Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Association between the Mediterranean Diet and Advanced Glycation End Products (AGEs)
4. Discussion
4.1. Diet Components and AGEs Level
4.2. Coffee, Smoking, and AGEs Level
4.3. Physical Activity and AGEs Level
4.4. Age and Gender and AGEs Level
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garay-Sevilla, M.E.; Beeri, M.S.; De La Maza, M.P.; Rojas, A.; Salazar-Villanea, S.; Uribarri, J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: A narrative review. Nutr. Res. Rev. 2020, 33, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Lucut, E.; Coughlan, M.T. The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes. Int. J. Mol. Sci. 2022, 23, 1766. [Google Scholar] [CrossRef]
- Pinto, R.S.; Minanni, C.A.; de Araújo Lira, A.L.; Passarelli, M. Advanced Glycation End Products: A Sweet Flavor That Embitters Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 2404. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Li, Y.; Qian, H.; Ying, H.; Wang, L. Advanced glycation end products in food and their effects on intestinal tract. Crit. Rev. Food Sci. Nutr. 2022, 62, 3103–3115. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Pérez-Martínez, P. Advanced Glycation End Products and Their Involvement in Cardiovascular Disease. Angiology 2020, 71, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Zawada, A.; Machowiak, A.; Rychter, A.M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients 2022, 14, 3982. [Google Scholar] [CrossRef]
- Planas, A.; Simó-Servat, O.; Hernández, C.; Simó, R. Advanced Glycations End Products in the Skin as Biomarkers of Cardiovascular Risk in Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 6234. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, M. The role of glyoxalase-i (Glo-I), advanced glycation endproducts (AGEs), and their receptor (RAGE) in chronic liver disease and hepatocellular carcinoma (HCC). Int. J. Mol. Sci. 2017, 18, 2466. [Google Scholar] [CrossRef]
- D’Agati, V.; Schmidt, A.M. RAGE and the pathogenesis of chronic kidney disease. Nat. Rev. Nephrol. 2010, 6, 352–360. [Google Scholar] [CrossRef]
- Ajith, T.A.; Vinodkumar, P. Advanced Glycation End Products: Association with the Pathogenesis of Diseases and the Current Therapeutic Advances. Curr. Clin. Pharmacol. 2016, 11, 118–127. [Google Scholar] [CrossRef]
- Brings, S.; Fleming, T.; Freichel, M.; Muckenthaler, M.U.; Herzig, S.; Nawroth, P.P. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int. J. Mol. Sci. 2017, 18, 984. [Google Scholar] [CrossRef] [PubMed]
- Arshi, B.; Chen, J.; Ikram, M.A.; Zillikens, M.C.; Kavousi, M. Advanced glycation end-products, cardiac function and heart failure in the general population: The Rotterdam Study. Diabetologia 2023, 66, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Wetzels, S.; Wouters, K.; Schalkwijk, C.G.; Vanmierlo, T.; Hendriks, J.J.A. Methylglyoxal-derived advanced glycation endproducts in multiple sclerosis. Int. J. Mol. Sci. 2017, 18, 421. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Cai, W.; Sandu, O.; Peppa, M.; Goldberg, T.; Vlassara, H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann. N. Y. Acad. Sci. 2005, 1043, 461–466. [Google Scholar] [CrossRef]
- Garay-Sevilla, M.E.; Rojas, A.; Portero-Otin, M.; Uribarri, J. Dietary ages as exogenous boosters of inflammation. Nutrients 2021, 13, 2802. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- Mendes, N.P.; Ribeiro, P.V.M.; Alfenas, R.C.G. Does dietary fat affect advanced glycation end products and their receptors? A systematic review of clinical trials. Nutr. Rev. 2022, 80, 598–612. [Google Scholar] [CrossRef]
- Demirer, B.; Yardımcı, H.; Erem Basmaz, S. Inflammation level in type 2 diabetes is associated with dietary advanced glycation end products, Mediterranean diet adherence and oxidative balance score: A pathway analysis. J. Diabetes Complicat. 2023, 37, 108354. [Google Scholar] [CrossRef]
- Capurso, C.; Bellanti, F.; Lo Buglio, A.; Vendemiale, G. The mediterranean diet slows down the progression of aging and helps to prevent the onset of frailty: A narrative review. Nutrients 2020, 12, 35. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health: A Critical Review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and mediterranean diet: A review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801. [Google Scholar] [CrossRef]
- Laufs, U.; Wassmann, S.; Czech, T.; Münzel, T.; Eisenhauer, M.; Böhm, M.; Nickenig, G. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Duda-Sobczak, A.; Falkowski, B.; Araszkiewicz, A.; Zozulinska-Ziolkiewicz, D. Association Between Self-reported Physical Activity and Skin Autofluorescence, a Marker of Tissue Accumulation of Advanced Glycation End Products in Adults with Type 1 Diabetes: A Cross-sectional Study. Clin. Ther. 2018, 40, 872–880. [Google Scholar] [CrossRef]
- van de Zande, S.C.; de Vries, J.K.; van den Akker-Scheek, I.; Zwerver, J.; Smit, A.J. A physically active lifestyle is related to a lower level of skin autofluorescence in a large population with chronic-disease (LifeLines cohort). J. Sport Health Sci. 2022, 11, 260–265. [Google Scholar] [CrossRef]
- Drenth, H.; Zuidema, S.U.; Krijnen, W.P.; Bautmans, I.; Smit, A.J.; Van Der Schans, C.; Hobbelen, H. Advanced glycation end products are associated with physical activity and physical functioning in the older population. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 1545–1551. [Google Scholar] [CrossRef]
- Kotani, K.; Gugliucci, A. Advanced glycation end-products and their receptors: Exercise effects. Obes. Rev. 2020, 21, e13018. [Google Scholar] [CrossRef]
- Drosatos, I.A.; Tsoporis, J.N.; Izhar, S.; Gupta, S.; Tsirebolos, G.; Sakadakis, E.; Triantafyllis, A.S.; Rigopoulos, A.; Rigopoulos, D.; Rallidis, L.S.; et al. Differential regulation of circulating soluble receptor for advanced glycation end products (SRAGEs) and its ligands S100A8/A9 four weeks post an exercise intervention in a cohort of young army recruits. Biomolecules 2021, 11, 1354. [Google Scholar] [CrossRef]
- Sponder, M.; Campean, I.A.; Emich, M.; Fritzer-Szekeres, M.; Litschauer, B.; Graf, S.; Dalos, D.; Strametz-Juranek, J. Long-term physical activity leads to a significant increase in serum sRAGE levels: A sign of decreased AGE-mediated inflammation due to physical activity? Heart Vessel. 2018, 33, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Caccavello, R.; Sakane, N.; Yamada, T.; Taniguchi, N.; Gugliucci, A. Kotani Influence of Physical Activity Intervention on Circulating Soluble Receptor for Advanced Glycation end Products in Elderly Subjects. J. Clin. Med. Res. 2011, 3, 252. [Google Scholar] [PubMed]
- Kunimoto, M.; Shimada, K.; Yokoyama, M.; Matsubara, T.; Aikawa, T.; Ouchi, S.; Shimizu, M.; Fukao, K.; Miyazaki, T.; Kadoguchi, T.; et al. Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients. BMC Cardiovasc. Disord. 2020, 20, 195. [Google Scholar] [CrossRef] [PubMed]
- Botros, N.; Sluik, D.; van Waateringe, R.P.; de Vries, J.H.M.; Geelen, A.; Feskens, E.J.M. Advanced glycation end-products (AGEs) and associations with cardio-metabolic, lifestyle, and dietary factors in a general population: The NQplus study. Diabetes. Metab. Res. Rev. 2017, 33, e2892. [Google Scholar] [CrossRef]
- van Waateringe, R.P.; Slagter, S.N.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Graaff, R.; Paterson, A.D.; Lutgers, H.L.; Wolffenbuttel, B.H.R. Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. Eur. J. Clin. Investig. 2016, 46, 481–490. [Google Scholar] [CrossRef]
- Kellow, N.J.; Coughlan, M.T.; Reid, C.M. Association between habitual dietary and lifestyle behaviours and skin autofluorescence (SAF), a marker of tissue accumulation of advanced glycation endproducts (AGEs), in healthy adults. Eur. J. Nutr. 2018, 57, 2209–2216. [Google Scholar] [CrossRef]
- Van Waateringe, R.P.; Mook-Kanamori, M.J.; Slagter, S.N.; Van Der Klauw, M.M.; Van Vliet-Ostaptchouk, J.V.; Graaff, R.; Lutgers, H.L.; Suhre, K.; El-Din Selim, M.M.; Mook-Kanamori, D.O.; et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS ONE 2017, 12, e0179330. [Google Scholar] [CrossRef]
- Isami, F.; West, B.J.; Nakajima, S.; Yamagishi, S.I. Association of advanced glycation end products, evaluated by skin autofluorescence, with lifestyle habits in a general Japanese population. J. Int. Med. Res. 2018, 46, 1043–1051. [Google Scholar] [CrossRef]
- Cena, H.; Porri, D.; De Giuseppe, R.; Kalmpourtzidou, A.; Salvatore, F.P.; El Ghoch, M.; Itani, L.; Kreidieh, D.; Brytek-Matera, A.; Pocol, C.B.; et al. How healthy are health-related behaviors in university students: The holistic study. Nutrients 2021, 13, 675. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, C.; Mariscal-Arcas, M.; Rivas, A.; Lorenzo-Tovar, M.L.; Tur, J.A.; Olea-Serrano, F. Proposal of a mediterranean diet serving score. PLoS ONE 2015, 10, e0128594. [Google Scholar] [CrossRef] [PubMed]
- Marendić, M.; Polić, N.; Matek, H.; Oršulić, L.; Polašek, O.; Kolčić, I. Mediterranean diet assessment challenges: Validation of the Croatian Version of the 14-item Mediterranean Diet Serving Score (MDSS) Questionnaire. PLoS ONE 2021, 16, e0247269. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Den Dekker, M.A.M.; Zwiers, M.; Van Den Heuvel, E.R.; De Vos, L.C.; Smit, A.J.; Zeebregts, C.J.; Oudkerk, M.; Vliegenthart, R.; Lefrandt, J.D.; Mulder, D.J. Skin autofluorescence, a non-invasive marker for AGE accumulation, is associated with the degree of atherosclerosis. PLoS ONE 2013, 8, e83084. [Google Scholar] [CrossRef] [PubMed]
- Da Moura Semedo, C.; Webb, M.; Waller, H.; Khunti, K.; Davies, M. Skin autofluorescence, a non-invasive marker of advanced glycation end products: Clinical relevance and limitations. Postgrad. Med. J. 2017, 93, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Mariscal, F.M.; Cardelo, M.P.; de la Cruz, S.; Alcala-Diaz, J.F.; Roncero-Ramos, I.; Guler, I.; Vals-Delgado, C.; López-Moreno, A.; Luque, R.M.; Delgado-Lista, J.; et al. Reduction in Circulating Advanced Glycation End Products by Mediterranean Diet Is Associated with Increased Likelihood of Type 2 Diabetes Remission in Patients with Coronary Heart Disease: From the Cordioprev Study. Mol. Nutr. Food Res. 2021, 65, 1901290. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Betriu, À.; Salas-Salvadó, J.; Pamplona, R.; Barbé, F.; Purroy, F.; Farràs, C.; Fernández, E.; López-Cano, C.; Mizab, C.; et al. Mediterranean diet, physical activity and subcutaneous advanced glycation end-products’ accumulation: A cross-sectional analysis in the ILERVAS project. Eur. J. Nutr. 2020, 59, 1233–1242. [Google Scholar] [CrossRef]
- Hart, M.J.; Torres, S.J.; McNaughton, S.A.; Milte, C.M. Dietary patterns and associations with biomarkers of inflammation in adults: A systematic review of observational studies. Nutr. J. 2021, 20, 24. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Fatahi, S.; Sharifi-Zahabi, E.; Santos, H.O.; Tripathi, N.; Lari, A.; Pourrajab, B.; Kord-Varkaneh, H.; Gǎman, M.-A.; Shidfar, F. The Impact of Low Advanced Glycation End Products Diet on Metabolic Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 12, 766–776. [Google Scholar] [CrossRef]
- Radić, J.; Vučković, M.; Gelemanović, A.; Kolak, E.; Bučan Nenadić, D.; Begović, M.; Radić, M. Associations between Advanced Glycation End Products, Body Composition and Mediterranean Diet Adherence in Kidney Transplant Recipients. Int. J. Environ. Res. Public Health 2022, 19, 11060. [Google Scholar] [CrossRef]
- Martinovic, D.; Tokic, D.; Martinovic, L.; Kumric, M.; Vilovic, M.; Rusic, D.; Vrdoljak, J.; Males, I.; Kurir, T.T.; Lupi-Ferandin, S.; et al. Adherence to the mediterranean diet and its association with the level of physical activity in fitness center users: Croatian-based study. Nutrients 2021, 13, 4038. [Google Scholar] [CrossRef]
- Kolčić, I.; Relja, A.; Gelemanović, A.; Miljković, A.; Boban, K.; Hayward, C.; Rudan, I.; Polašek, O. Mediterranean diet in the southern Croatia—Does it still exist? Croat. Med. J. 2016, 57, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Gerić, M.; Matković, K.; Gajski, G.; Rumbak, I.; Štancl, P.; Karlić, R.; Bituh, M. Adherence to Mediterranean Diet in Croatia: Lessons Learned Today for a Brighter Tomorrow. Nutrients 2022, 14, 3725. [Google Scholar] [CrossRef] [PubMed]
- Ventriglio, A.; Sancassiani, F.; Contu, M.P.; Latorre, M.; Di Slavatore, M.; Fornaro, M.; Bhugra, D. Mediterranean Diet and its Benefits on Health and Mental Health: A Literature Review. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 156–164. [Google Scholar] [CrossRef]
- Santangelo, C.; Varì, R.; Scazzocchio, B.; De Sancti, P.; Giovannini, C.; D’Archivio, M.; Masella, R. Anti-inflammatory Activity of Extra Virgin Olive Oil Polyphenols: Which Role in the Prevention and Treatment of Immune-Mediated Inflammatory Diseases? Endocr. Metab. Immune Disord. Drug Targets 2017, 18, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Virruso, C.; Accardi, G.; Colonna-Romano, G.; Candore, G.; Vasto, S.; Caruso, C. Nutraceutical properties of extra-virgin olive oil: A natural remedy for age-related disease? Rejuvenation Res. 2014, 17, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Katoch, V.; Kumar, S.; Chatterjee, S. Functional relationship of vegetable colors and bioactive compounds: Implications in human health. J. Nutr. Biochem. 2021, 92, 108615. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycémie control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- McMacken, M.; Shah, S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017, 14, 342–354. [Google Scholar] [PubMed]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Hirose, A.; Azuma, T.; Ohashi, T.; Watanabe, K.; Obora, A.; Deguchi, F.; Kojima, T.; Isozaki, A.; Tomofuji, T. Association between eating behavior and poor glycemic control in Japanese adults. Sci. Rep. 2019, 9, 3418. [Google Scholar] [CrossRef] [PubMed]
- Nas, A.; Mirza, N.; Hägele, F.; Kahlhöfer, J.; Keller, J.; Rising, R.; Kufer, T.A.; Bosy-Westphal, A. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am. J. Clin. Nutr. 2017, 105, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Maasen, K.; Eussen, S.J.P.M.; Scheijen, J.L.J.M.; Van Der Kallen, C.J.H.; Dagnelie, P.C.; Opperhuizen, A.; Stehouwer, C.D.A.; Van Greevenbroek, M.M.J.; Schalkwijk, C.G. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: The Maastricht Study. Am. J. Clin. Nutr. 2022, 115, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Köchli, S.; Endes, K.; Trinkler, M.; Mondoux, M.; Zahner, L.; Hanssen, H. Association of physical fitness with skin autofluorescence-derived advanced glycation end products in children. Pediatr. Res. 2020, 87, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Mook-Kanamori, M.J.; El-Din Selim, M.M.; Takiddin, A.H.; Al-Homsi, H.; Al-Mahmoud, K.A.S.; Al-Obaidli, A.; Zirie, M.A.; Rowe, J.; Gherbi, W.S.; Chidiac, O.M.; et al. Ethnic and gender differences in advanced glycation end products measured by skin auto-fluorescence. Dermato-Endocrinology 2013, 5, 325. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.; Kimhofer, T.; Ahmad, S.; AlAma, M.N.; Mosli, H.H.; Hindawi, S.I.; Mook-Kanamori, D.O.; Šebeková, K.; Damanhouri, Z.A.; Holmes, E. Ethnicity and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus. PLoS ONE 2017, 12, e0185175. [Google Scholar] [CrossRef]
- Lutgers, H.L.; Graaff, R.; Links, T.P.; Ubink-Veltmaat, L.J.; Bilo, H.J.; Gans, R.O.; Smit, A.J. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care 2006, 29, 2654–2659. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Q.; Liu, W.; Zhou, X. Advanced glycation end products via skin autofluorescence as a new biomarker for major adverse cardiovascular events: A meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1083–1092. [Google Scholar] [CrossRef]
- Saz-Lara, A.; Álvarez-Bueno, C.; Martínez-Vizcaíno, V.; Notario-Pacheco, B.; Sequí-Dominguez, I.; Cavero-Redondo, I. Are advanced glycation end products in skin associated with vascular dysfunction markers? A meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 6936. [Google Scholar] [CrossRef] [PubMed]
Men N = 475 | Women N = 541 | p Value | |
---|---|---|---|
Age (years); median (IQR) | 21.0 (3.0) | 21.0 (5.0) | 0.673 |
Faculty; N (%) | <0.001 | ||
Medicine | 69 (32.5) | 143 (67.5) | |
Health studies | 37 (12.4) | 262 (87.6) | |
Maritime studies | 369 (73.1) | 136 (26.9) | |
Smoking; N (%) | 0.016 | ||
Active smokers | 155 (50.3) | 153 (49.7) | |
Ex-smokers | 89 (52.7) | 80 (47.3) | |
Never smoked | 221 (42.2) | 303 (57.8) | |
BMI (kg/m2); median (IQR) | 24.2 (2.9) | 21.6 (3.2) | <0.001 |
Health perception; median (IQR) | 9.0 (2.0) | 8.0 (1.0) | <0.001 |
Sleeping time during working days (h); median (IQR) | 7.2 (1.5) | 7.3 (1.5) | 0.706 |
Sleeping time during free days (h); median (IQR) | 8.5 (1.0) | 9.0 (1.5) | <0.001 |
Physical activity level; N (%) | <0.001 | ||
Low | 104 (40.0) | 156 (60.0) | |
Moderate | 123 (35.3) | 225 (64.7) | |
High | 248 (60.8) | 160 (39.2) | |
Sitting time (h/day); median (IQR) | 4.5 (4.0) | 5.0 (4.5) | 0.008 |
Perceived stress score; median (IQR) | 17.0 (9.0) | 20.0 (10.0) | <0.001 |
Breakfast frequency (times/week); median (IQR) | 6.0 (3.3) | 7.0 (3.0) | 0.272 |
MDSS score; median (IQR) | 5.0 (5.0) | 6.0 (6.0) | <0.001 |
MD adherent (MDSS > 14); N (%) | 18 (3.8) | 45 (8.3) | 0.003 |
AGEs; median (IQR) | 1.4 (0.3) | 1.5 (0.3) | <0.001 |
MD Adherent Students (MDSS ≥ 14) N = 63 (6.2%) | MD Non-Adherent Students (MDSS < 14) N = 953 (93.8%) | p Value | |
---|---|---|---|
Age (years); median (IQR) | 21.5 (4.0) | 21.0 (3.0) | 0.673 |
Faculty; N (%) | <0.001 | ||
Medicine | 21 (9.9) | 191 (90.1) | |
Health studies | 22 (7.4) | 275 (92.6) | |
Maritime studies | 20 (3.9) | 487 (96.1) | |
Smoking; N (%) | 0.016 | ||
Active smokers | 14 (4.5) | 296 (95.5) | |
Ex-smokers | 8 (4.7) | 161 (95.3) | |
Never smoked | 41 (7.9) | 481 (92.1) | |
BMI (kg/m2); median (IQR) | 22.6 (3.4) | 22.9 (3.8) | <0.001 |
Health perception; median (IQR) | 9.0 (1.0) | 9.0 (2.0) | <0.001 |
Sleeping time during working days (h); median (IQR) | 7.0 (1.2) | 7.3 (1.5) | 0.706 |
Sleeping time during free days (h); median (IQR) | 8.0 (1.0) | 9.0 (1.5) | <0.001 |
Physical activity level; N (%) | <0.001 | ||
Low | 12 (4.6) | 247 (95.4) | |
Moderate | 23 (6.6) | 326 (93.4) | |
High | 28 (6.9) | 380 (93.1) | |
Sitting time (h/day); median (IQR) | 4.0 (4.0) | 5.0 (4.5) | 0.008 |
Perceived stress score; median (IQR) | 16.5 (11.0) | 19.0 (9.0) | <0.001 |
Breakfast frequency (times/week); median (IQR) | 7.0 (2.0) | 6.0 (3.0) | 0.272 |
AGEs; median (IQR) | 1.5 (0.5) | 1.5 (0.4) | <0.001 |
Age (years); median (IQR) | 21.5 (4.0) | 21.0 (3.0) | 0.003 |
Unstandardized Coefficients | Standardized Coefficients | p Value | |||
---|---|---|---|---|---|
B | 95% CI Lower Bound | 95% CI Upper Bound | Beta | ||
Age | 0.038 | 0.035 | 0.042 | 0.547 | <0.001 |
Women (men are referent group) | 0.080 | 0.038 | 0.121 | 0.124 | <0.001 |
Faculty (Medical studies is referent group) | |||||
Health studies | 0.037 | −0.011 | 0.084 | 0.052 | 0.130 |
Maritime studies | 0.075 | 0.028 | 0.122 | 0.116 | 0.002 |
Smoking (active smokers are referent group) | |||||
Ex-smokers | −0.077 | −0.126 | −0.029 | −0.090 | 0.002 |
Never smoked | −0.095 | −0.135 | −0.054 | −0.146 | <0.001 |
BMI (kg/m2) | 0.002 | −0.003 | 0.008 | 0.022 | 0.424 |
Sleeping time during working days (h/night) | 0.005 | −0.009 | 0.018 | 0.018 | 0.508 |
Sleeping time during free days (h/night) | −0.003 | −0.015 | 0.009 | −0.012 | 0.654 |
Physical activity level (high is referent group) | |||||
Low | 0.044 | 0.004 | 0.085 | 0.060 | 0.033 |
Moderate | 0.009 | −0.029 | 0.046 | 0.013 | 0.652 |
Sitting time (h/day) | 0.003 | −0.002 | 0.008 | 0.030 | 0.245 |
Perceived stress score (PSS-10) | 0.001 | −0.001 | 0.004 | 0.030 | 0.262 |
Breakfast frequency (times/week) | −0.008 | −0.015 | 0.000 | −0.053 | 0.038 |
Coffee intake | 0.005 | 0.002 | 0.008 | 0.087 | 0.001 |
MD adherence (MDSS points) | 0.014 | −0.052 | 0.080 | 0.011 | 0.675 |
Unstandardized Coefficients | Standardized Coefficients | p Value | |||
---|---|---|---|---|---|
B | 95% CI Lower Bound | 95% CI Upper Bound | Beta | ||
Fruit intake | −0.002 | −0.017 | 0.013 | −0.007 | 0.798 |
Vegetables intake | −0.017 | −0.032 | −0.001 | −0.061 | 0.038 |
Cereals intake | −0.009 | −0.020 | 0.003 | −0.039 | 0.131 |
Olive oil intake | 0.025 | 0.008 | 0.042 | 0.077 | 0.005 |
Nuts intake | −0.003 | −0.027 | 0.021 | −0.008 | 0.782 |
Dairy intake | 0.000 | −0.019 | 0.019 | −0.001 | 0.971 |
Potato intake | 0.020 | −0.030 | 0.070 | 0.020 | 0.433 |
Legumes intake | −0.005 | −0.040 | 0.030 | −0.008 | 0.774 |
Eggs intake | 0.004 | −0.029 | 0.036 | 0.006 | 0.818 |
Fish intake | 0.018 | −0.021 | 0.056 | 0.025 | 0.361 |
White meat intake | −0.004 | −0.045 | 0.037 | −0.005 | 0.838 |
Red meat intake | 0.010 | −0.029 | 0.050 | 0.014 | 0.611 |
Sweets intake | 0.011 | −0.032 | 0.055 | 0.015 | 0.608 |
Wine intake | 0.019 | −0.055 | 0.092 | 0.013 | 0.616 |
Unstandardized Coefficients | Standardized Coefficients | p Value | |||
---|---|---|---|---|---|
B | 95% CI Lower Bound | 95% CI Upper Bound | Beta | ||
Age | −0.018 | −0.042 | 0.006 | −0.056 | 0.151 |
Women (men are referent group) | −0.276 | −0.513 | −0.038 | −0.094 | 0.023 |
Faculty (Medical studies is referent group) | |||||
Health studies | 0.334 | 0.069 | 0.599 | 0.105 | 0.014 |
Maritime studies | 0.248 | −0.015 | 0.511 | 0.085 | 0.065 |
Smoking (active smokers are referent group) | |||||
Ex-smokers | 0.286 | 0.017 | 0.554 | 0.074 | 0.037 |
Never smoked | 0.325 | 0.110 | 0.540 | 0.111 | 0.003 |
BMI (kg/m2) | −0.019 | −0.051 | 0.013 | −0.040 | 0.242 |
Sleeping time during working days (h/night) | 0.058 | −0.019 | 0.135 | 0.050 | 0.140 |
Sleeping time during free days (h/night) | 0.039 | −0.031 | 0.110 | 0.037 | 0.275 |
Physical activity level (high is referent group) | |||||
Low | 0.015 | −0.217 | 0.247 | 0.004 | 0.900 |
Moderate | −0.128 | −0.340 | 0.084 | −0.042 | 0.237 |
Perceived stress score (PSS-10) | −0.073 | −0.087 | −0.060 | −0.352 | <0.001 |
MD adherence (MDSS points) | 0.026 | 0.002 | 0.050 | 0.066 | 0.037 |
AGEs | −0.045 | −0.387 | 0.297 | −0.010 | 0.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polić, N.; Matulić, V.; Dragun, T.; Matek, H.; Marendić, M.; Efendić, I.Ž.; Russo, A.; Kolčić, I. Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study. Nutrients 2024, 16, 2483. https://doi.org/10.3390/nu16152483
Polić N, Matulić V, Dragun T, Matek H, Marendić M, Efendić IŽ, Russo A, Kolčić I. Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study. Nutrients. 2024; 16(15):2483. https://doi.org/10.3390/nu16152483
Chicago/Turabian StylePolić, Nikolina, Viviana Matulić, Tanja Dragun, Helena Matek, Mario Marendić, Ivana Žižić Efendić, Andrea Russo, and Ivana Kolčić. 2024. "Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study" Nutrients 16, no. 15: 2483. https://doi.org/10.3390/nu16152483
APA StylePolić, N., Matulić, V., Dragun, T., Matek, H., Marendić, M., Efendić, I. Ž., Russo, A., & Kolčić, I. (2024). Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study. Nutrients, 16(15), 2483. https://doi.org/10.3390/nu16152483