Identification of Enteric Pathogen Reservoirs and Transmission Pathways Associated with Short Childhood Stature in the Kolkata Indian Site of the Global Enteric Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Children in the MSD Cohort
3.2. Children in the Control Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reiner, R.C.; Wiens, K.E.; Deshpande, A.; Baumann, M.M.; Lindstedt, P.A.; Blacker, B.F.; Troeger, C.E.; Earl, L.; Munro, S.B.; Abate, D.; et al. Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 1779–1801. [Google Scholar] [CrossRef] [PubMed]
- Local Burden of Disease Child Growth Failure Collaborators. Mapping child growth failure across low- and middle-income countries. Nature 2020, 577, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, L.; Kaufmann, R.B.; Kay, D.; Enanoria, W.; Haller, L.; Colford, J.M. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 2005, 5, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Luby, S.P.; Rahman, M.; Arnold, B.F.; Unicomb, L.; Ashraf, S.; Winch, P.J.; Stewart, C.P.; Begum, F.; Hussain, F.; Benjamin-Chung, J.; et al. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: A cluster randomised controlled trial. Lancet Glob. Health 2018, 6, e302–e315. [Google Scholar] [CrossRef] [PubMed]
- Null, C.; Stewart, C.P.; Pickering, A.J.; Dentz, H.N.; Arnold, B.F.; Arnold, C.D.; Benjamin-Chung, J.; Clasen, T.; Dewey, K.G.; Fernald, L.C.H.; et al. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: A cluster-randomised controlled trial. Lancet Glob. Health 2018, 6, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Clasen, T.; Boisson, S.; Routray, P.; Torondel, B.; Bell, M.; Cumming, O.; Ensink, J.; Freeman, M.; Jenkins, M.; Odagiri, M.; et al. Effectiveness of a rural sanitation programme on diarrhoea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: A cluster-randomised trial. Lancet Glob. Health 2014, 2, e645–e653. [Google Scholar] [CrossRef] [PubMed]
- Pickering, A.J.; Null, C.; Winch, P.J.; Mangwadu, G.; Arnold, B.F.; Prendergast, A.J.; Njenga, S.M.; Rahman, M.; Ntozini, R.; Benjamin-Chung, J.; et al. The WASH Benefits and SHINE Trials: Interpretation of WASH Intervention Effects on Linear Growth and Diarrhoea. Lancet Glob. Health 2019, 7, e1139–e1146. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, D.; Blackwelder, W.C.; Sommerfelt, H.; Wu, Y.; Farag, T.H.; Panchalingam, S.; Biswas, K.; Saha, D.; Jahangir Hossain, M.; Sow, S.O.; et al. Pathogens Associated With Linear Growth Faltering in Children With Diarrhea and Impact of Antibiotic Treatment: The Global Enteric Multicenter Study. J. Infect. Dis. 2021, 224, S848–S855. [Google Scholar] [CrossRef]
- Zavala, E.; King, S.E.; Sawadogo-Lewis, T.; Roberton, T. Leveraging water, sanitation and hygiene for nutrition in low- and middle-income countries: A conceptual framework. Matern. Child Nutr. 2021, 17, e13202. [Google Scholar] [CrossRef]
- Berendes, D.M.; Fagerli, K.; Kim, S.; Nasrin, D.; Powell, H.; Kasumba, I.N.; Tennant, S.M.; Roose, A.; Hossain, M.J.; Jones, J.C.M.; et al. Survey-Based Assessment of Water, Sanitation, and Animal-Associated Risk Factors for Moderate-to-Severe Diarrhea in the Vaccine Impact on Diarrhea in Africa (VIDA) Study: The Gambia, Mali, and Kenya, 2015–2018. Clin. Infect. Dis. 2023, 76 (Suppl. S1), S132–S139. [Google Scholar] [CrossRef]
- Berendes, D.M.; Omore, R.; Prentice-Mott, G.; Fagerli, K.; Kim, S.; Nasrin, D.; Powell, H.; Hossain, M.J.; Sow, S.O.; Doh, S.; et al. Exploring Survey-Based Water, Sanitation, and Animal Associations With Enteric Pathogen Carriage: Comparing Results in a Cohort of Cases With Moderate-to-Severe Diarrhea to Those in Controls in the Vaccine Impact on Diarrhea in Africa (VIDA) Study, 2015–2018. Clin. Infect. Dis. 2023, 76 (Suppl. S1), S140–S152. [Google Scholar] [PubMed]
- Kotloff, K.L.; Blackwelder, W.C.; Nasrin, D.; Nataro, J.P.; Farag, T.H.; van Eijk, A.; Adegbola, R.A.; Alonso, P.L.; Breiman, R.F.; Faruque, A.S.G.; et al. The Global Enteteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: Epidemiologic and clinical methods of the case/control study. Clin. Infect. Dis. 2012, 55, S232–S245. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation and Conditional Process Analysis; The Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Panchalingam, S.; Antonio, M.; Hossain, A.; Mandomando, I.; Ochieng, B.; Oundo, J.; Ramamurthy, T.; Tamboura, B.; Zaidi, A.K.; Petri, W.; et al. Diagnostic microbiologic methods in the GEMS-1 case/control study. Clin. Infect. Dis. 2012, 55, S294–S302. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.K.; O’Reilly, C.E.; Levine, M.M.; Kotloff, K.L.; Nataro, J.P.; Ayers, T.L.; Farag, T.H.; Nasrin, D.; Blackwelder, W.C.; Wu, Y.; et al. Sanitation and Hygiene-Specific Risk Factors for Moderate-to-Severe Diarrhea in Young Children in the Global Enteric Multicenter Study, 2007-2011: Case-Control Study. PLoS Med. 2016, 13, e1002010. [Google Scholar] [CrossRef]
- Ercumen, A.; Naser, A.M.; Unicomb, L.; Arnold, B.F.; Colford, J.M., Jr.; Luby, S.P. Effects of source- versus household contamination of tubewell water on child diarrhea in rural Bangladesh: A randomized controlled trial. PLoS ONE 2015, 10, e0121907. [Google Scholar] [CrossRef]
- Donowitz, J.R.; Alam, M.; Kabir, M.; Ma, J.Z.; Nazib, F.; Platts-Mills, J.A.; Bartelt, L.A.; Haque, R.; Petri, W.A., Jr. A Prospective Longitudinal Cohort to Investigate the Effects of Early Life Giardiasis on Growth and All Cause Diarrhea. Clin. Infect. Dis. 2016, 63, 792–797. [Google Scholar] [CrossRef]
- World Health Organization. JMP Methodology: 2017 Update and SDG Baselines; WHO: Geneva, Switzerland, 1917; pp. 1–23. [Google Scholar]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Curtis, V.; Cairncross, S. Effect of washing hands with soap on diarrhoea risk in the community: A systematic review. Lancet Infect. Dis. 2003, 3, 275–281. [Google Scholar] [CrossRef]
- Wolf, J.; Hunter, P.R.; Freeman, M.C.; Cumming, O.; Clasen, T.; Bartram, J.; Higgins, J.P.T.; Johnston, R.; Medlicott, K.; Boisson, S.; et al. Impact of drinking water, sanitation and handwashing with soap on childhood diarrhoeal disease: Updated meta-analysis and meta-regression. Trop. Med. Int. Health 2018, 23, 508–525. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, A.J.; Chasekwa, B.; Evans, C.; Mutasa, K.; Mbuya, M.N.N.; Stoltzfus, R.J.; Smith, L.E.; Majo, F.D.; Tavengwa, N.V.; Mutasa, B.; et al. Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on stunting and anaemia among HIV-exposed children in rural Zimbabwe: A cluster-randomised controlled trial. Lancet Child. Adolesc. Health 2019, 3, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Garcia, T.; Lopez-Saucedo, C.; Thompson-Bonilla, R.; Abonce, M.; Lopez-Hernandez, D.; Santos, J.I.; Rosado, J.L.; DuPont, H.L.; Long, K.Z. Association of Diarrheagenic Escherichia coli Pathotypes with Infection and Diarrhea among Mexican Children and Association of Atypical Enteropathogenic, E. coli with Acute Diarrhea. J. Clin. Microbiol. 2009, 47, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Guin, S.; Ghosh, S.; Pazhani, G.P.; Rajendran, K.; Bhattacharya, M.K.; Takeda, Y.; Nair, G.B.; Ramamurthy, T. Trends in the prevalence of diarrheagenic Escherichia coli among hospitalized diarrheal patients in Kolkata, India. PLoS ONE 2013, 8, e56068. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, D.; Liang, Y.; Verani, J.R.; Powell, H.; Sow, S.O.; Omore, R.; Hossain, M.J.; Doh, S.; Zaman, S.M.A.; Jones, J.C.M.; et al. Stunting Following Moderate-to-Severe Diarrhea Among Children Aged <5 Years in Africa Before and After Rotavirus Vaccine Introduction: A Comparison of the Global Enteric Multicenter Study and the Vaccine Impact on Diarrhea in Africa (VIDA) Study. Clin. Infect. Dis. 2023, 76, S49–S57. [Google Scholar] [CrossRef] [PubMed]
- Loli, S.; Carcamo, C.P. Rotavirus vaccination and stunting: Secondary Data Analysis from the Peruvian Demographic and Health Survey. Vaccine 2020, 38, 8010–8015. [Google Scholar] [CrossRef] [PubMed]
- Sobi, R.A.; Sultana, A.A.; Khan, S.H.; Haque, M.A.; Nuzhat, S.; Hossain, M.N.; Bardhan, P.K.; Chisti, M.J.; Chakraborty, S.; Ahmed, T.; et al. Impact of Rotaviral Diarrhea on Child Growth in Sub-Saharan Africa and South Asia in the Global Enteric Multicenter Study. Am. J. Trop. Med. Hyg. 2024, 110, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.A.; Clasen, T.; Heijnen, M.; Eisenberg, J.N. Shared sanitation and the prevalence of diarrhea in young children: Evidence from 51 countries, 2001–2011. Am. J. Trop. Med. Hyg. 2014, 91, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Gundry, S.; Conroy, R. Household drinking water in developing countries: A systematic review of microbiological contamination between source and point-of-use. Trop. Med. Int. Health 2004, 9, 106–117. [Google Scholar] [CrossRef]
- Günther, I.; Schipper, Y. Pumps, germs and storage: The impact of improved water containers on water quality and health. Health Econ. 2013, 22, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Asada, Y.; Chua, M.L.; Tsurumi, M.; Yamauchi, T.; Nyambe, I.; Harada, H. Detection of Escherichia coli, rotavirus, and Cryptosporidium spp. from drinking water, kitchenware, and flies in a periurban community of Lusaka, Zambia. J. Water Health 2022, 20, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Gratacap-Cavallier, B.; Genoulaz, O.; Brengel-Pesce, K.; Soule, H.; Innocenti-Francillard, P.; Bost, M.; Gofti, L.; Zmirou, D.; Seigneurin, J.M. Detection of Human and Animal Rotavirus Sequences in Drinking Water. Appl. Environ. Microbiol. 2000, 66, 2690–2692. [Google Scholar] [CrossRef] [PubMed]
- George, C.M.; Oldja, L.; Biswas, S.; Perin, J.; Sack, R.B.; Ahmed, S.; Shahnaij, M.; Haque, R.; Parvin, T.; Azmi, I.J.; et al. Unsafe Child Feces Disposal is Associated with Environmental Enteropathy and Impaired Growth. J. Pediatr. 2016, 176, 43–49. [Google Scholar] [CrossRef]
- Gera, T.; Shah, D.; Sachdev, H.S. Impact of Water, Sanitation and Hygiene Interventions on Growth, Non-diarrheal Morbidity and Mortality in Children Residing in Low- and Middle-income Countries: A Systematic Review. Indian Pediatr. 2018, 55, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Ejemot-Nwadiaro, R.I.; Ehiri, J.E.; Arikpo, D.; Meremikwu, M.M.; Critchley, J.A. Hand-washing promotion for preventing diarrhoea. Cochrane Database Syst. Rev. 2021, 12, Cd004265. [Google Scholar] [CrossRef]
- Aiello, A.E.; Coulborn, R.M.; Perez, V.; Larson, E.L. Effect of hand hygiene on infectious disease risk in the community setting: A meta-analysis. Am. J. Public. Health 2008, 98, 1372–1381. [Google Scholar] [CrossRef]
- Ansari, S.A.; Sattar, S.A.; Springthorpe, V.S.; Wells, G.A.; Tostowaryk, W. In vivo protocol for testing efficacy of hand-washing agents against viruses and bacteria: Experiments with rotavirus and Escherichia coli. Appl. Environ. Microbiol. 1989, 55, 3113–3118. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Esfahanian, E.; Mitchell, J.; Charbonneau, D.; Song, X.; Lu, Y. Quantitation of Risk Reduction of E. coli Transmission After Using Antimicrobial Hand Soap. Pathogens 2020, 9, 778. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.; Agboatwalla, M.; Luby, S.; Tobery, T.; Ayers, T.; Hoekstra, R.M. Association between intensive handwashing promotion and child development in Karachi, Pakistan: A cluster randomized controlled trial. Arch. Pediatr. Adolesc. Med. 2012, 166, 1037–1044. [Google Scholar] [CrossRef]
- Rodrigues, J.; Thomazini, C.M.; Lopes, C.A.; Dantas, L.O. Concurrent infection in a dog and colonization in a child with a human enteropathogenic Escherichia coli clone. J. Clin. Microbiol. 2004, 42, 1388–1389. [Google Scholar] [CrossRef]
- Iannotti, L.L.; Lutter, C.K.; Stewart, C.P.; Gallegos Riofrío, C.A.; Malo, C.; Reinhart, G.; Palacios, A.; Karp, C.; Chapnick, M.; Cox, K.; et al. Eggs in Early Complementary Feeding and Child Growth: A Randomized Controlled Trial. Pediatrics 2017, 140, e20163459. [Google Scholar] [CrossRef] [PubMed]
- Mbae, C.; Mwangi, M.; Gitau, N.; Irungu, T.; Muendo, F.; Wakio, Z.; Wambui, R.; Kavai, S.; Onsare, R.; Wairimu, C.; et al. Factors associated with occurrence of salmonellosis among children living in Mukuru slum, an urban informal settlement in Kenya. BMC Infect. Dis. 2020, 20, 422. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, S.; Ambikapathi, R.; Gunaratna, N.S.; Madzorera, I.; Canavan, C.R.; Noor, A.R.; Worku, A.; Berhane, Y.; Abdelmenan, S.; Sibanda, S.; et al. A Chicken Production Intervention and Additional Nutrition Behavior Change Component Increased Child Growth in Ethiopia: A Cluster-Randomized Trial. J. Nutr. 2020, 150, 2806–2817. [Google Scholar] [CrossRef] [PubMed]
- Bawankule, R.; Singh, A.; Kumar, K.; Pedgaonkar, S. Disposal of children’s stools and its association with childhood diarrhea in India. BMC Public Health 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.L.; Bonifacio, J.; Bucardo, F.; Buesa, J.; Bruggink, L.; Chan, M.C.; Fumian, T.M.; Giri, S.; Gonzalez, M.D.; Hewitt, J.; et al. Global Trends in Norovirus Genotype Distribution among Children with Acute Gastroenteritis. Emerg. Infect. Dis. 2021, 27, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Palit, P.; Das, R.; Haque, M.A.; Hasan, M.M.; Noor, Z.; Mahfuz, M.; Faruque, A.S.G.; Ahmed, T. Risk Factors for Norovirus Infections and Their Association with Childhood Growth: Findings from a Multi-Country Birth Cohort Study. Viruses 2022, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; DuPont, H.L.; Long, K.Z.; Santos, J.I.; Ko, G. Asymptomatic norovirus infection in Mexican children. J. Clin. Microbiol. 2006, 44, 2997–3000. [Google Scholar] [CrossRef]
- Feliciano, L.; Li, J.; Lee, J.; Pascall, M.A. Efficacies of sodium hypochlorite and quaternary ammonium sanitizers for reduction of norovirus and selected bacteria during ware-washing operations. PLoS ONE 2012, 7, e50273. [Google Scholar] [CrossRef]
- Escudero-Abarca, B.I.; Goulter, R.M.; Manuel, C.S.; Leslie, R.A.; Green, K.; Arbogast, J.W.; Jaykus, L.A. Comparative Assessment of the Efficacy of Commercial Hand Sanitizers Against Human Norovirus Evaluated by an in vivo Fingerpad Method. Front. Microbiol. 2022, 13, 869087. [Google Scholar] [CrossRef]
- Greenland, K.; Cairncross, S.; Cumming, O.; Curtis, V. Can we afford to overlook hand hygiene again? Trop. Med. Int. Health 2013, 18, 246–249. [Google Scholar] [CrossRef]
- Sanchez, J.; Alam, A.; Stride, C.B.; Haque, A.; Das, S.; Mahfuz, M.; Roth, D.E.; Sly, P.D.; Long, K.Z.; Ahmed, T. Campylobacter infection and household factors are associated with childhood growth in urban Bangladesh: An analysis of the MALED study. PLoS Negl. Trop. Dis. 2020, 14, e0008328. [Google Scholar] [CrossRef] [PubMed]
Cases (SD) N = 1461 | Controls (SD) N = 1944 | |||
---|---|---|---|---|
Child Characteristics | ||||
Sex | Female | 634 (43.30) | 827 (43.20) | |
Child breastfed at baseline | Yes | 1230 (83.90) | 1423 (74.31) | |
Age (months)-Mean (SD) | 16.14 (11.76) | 20.22 (13.73) | ||
HAZ at baseline Mean (SD) | −1.34 (1.16) | −1.33 (1.14) | ||
Demographic and SES characterstics | ||||
Caretaker education | Less than primary school | 411 (28.10) | 460 (24) | |
Primary school or above | 1055 (72) | 1458 (76.1) | ||
Children under five | <1 | 874 (59.60) | 1208 (63.1) | |
≥2 | 592 (40.30) | 708 (36.9) | ||
Floor | Earth, sand, dung | 86 (5.82) | 64 (3.31) | |
Tile, cement or wood | 1380 (94.18) | 1852 (96.69) | ||
Refrigerator | Yes | 138 (9.43) | 229 (11.98) | |
Sanitation and feces disposal | ||||
Sanitation | Unimproved (Traditional pit toilet) | 84 (5.60) | 78 (4.1) | |
Improved (Flush or water seal latrine) | 1382 (94.30) | 1838 (95.8) | ||
Child faeces disposal | Unsafe (Disposed in the environment) | 1194 (81.50) | 1439 (75.2) | |
Safe (Toilet, latrine) | 272 (18.50) | 477 (25) | ||
Water | ||||
Water source | Unimproved (public tab, tube well) | 485 (33.10) | 701 (36.64) | |
Improved (yard or pumped into house) | 981 (66.90) | 1215 (63.66) | ||
Child given stored water | Yes | 1349 (93.30) | 1827 (95.4) | |
Drinking water treated | Yes | 645 (44) | 747 (39) | |
Handwashing | ||||
Handwash before cooking | Yes | 1108 (75.60) | 1449 (75.64) | |
Handwash after defecating | Yes | 1117 (76.20) | 1476 (77.06) | |
Handwash before handing child | Yes | 796 (54.31) | 1178 (61.52) | |
Handwash before nursing | Yes | 1114 (76.00) | 1469 (76.7) | |
Wash with soap | Yes | 773 (52.76) | 1086 (56.71) | |
Animals in the compound | ||||
Dog | Yes | 1142 (77.93) | 1758 (91.8) | |
Goat | Yes | 187 (12.95) | 348 (18.17) | |
Fowl | Yes | 628 (42.86) | 872 (45.53) |
Dependent Variable | Independent Variable | Path Coefficient | 95% CI 1 | One Tailed p-Value |
---|---|---|---|---|
HAZ (60 days) 2 | Rotavirus | −0.06 | (−0.12, −0.02) | 0.02 |
Typical EPEC | −0.14 | (−0.21, −0.01) | 0.01 | |
Shared sanitation facilities | −0.13 | (−0.19, −0.04) | <0.01 | |
Water sourced from deep well | −0.06 | (−0.22, 0.16) | 0.31 | |
Water stored | 0.13 | (−0.12, 0.15) | 0.41 | |
Hands washed before nursing | 0.14 | (0.03, 0.22) | <0.01 | |
Hands washed before cooking | −0.21 | (−0.13, 0.08) | 0.36 | |
Rotavirus | Water stored | 0.62 | (0.35, 1.10) | <0.01 |
Hands washed after caretaker defecation | −0.36 | (−0.62, −0.14) | <0.01 | |
Hands washed before cooking | −0.76 | (−1.12, −0.50) | <0.01 | |
Use of soap | 0.06 | (−0.16, 0.28) | 0.30 | |
Typical EPEC | Hands washed after caretaker defecation | −0.55 | (−0.91, −0.11) | <0.01 |
Indirect effects of household reservoirs and hygiene behaviors 3 | ||||
Water storage mediated by rotavirus infections | −0.03 | (−0.10, −0.01) | 0.02 | |
Handwashing after defecation mediated by rotavirus | 0.02 | (0.01, 0.06) | 0.02 | |
Handwashing before cooking mediated by rotavirus | 0.04 | (0.01, 0.10) | 0.02 | |
Handwashing after defecation mediated by tEPEC | 0.07 | (0.01, 0.15) | 0.02 |
Dependent Variable | Independent Variable | Path Coefficient | 95% CI 1 | One Tailed p-Value |
---|---|---|---|---|
HAZ (60 days) 2 | ST-ETEC | −0.15 | (−0.30, −0.02) | 0.02 |
Water sourced from deep well | 0.17 | (0.03, 0.34) | 0.02 | |
Warter stored | 0.01 | (−0.11, 0.12) | 0.35 | |
Water treated | 0.01 | (−0.04, 0.07) | 0.36 | |
ST-ETEC | Water source in house | −2.90 | (−7.53, −0.26) | <0.01 |
Child feces disposed in toilet | 0.91 | (0.60, 2.02) | 0.07 | |
Water stored | 3.05 | (0.97, 7.15) | <0.01 | |
Stored water X disposal of child feces | −2.74 | (−3.26, −0.09) | <0.01 | |
Use of soap | 0.27 | (−0.68, 1.37) | 0.27 | |
Shared toilet facilities | −0.31 | (−1.38, 0.64) | 0.24 | |
Indirect effects of household reservoirs and hygiene behaviors 3 | ||||
Water storage mediated by ST-ETEC infections | −0.41 | (−0.94, −0.01) | 0.02 | |
Water storage mediated by ST-ETEC infections moderated by child’s feces disposal | 0.25 | (0.02, 0.53) | 0.02 |
Dependent Variable | Independent Variable | Path Coefficient | 95% CI 1 | One Tailed p-Value |
---|---|---|---|---|
HAZ (60 days) 2 | Dog | −0.16 | (−0.32, −0.02) | 0.01 |
Water stored | 0.10 | (0.05, 0.20) | <0.01 | |
Handwash after child defecation | 0.15 | (0.06, 0.21) | <0.01 | |
Child feces disposal | −0.13 | (−0.3, 0.02) | 0.50 | |
Caretaker received formal education | 0.02 | (−0.07, 0.11) | 0.32 | |
Water stored | Public tap water source | 2.60 | (0.37, 4.00) | <0.01 |
Water source in house | −1.15 | (−0.41, 1.00) | 0.16 | |
Water source in yard | 0.08 | (−0.43, 2.42) | 0.10 | |
Water treated | 4.37 | (1.86, 6.74) | <0.01 | |
Child feces disposed | 2.70 | (0.80, 5.56) | <0.01 | |
Indirect effects of household reservoirs and hygiene behaviors 3 | ||||
Public tap water mediated by water storage | 0.06 | (0.17, 0.13) | <0.01 | |
Water treatment mediated by stored water | 0.40 | (0.25, 0.56) | <0.01 | |
Water treatment mediated by child feces disposal | 0.26 | (0.11, 0.45) | 0.02 |
Dependent Variable | Independent Variable | Path Coefficient | 95% CI 1 | One Tailed p-Value |
---|---|---|---|---|
HAZ (60 days) 2 | Norovirus GII | −0.06 | (−0.10–−0.01) | <0.01 |
Dog | −0.12 | (−0.23–−0.01) | 0.0 | |
Fowl | 0.07 | (0.02–0.13) | 0.01 | |
Water source in house | 0.26 | (0.02–0.47) | 0.01 | |
Water stored | 0.27 | (0.17–0.34) | <0.00 | |
Caretaker received formal education | 0.05 | (−0.07, 0.08) | 0.44 | |
Norovirus GII | Hands washed after child defecation | −0.45 | (−0.85–−0.06) | 0.01 |
Hands washed after handling animal | 3.60 | (0.34–8.51) | 0.01 | |
No. children in household > 5 | −0.55 | (9–1.20, 0.02) | 0.30 | |
Water stored | Child feces disposed | 2.26 | (0.37–5.50) | 0.01 |
Water treated | 0.92 | (0.43–1.54) | <0.00 | |
Indirect effects of household reservoirs and hygiene behaviors 3 | ||||
Hands washed after child defecation mediated by norovirus GII | 0.02 | (0.01–0.06) | 0.02 | |
Hands washed after handling animals mediated by norovirus GII | −0.20 | (−0.61–−0.01) | 0.02 | |
Water treatment mediated by stored water | 0.26 | (0.08–0.48) | <0.01 | |
Child’s feces disposal mediated by stored water | 0.64 | (0.10–1.64) | <0.01 |
Dependent Variable | Independent Variable | Path Coefficient | 95% CI 1 | One Tailed p-Value |
---|---|---|---|---|
HAZ (60 days) 2 | Norovirus GII | −0.04 | (−0.07, −0.01) | <0.01 |
Hands washed before nursing | 0.08 | (0.02, 0.14) | <0.01 | |
Water stored | 0.23 | (0.10, 0.36) | <0.00 | |
Child feces disposed | 0.03 | (−0.08, 0.08) | 0.06 | |
Water source in house | −0.08 | (−0.21, 0.05) | 0.11 | |
Hands washed before cooking | −0.02 | (−0.07, 0.03) | 0.18 | |
Caretaker received formal education | 0.05 | (0.01, 0.10) | 0.01 | |
Norovirus GII | Handwashing after child defecation | −0.46 | (−0.93, −0.07) | <0.00 |
Handwashing before nursing | 0.60 | (0.04, 1.16) | 0.01 | |
Use of soap | 0.90 | (−0.22, 0.56) | 0.17 | |
Water stored | −0.34 | (−0.21, 0.70) | 0.23 | |
Water stored | Child feces disposed | 0.03 | (0.01, 0.06) | 0.01 |
Water treated | 0.09 | (0.0, −0.17) | 0.00 | |
Indirect effects of household reservoirs and hygiene behaviors 3 | ||||
Child feces disposal mediated by stored water | 0.01 | (0.01, 0.02) | 0.02 | |
Water treatment mediated by stored water | 0.02 | (0.01, 0.04) | 0.01 | |
Handwashing after child defecation mediated by Norovirus GII | 0.02 | (0.01, 0.04) | 0.02 | |
Handwashing before nursing mediated by Norovirus GII | −0.02 | (−0.07, −0.01) | <0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, K.Z.; Gunanti, I.R.; Stride, C.; Sanchez, J.; Sur, D.; Manna, B.; Ramamurthy, T.; Kanungo, S.; Nataro, J.P.; Powell, H.; et al. Identification of Enteric Pathogen Reservoirs and Transmission Pathways Associated with Short Childhood Stature in the Kolkata Indian Site of the Global Enteric Multicenter Study. Nutrients 2024, 16, 2733. https://doi.org/10.3390/nu16162733
Long KZ, Gunanti IR, Stride C, Sanchez J, Sur D, Manna B, Ramamurthy T, Kanungo S, Nataro JP, Powell H, et al. Identification of Enteric Pathogen Reservoirs and Transmission Pathways Associated with Short Childhood Stature in the Kolkata Indian Site of the Global Enteric Multicenter Study. Nutrients. 2024; 16(16):2733. https://doi.org/10.3390/nu16162733
Chicago/Turabian StyleLong, Kurt Z., Inong R. Gunanti, Chris Stride, Johanna Sanchez, Dipika Sur, Byomkesh Manna, Thandavarayan Ramamurthy, Suman Kanungo, James P. Nataro, Helen Powell, and et al. 2024. "Identification of Enteric Pathogen Reservoirs and Transmission Pathways Associated with Short Childhood Stature in the Kolkata Indian Site of the Global Enteric Multicenter Study" Nutrients 16, no. 16: 2733. https://doi.org/10.3390/nu16162733
APA StyleLong, K. Z., Gunanti, I. R., Stride, C., Sanchez, J., Sur, D., Manna, B., Ramamurthy, T., Kanungo, S., Nataro, J. P., Powell, H., Roose, A., Nasrin, D., Sommerfelt, H., Levine, M., & Kotloff, K. (2024). Identification of Enteric Pathogen Reservoirs and Transmission Pathways Associated with Short Childhood Stature in the Kolkata Indian Site of the Global Enteric Multicenter Study. Nutrients, 16(16), 2733. https://doi.org/10.3390/nu16162733