Effect of Holder Pasteurization, Mode of Delivery, and Infant’s Gender on Fatty Acid Composition of Donor Breast Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Donor Milk Samples
2.2. Gas Chromatographic Analysis of Samples
2.3. Data Analysis
3. Results
3.1. Maternal Data
3.2. Fatty Acids in Breast Milk
3.3. Effect of Holder Pasteurization on Breast Milk Samples
3.4. Analysis of Different Co-Variants
3.5. Results of Principal Component Analysis (PCA)
3.5.1. Fatty Acid Profile of BM Samples
3.5.2. Influence of Infant’s Gender
3.5.3. Effect of Holder Pasteurization
3.5.4. Mode of Delivery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumari, P.; Raval, A.; Rana, P.; Mahto, S.K. Regenerative potential of human breast milk: A natural reservoir of nutrients, bioactive components and stem cells. Stem Cell Rev. Rep. 2023, 19, 1307–1327. [Google Scholar] [CrossRef]
- Nuzzi, G.; Trambusti, I.; DI Cicco, M.E.; Peroni, D.G. Breast milk: More than just nutrition! Minerva Pediatr. 2021, 73, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Rodriguez-Palmero, M. Polyunsaturated fatty acids in human milk and their role in early infant development. J. Mammary Gland. Biol. Neoplasia. 1999, 4, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Mitguard, S.; Doucette, O.; Miklavcic, J. Human milk polyunsaturated fatty acids are related to neurodevelopmental, anthropometric, and allergic outcomes in early life: A systematic review. J. Dev. Orig. Health Dis. 2023, 14, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast milk lipids and fatty acids in regulating neonatal intestinal development and protecting against intestinal injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Mallick, R.; Duttaroy, A.K. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment. Nutrients 2020, 12, 3615. [Google Scholar] [CrossRef] [PubMed]
- Simon Sarkadi, L.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty acid composition of milk from mothers with normal weight, obesity, or gestational diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef] [PubMed]
- Argov-Argaman, N.; Mandel, D.; Lubetzky, R.; Hausman Kedem, M.; Cohen, B.C.; Berkovitz, Z.; Reifen, R. Human milk fatty acids composition is affected by maternal age. J. Matern. Fetal Neonatal Med. 2017, 30, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Boersma, E.R.; Offringa, P.J.; Muskiet, F.A.; Chase, W.M.; Simmons, I.J. Vitamin E, lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: An international comparative study. Am. J. Clin. Nutr. 1991, 53, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Bitman, J.; Wood, L.; Hamosh, M.; Hamosh, P.; Mehta, N.R. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nutr. 1983, 38, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Cruz-Hernandez, C.; Bertschy, E.; Fontannaz, P.; Masserey Elmelegy, I.; Tavazzi, I.; Marmet, C.; Sanchez-Bridge, B.; Thakkar, S.K.; De Castro, C.A.; et al. Temporal changes of human breast milk lipids of chinese mothers. Nutrients 2016, 8, 715. [Google Scholar] [CrossRef] [PubMed]
- Bokor, S.; Koletzko, B.; Decsi, T. Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants. Ann. Nutr. Metab. 2007, 51, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.B.; Eggesbø, M.; Criswell, R.; Uhl, O.; Demmelmair, H.; Koletzko, B. Total fatty acid and polar lipid species composition of human milk. Nutrients 2021, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Catassi, G.; Aloi, M.; Giorgio, V.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. The role of diet and nutritional interventions for the Infant Gut Microbiome. Nutrients 2024, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xia, J.; Zhou, Y.; Wang, Y.; Xia, H.; Wang, S.; Liao, W.; Sun, G. The effect of MUFA-rich food on lipid profile: A meta-analysis of randomized and controlled-feeding trials. Foods 2022, 11, 1982. [Google Scholar] [CrossRef] [PubMed]
- von Schacky, C.; Harris, W.S. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc. Res. 2007, 73, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Skowronska-Krawczyk, D.; Chao, D.L. Long-chain polyunsaturated fatty acids and age-related macular degeneration. Adv. Exp. Med. Biol. 2019, 1185, 39–43. [Google Scholar] [PubMed]
- Innis, S.M. Fatty acids and early human development. Early Hum. Dev. 2007, 83, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Shete, H.; Patravale, V. Long chain lipid based tamoxifen NLC. Part I: Preformulation studies, formulation development and physicochemical characterization. Int. J. Pharm. 2013, 454, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Tvrzicka, E.; Kremmyda, L.S.; Stankova, B.; Zak, A. Fatty acids as biocompounds: Their role in human metabolism, health and disease—A review. Part 1: Classification, dietary sources and biological functions. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2011, 155, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglou, V.J.; Cavouras, D.; Boutsikou, T.; Briana, D.D.; Lantzouraki, D.Z.; Paliatsiou, S.; Volaki, P.; Bratakos, S.; Malamitsi-Puchner, A.; Zoumpoulakis, P. Factors affecting human colostrum fatty acid profile: A case study. PLoS ONE 2017, 12, e0175817. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.J.; Sinha, B.; Chowdhury, R.; Bhandari, N.; Taneja, S.; Martines, J.; Bahl, R. Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H. Breastfeeding, childhood asthma, and allergic disease. Ann. Nutr. Metab. 2017, 70 (Suppl. S2), 26–36. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S.; Kotlyarova, A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int. J. Mol. Sci. 2022, 23, 1308. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Duttaroy, A.K. Modulation of endothelium function by fatty acids. Mol. Cell Biochem. 2022, 477, 15–38. [Google Scholar] [CrossRef]
- Hellström, A.; Pivodic, A.; Gränse, L.; Lundgren, P.; Sjöbom, U.; Nilsson, A.K.; Söderling, H.; Hård, A.L.; Smith, L.E.H.; Löfqvist, C.A. Association of docosahexaenoic acid and arachidonic acid serum levels with retinopathy of prematurity in preterm infants. JAMA Netw. Open 2021, 4, e2128771. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Roghair, R.D.; Miseta, A.; Bódis, J.; Funke, S.; Ertl, T. Breast milk for term and preterm infants-own mother’s milk or donor milk? Nutrients 2021, 13, 424. [Google Scholar] [CrossRef]
- Vass, R.A.; Mikó, É.; Gál, C.; Kőszegi, T.; Vass, C.I.; Bokor, S.; Molnár, D.; Funke, S.; Kovács, K.; Bódis, J.; et al. The effect of Holder pasteurization and different variants on breast milk antioxidants. Antioxidants 2023, 12, 1857. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Bell, E.F.; Colaizy, T.T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Ertl, T.; Roghair, R.D. Hormone levels in preterm and donor human milk before and after Holder pasteurization. Pediatr. Res. 2020, 88, 612–617. [Google Scholar] [CrossRef]
- Vass, R.A.; Roghair, R.D.; Bell, E.F.; Colaizy, T.T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Ertl, T. Pituitary glycoprotein hormones in human milk before and after pasteurization or refrigeration. Nutrients 2020, 12, 687. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Miseta, A.; Bódis, J.; Funke, S.; Bokor, S.; Molnár, D.; Kósa, B.; Kiss, A.A.; et al. Thyroxine and thyroid-stimulating hormone in own mother’s milk, donor milk, and infant formula. Life 2022, 12, 584. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Bell, E.F.; Roghair, R.D.; Kiss, G.; Funke, S.; Bokor, S.; Molnár, D.; Miseta, A.; Bódis, J.; Kovács, K.; et al. Insulin, testosterone, and albumin in term and preterm breast milk, donor milk, and infant formula. Nutrients 2023, 15, 1476. [Google Scholar] [CrossRef]
- Committee on Nutrition; Section on Breastfeeding; Committee on Fetus and Newborn. Donor human milk for the high-risk infant: Preparation, safety, and usage options in the United States. Pediatrics 2017, 139, e20163440. [Google Scholar] [CrossRef] [PubMed]
- ISO 16958:2015; Milk, Milk Products, Infant Formula and Adult Nutritionals, Determination of Fatty Acids Composition, Capillary Gas Chromatographic Method. ISO: Geneva, Switzerland, 2015.
- Tormási, J.; Abrankó, L. Assessment of fatty acid-specific lipolysis by in vitro digestion and GC-FID. Nutrients 2021, 13, 3889. [Google Scholar] [CrossRef] [PubMed]
- Annison, E.; Linzell, J.; Fazakerley, S.; Nichols, B. The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis. Biochem. J. 1967, 102, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Foiles, A.M.; Kerling, E.H.; Wick, J.A.; Scalabrin, D.M.F.; Colombo, J.; Carlson, S.E. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood. Pediatr. Allergy Immunol. 2016, 27, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Marc, I.; Boutin, A.; Pronovost, E.; Perez Herrera, N.M.; Guillot, M.; Bergeron, F.; Moore, L.; Sullivan, T.R.; Lavoie, P.M.; Makrides, M. Association between enteral supplementation with high-dose Docosahexaenoic Acid and risk of bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. JAMA Netw Open. 2023, 6, e233934. [Google Scholar] [CrossRef]
- Pastor, N.; Soler, B.; Mitmesser, S.H.; Ferguson, P.; Lifschitz, C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin. Pediatr. 2006, 45, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Krauss-Etschmann, S.; Shadid, R.; Campoy, C.; Hoster, E.; Demmelmair, H.; Jiménez, M.; Gil, A.; Rivero, M.; Veszprémi, B.; Decsi, T.; et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 2007, 85, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Iwasa, K.; Hayakawa, T.; Tsuduki, T.; Kimura, I.; Maruyama, K.; Yoshikawa, K. Dietary oleic acid contributes to the regulation of food intake through the synthesis of intestinal oleoylethanolamide. Front. Endocrinol. 2023, 13, 1056116. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Cavia Mdel, M.; Alonso-Torre, S. Role of oleic acid in immune system; mechanism of action; a review. Nutr. Hosp. 2012, 27, 978–990. [Google Scholar] [PubMed]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients 2021, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Wang, Y.; Chen, Z.; Yu, X.; Ma, D. Effect of n-3 polyunsaturated fatty acid on bone health: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2021, 10, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Khalesi, N.; Bordbar, A.; Khosravi, N.; Kabirian, M.; Karimi, A. The efficacy of omega-3 supplement on prevention of retinopathy of prematurity in premature infants: A randomized double-blinded controlled trial. Curr. Pharm. Des. 2018, 24, 1845–1848. [Google Scholar] [CrossRef] [PubMed]
- Matsue, M.; Mori, Y.; Nagase, S.; Sugiyama, Y.; Hirano, R.; Ogai, K.; Ogura, K.; Kurihara, S.; Okamoto, S. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant. 2019, 28, 1528–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Simon Sarkadi, L.; Üveges, M.; Tormási, J.; Benes, E.; Vass, R.A.; Vari, S.G. Gas chromatographic determination of fatty acid composition in breast milk of mothers with different health conditions. Acta Alimentaria. 2022, 51, 625–635. [Google Scholar] [CrossRef]
- Demmelmair, H.; Koletzko, B. Importance of fatty acids in the perinatal period. World Rev. Nutr. Diet. 2015, 112, 31–47. [Google Scholar] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral nutrition in preterm infants (2022): A position paper from the ESPGHAN Committee on nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Keikha, M.; Shayan-Moghadam, R.; Bahreynian, M.; Kelishadi, R. Nutritional supplements and mother’s milk composition: A systematic review of interventional studies. Int. Breastfeed. J. 2021, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Lepri, L.; Del Bubba, M.; Maggini, R.; Donzelli, G.P.; Galvan, P. Effect of pasteurization and storage on some components of pooled human milk. J. Chromatogr. B Biomed. Sci. Appl. 1997, 704, 1–10. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Unger, S.; O’Connor, D.L.; Stone, D.; Harvey, S.; Clandinin, M.T.; Field, C.J. Effect of pasteurization on selected immune components of donated human breast milk. J. Perinatol. 2011, 31, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fatty Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [PubMed]
- Marounek, M.; Skrivanova, E.; Rada, V. Susceptibility of Escherichia coli to C2–C18 fatty acids. Folia Microbiol. 2003, 48, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, B.N.; Reyes Loredo, A.; Yusuf, K.; Maarouf, A.; Fenton, T.R.; Momin, S. Enteral long-chain polyunsaturated fatty acids and necrotizing enterocolitis: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2023, 117, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, B.N.; Reyes Loredo, A.; Knauff, M.; Momin, S.; Moossavi, S. The role of dietary fats in the development and prevention of necrotizing enterocolitis. Nutrients 2021, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Abou El Fadl, D.K.; Ahmed, M.A.; Aly, Y.A.; Darweesh, E.A.G.; Sabri, N.A. Impact of Docosahexaenoic acid supplementation on proinflammatory cytokines release and the development of Necrotizing enterocolitis in preterm Neonates: A randomized controlled study. Saudi Pharm. J. 2021, 29, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Pastor, N.; Zhuang, W.; Scalabrin, D.M.F. Infants fed formula with added long chain polyunsaturated fatty acids have reduced incidence of respiratory illnesses and diarrhea during the first year of life. BMC Prediatr. 2014, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- D’Vaz, N.; Meldrum, S.J.; Dunstan, J.A.; Martino, D.; McCarthy, S.; Metcalfe, J.; Tulic, M.K.; Mori, T.A.; Prescott, S.A. Postnatal fish oil supplementation in high-risk infants to prevent allergy: Randomized controlled trial. Pediatrics 2012, 130, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Marks, G.B.; Mihrshahi, S.; Kemp, A.S.; Tovey, E.R.; Webb, K.; Almqvist, C.; Ampon, R.D.; Crisafulli, D.; Belousova, E.G.; Mellis, C.M.; et al. Prevention of asthma during the first 5 years of life: A randomized controlled trial. J. Allergy Clin. Immunol. 2006, 118, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Clausen, M.; Jonasson, K.; Keil, T.; Beyer, K.; Sigurdardottir, S.T. Fish oil in infancy protects against food allergy in Iceland—Results from a birth cohort study. Allergy 2018, 73, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, C.; Garden, F.; Xuan, W.; Mihrshahi, S.; Leeder, S.R.; Oddy, W.; Webb, K.; Marks, G.B.; CAPS team. Omega-3 and omega-6 fatty acid exposure from early life does not affect atopy and asthma at age 5 years. J. Allergy Clin. Immunol. 2007, 119, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Mena, P. Long-chain polyunsaturated fatty acids supplementation in preterm infants. Curr. Opin. Pediatr. 2015, 27, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.A.; Wang, Y.; Forsyth, S.; Brenna, J.T. The European Food Safety Authority recommendation for polyunsaturated fatty acid composition of infant formula overrules breast milk, puts infants at risk, and should be revised. Prostaglandins Leukot. Essent. Fatty Acids. 2015, 102–103, 1–3. [Google Scholar] [CrossRef]
- Samuel, T.M.; Thielecke, F.; Lavalle, L.; Chen, C.; Fogel, P.; Giuffrida, F.; Dubascoux, S.; Martínez-Costa, C.; Haaland, K.; Marchini, G.; et al. Mode of neonatal delivery influences the nutrient composition of human milk: Results from a multicenter European cohort of lactating women. Front. Nutr. 2022, 9, 834394. [Google Scholar] [CrossRef] [PubMed]
- Khelouf, N.; Haoud, K.; Meziani, S.; Fizir, M.; Ghomari, F.N.; Khaled, M.B.; Kadi, N. Effect of infant’s gender and lactation period on biochemical and energy breast milk composition of lactating mothers from Algeria. J. Food Compos. Anal. 2023, 115, 104889. [Google Scholar] [CrossRef]
- Miliku, K.; Richelle, J.; Becker, A.B.; Simons, E.; Moraes, T.J.; Stuart, T.E.; Mandhane, P.J.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Sex-specific associations of human milk long-chain polyunsaturated fatty acids and infant allergic conditions. Pediatr. Allergy Immunol. 2021, 32, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alcalá, L.M.; Alonso, L.; Fontecha, J. Stability of fatty acid composition after thermal, high pressure, and microwave processing of cow milk as affected by polyunsaturated fatty acid concentration. J. Dairy. Sci. 2014, 97, 7307–7315. [Google Scholar] [CrossRef] [PubMed]
- Christen, L.; Lai, C.T.; Hartmann, B.; Hartmann, P.E.; Geddes, D.T. Ultraviolet-C irradiation: A novel pasteurization method for donor human milk. PLoS ONE 2013, 8, e68120. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- Roghair, R.D.; Colaizy, T.T.; Steinbrekera, B.; Vass, R.A.; Hsu, E.; Dagle, D.; Chatmethakul, T. Neonatal leptin levels predict the early childhood developmental assessment scores of preterm infants. Nutrients 2023, 15, 1967. [Google Scholar] [CrossRef] [PubMed]
- Marriott, B.P.; Turner, T.H.; Hibbeln, J.R.; Newman, J.C.; Pregulman, M.; Malek, A.M.; Malcolm, R.J.; Burbelo, G.A.; Wismann, J.W. Impact of fatty acid supplementation on cognitive performance among United States (US) military officers: The ranger resilience and improved performance on phospholipid-bound Omega-3′s (RRIPP-3) Study. Nutrients 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.Z.; Li, L.; Dong, C.W.; Tan, C.C.; Alzheimer’s Disease Neuroimaging Initiative; Xu, W. The relationship of Omega-3 fatty acids with dementia and cognitive decline: Evidence from prospective cohort studies of supplementation, dietary intake, and blood markers. Am. J. Clin. Nutr. 2023, 117, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; van den Akker, C.H.P. Protein intakes to optimize outcomes for preterm infants. Semin. Perinatol. 2019, 43, 151154. [Google Scholar] [CrossRef] [PubMed]
Fatty Acids | Common Name | Value (%) | Fatty Acids | Common Name | Value (%) |
---|---|---|---|---|---|
C6:0 | Caproic acid | 0.01 ± 0.01 | C18:2n-6t | Linolelaidic acid | <0.01 |
C8:0 | Caprylic acid | 0.06 ± 0.03 | C18:2n-6c | Linoleic acid (LA) | 15.13 ± 5.02 |
C10:0 | Capric acid | 0.98 ± 0.20 | C18:3n-6c | γ-Linolenic acid (GLA) | 0.10 ± 0.06 |
C11:0 | Undecanoic acid | <0.01 | C18:3n-3c | α-Linolenic acid (ALA) | 0.54 ± 0.18 |
C12:0 | Lauric acid | 5.46 ± 1.92 | C20:0 | Arachidic acid | 0.18 ± 0.08 |
C13:0 | Tridecylic acid | 0.03 ± 0.02 | C20:1n-9c | Eicosenoic acid | 0.40 ± 0.11 |
C14:0 | Myristic acid | 7.02 ± 1.99 | C20:2n-6c | Eicosadienoic acid | 0.30 ± 0.09 |
C14:1n-5c | Myristoleic acid | 0.14 ± 0.06 | C20:3n-6c | Eicosatrienoic acid (ETE) | 0.35 ± 0.08 |
C15:0 | Pentadecylic acid | 0.31 ± 0.15 | C20:4n-6c | Arachidonic acid (ARA) | 0.40 ± 0.08 |
C16:0 | Palmitic acid | 26.01 ± 4.38 | C22:0 | Behenic acid | 0.01 ± 0.03 |
C16:1n-7c | Palmitoleic acid | 1.90 ± 0.44 | C22:1n-9c | Erucic acid | 0.02 ± 0.03 |
C17:1n-7c | Heptadecenoic acid | 0.12 ± 0.10 | C20:5n-3c | Eicosapentaenoic acid (EPA) | <0.01 |
C17:0 | Margaric acid | 0.27 ± 0.09 | C22:2n-6c | Docosadienoic acid | 0.01 ± 0.02 |
C18:0 | Stearic acid | 7.73 ± 1.87 | C24:0 | Lignoceric acid | 0.02 ± 0.05 |
C18:1n-9t | Elaidic acid | 0.12 ± 0.27 | C24:1n-9c | Nervonic acid | 0.02 ± 0.08 |
C18:1n-9c | Oleic acid | 32.29 ± 4.06 | C22:6n-3c | Docosahexaenoic acid (DHA) | 0.07 ± 0.16 |
Fatty Acid | Raw | S | Pasteurized | Fatty Acid | Raw | S | Pasteurized |
---|---|---|---|---|---|---|---|
C6:0 | 0.07 ± 0.03 | * | 0.01 ± 0.00 | C18:2n-6t | <0.01 | <0.01 | |
C8:0 | 0.19 ± 0.04 | * | 0.06 ± 0.02 | C18:2n-6c | 17.10 ± 2.47 | 15.21 ± 1.63 | |
C10:0 | 1.26 ± 0.14 | * | 1.00 ± 0.07 | C18:3n-6c | 0.15 ± 0.03 | * | 0.10 ± 0.03 |
C11:0 | <0.01 | <0.01 | C18:3n-3c | 0.65 ± 0.12 | * | 0.54 ± 0.07 | |
C12:0 | 5.88 ± 0.83 | 5.55 ± 0.65 | C20:0 | 0.19 ± 0.02 | 0.18 ± 0.02 | ||
C13:0 | <0.01 | 0.03 ± 0.01 | C20:1n-9c | 0.38 ± 0.05 | 0.39 ± 0.06 | ||
C14:0 | 6.05 ± 0.89 | * | 7.03 ± 0.68 | C20:2n-6c | 0.31 ± 0.05 | 0.30 ± 0.05 | |
C14:1n-5c | 0.16 ± 0.02 | * | 0.14 ± 0.02 | C20:3n-6c | 0.39 ± 0.07 | 0.36 ± 0.05 | |
C15:0 | 0.25 ± 0.04 | 0.29 ± 0.06 | C20:4n-6c | 0.51 ± 0.06 | * | 0.40 ± 0.05 | |
C16:0 | 22.98 ± 2.06 | * | 26.10 ± 1.16 | C22:0 | <0.01 | 0.014 ± 0.015 | |
C16:1n-7c | 1.94 ± 0.18 | 1.90 ± 0.18 | C22:1n-9c | <0.01 | 0.02 ± 0.02 | ||
C17:0 | 0.24 ± 0.02 | 0.27 ± 0.03 | C20:5n-3c | <0.01 | <0.01 | ||
C17:1n-7c | 0.08 ± 0.09 | 0.11 ± 0.03 | C22:2n-6c | <0.01 | <0.01 | ||
C18:0 | 6.98 ± 0.75 | 7.71 ± 0.61 | C24:0 | 0.01 ± 0.03 | * | 0.02 ± 0.03 | |
C18:1n-9t | 0.01 ± 0.03 | * | 0.11 ± 0.13 | C24:1n-9c | 0.02 ± 0.05 | * | 0.03 ± 0.05 |
C18:1n-9c | 34.16 ± 3.59 | * | 32.05 ± 2.46 | C22:6n-3c | 0.02 ± 0.07 | * | 0.07 ± 0.09 |
Fatty Acid | Spontaneously | S | C-Section | Fatty Acid | Spontaneously | S | C-Section |
---|---|---|---|---|---|---|---|
C6:0 | 0.01 ± 0.01 | 0.01 ± 0.01 | C18:2n-6t | <0.01 | <0.01 | ||
C8:0 | 0.06 ± 0.03 | 0.06 ± 0.03 | C18:2n-6c | 14.59 ± 4.84 | * | 15.25 ± 4.74 | |
C10:0 | 1.01 ± 0.19 | 0.95 ± 0.21 | C18:3n-6c | 0.08 ± 0.06 | 0.11 ± 0.06 | ||
C11:0 | <0.01 | <0.01 | C18:3n-3c | 0.53 ± 0.16 | 0.54 ± 0.20 | ||
C12:0 | 5.60 ± 1.90 | * | 5.19 ± 1.98 | C20:0 | 0.17 ± 0.10 | 0.20 ± 0.06 | |
C13:0 | 0.03 ± 0.02 | 0.03 ± 0.02 | C20:1n-9c | 0.40 ± 0.11 | 0.40 ± 0.11 | ||
C14:0 | 7.19 ± 1.80 | 6.83 ± 2.22 | C20:2n-6c | 0.29 ± 0.11 | 0.30 ± 0.08 | ||
C14:1n-5c | 0.14 ± 0.06 | 0.14 ± 0.06 | C20:3n-6c | 0.34 ± 0.08 | 0.36 ± 0.08 | ||
C15:0 | 0.31 ± 0.16 | * | 0.29 ± 0.14 | C20:4n-6c | 0.38 ± 0.07 | 0.42 ± 0.08 | |
C16:0 | 26.57 ± 4.53 | * | 26.19 ± 4.37 | C22:0 | 0.01 ± 0.03 | * | 0.02 ± 0.03 |
C16:1n-7c | 1.88 ± 0.37 | 1.92 ± 0.51 | C22:1n-9c | 0.02 ± 0.03 | * | 0.02 ± 0.04 | |
C17:0 | 0.29 ± 0.09 | * | 0.26 ± 0.08 | C20:5n-3c | 0.01 ± 0.03 | <0.01 | |
C17:1n-7c | 0.10 ± 0.10 | 0.14 ± 0.09 | C22:2n-6c | <0.01 | 0.01 ± 0.02 | ||
C18:0 | 8.15 ± 1.96 | * | 7.45 ± 1.57 | C24:0 | 0.02 ± 0.06 | * | 0.03 ± 0.07 |
C18:1n-9t | 0.14 ± 0.31 | * | 0.11 ± 0.22 | C24:1n-9c | 0.03 ± 0.10 | 0.03 ± 0.11 | |
C18:1n-9c | 31.58 ± 4.33 | 32.66 ± 4.03 | C22:6n-3c | 0.07 ± 0.17 | * | 0.09 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vass, R.A.; Zhang, M.; Simon Sarkadi, L.; Üveges, M.; Tormási, J.; Benes, E.L.; Ertl, T.; Vari, S.G. Effect of Holder Pasteurization, Mode of Delivery, and Infant’s Gender on Fatty Acid Composition of Donor Breast Milk. Nutrients 2024, 16, 1689. https://doi.org/10.3390/nu16111689
Vass RA, Zhang M, Simon Sarkadi L, Üveges M, Tormási J, Benes EL, Ertl T, Vari SG. Effect of Holder Pasteurization, Mode of Delivery, and Infant’s Gender on Fatty Acid Composition of Donor Breast Milk. Nutrients. 2024; 16(11):1689. https://doi.org/10.3390/nu16111689
Chicago/Turabian StyleVass, Réka Anna, Miaomiao Zhang, Livia Simon Sarkadi, Márta Üveges, Judit Tormási, Eszter L. Benes, Tibor Ertl, and Sandor G. Vari. 2024. "Effect of Holder Pasteurization, Mode of Delivery, and Infant’s Gender on Fatty Acid Composition of Donor Breast Milk" Nutrients 16, no. 11: 1689. https://doi.org/10.3390/nu16111689
APA StyleVass, R. A., Zhang, M., Simon Sarkadi, L., Üveges, M., Tormási, J., Benes, E. L., Ertl, T., & Vari, S. G. (2024). Effect of Holder Pasteurization, Mode of Delivery, and Infant’s Gender on Fatty Acid Composition of Donor Breast Milk. Nutrients, 16(11), 1689. https://doi.org/10.3390/nu16111689