 | chemical, nutritional value, and sensory analysis | not tested | ↑protein ↑ash ↑DF ↑Ca, K ↑TPC | ↑overall acceptability consumer acceptance at 10 and 20% | [83] |
apple | extruded apple pomace | 100 | physicochemical analysis | ↑water solubility ↓oil holding capacity | ↓total extractable polyphenols ↑flavanols ↑phenolic acids ↑dihydrochalcones ↑AA (ORAC) | not tested | [159] |
apple | extruded product | 17, 22, and 28 | physical analysis | ↓starch gelatinization ↓starch solubilization ↓expansion ↓starch digestibility ↑cell wall thickness/cell size ratio | not tested | not tested | [162] |
apple | extruded snack | 10, 15, and 20 | chemical and sensory analysis | not tested | ↑TPC ↑AA (ABTS) | ↑consistency | [165] |
cherry blackcurrant chokeberry | gluten-free snack | 5, 10, and 20 | physical and nutritional value analysis | ↑density ↓water binding capacity | ↑TPC ↑AA (ABTS) ↑DF ↑total sugar ↑phenolic acid ↑flavonoids ↑flavonols ↑anthocyanins | not tested | [57] |
chokeberry | ready-to-eat texturized cereal | 100 | chemical and nutritional value analysis | not tested | ↑DF ↑anthocyanin ↑phenolic acids ↑flavonols | ↑color ↑visual impression ↑taste | [151] |
chokeberry | ready-to-eat texturized cereal | 25 and 50 | physicochemical and nutritional value analysis | ↑water solubility index ↓sectional expansion index ↓size of pore cells | ↑DF ↓bioaccessible glucose ↑anthocyanins ↑phenolic acids ↑flavonols ↑TPC | not tested | [158] |
cranberry | extruded product | 30, 40, and 50 | chemical analysis | not tested | ↓anthocyanin ↑flavonols ↑AA (ORAC) ↑procyanidin monomers and dimers ↓procyanidin oligomers | not tested | [156] |
cranberry blueberry grape apple | corn starch extrudate | 5, 15, and 30 | physicochemical analysis | ↓expansion ratio | ↑DF | not tested | [148] |
pineapple | extruded product | 10.5 and 21 | physicochemical analysis | ↓expansion ratio ↓luminosity ↑redness | ↑DF | not tested | [84] |
grape | extruded product | 2, 6, 10, and 12.7 | chemical analysis | not tested | ↑AA (DPPH) ↑TPC ↑β-glucan | not tested | [160] |
grape | extruded product | 2, 6, 10, and 12.73 | physical and sensory analysis | ↓sectional expansion index ↑bulk density ↑peak force ↓crispiness ↓lightness | not tested | ↓color ↑taste (sweetness) acceptable addition of 2 or 10% | [164] |
rosehip | extruded snack | 10, 15, and 20 | chemical and sensory analysis | not tested | ↑TPC ↑AA (ABTS) | ↓shape and size ↓taste and smell ↑consistency | [165] |
blackcurrant | extruded product | 10, 30, and 50 | physicochemical, nutritional value, and sensory analysis | ↓jaggedness ↓breaking strength | ↑protein ↑fat ↓carbohydrate ↑ash ↑DF ↑TPC ↑flavonoids ↑AA (TEAC) | maximum addition—10% | [166] |
blackcurrant | extruded snack | 30 | physicochemical, nutritional value, and sensory analysis | ↑expansion ↓hardness ↓density ↓redness ↓pH | ↑fructose ↑glucose ↑fruit acids | ↑texture ↑appearance ↑flavor | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczkowska, E.; Serek, P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients 2024, 16, 2757. https://doi.org/10.3390/nu16162757
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients. 2024; 16(16):2757. https://doi.org/10.3390/nu16162757
Chicago/Turabian StyleRaczkowska, Ewa, and Paweł Serek. 2024. "Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review" Nutrients 16, no. 16: 2757. https://doi.org/10.3390/nu16162757
APA StyleRaczkowska, E., & Serek, P. (2024). Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients, 16(16), 2757. https://doi.org/10.3390/nu16162757