Bioavailability of Anthocyanins: Whole Foods versus Extracts
Abstract
:1. Introduction
2. Anthocyanins: Sources, Types, and Structure
3. Bioavailability: Definition and Study Designs
4. Metabolism of Anthocyanins in the Body
4.1. Oral Cavity
4.2. Gastric Digestion
4.3. Small Intestinal Absorption
4.4. Gut–Microbiota Interaction and Colonic Metabolism
5. Effects of Food Matrix on Anthocyanin Bioavailability
5.1. Effects of Food Matrix on Bioaccessibility, Digestion, and Absorption
5.2. Effects of the Food Matrix on the Bioactivity of Anthocyanins
5.2.1. Antioxidant Properties
5.2.2. Anti-Inflammatory Properties
5.2.3. Anticancer Properties
5.2.4. Obesity and Antidiabetic Properties
5.2.5. Antiplatelet Effects
5.2.6. Other Effects
ACN Form | Anthocyanin Source | Digestion | Absorption (Transport Efficiency) | Bioactivity/Health Effects | Ref. | ||
---|---|---|---|---|---|---|---|
Stability (S)/recovery (R)/degradation (D) | Dose | Cell model/dose | Transport efficiency | ||||
Pure | Commercial delphinidin chloride | 1 nM to 100 μM. | HUVEC | ND | Antioxidant | [58] | |
Pure | Cy-3G, and PA | ND | NA | SH-SY5Y | ND | Antioxidant and neuroprotective | [59] |
Purified | Chinese Vitis davidii red wine | ND | 200 μM/3 h | Caco-2; MKN-28 | 3–5%; 4–9% | Anticancer | [52] |
Purified vs. whole | Purple-fleshed sweet potato | D: 27–43% (no food matrix) 22–31% (food matrix) | 150 µL | MKN-28 (3 h) Caco-2 (2 h) | 5% 8% | ND | [53] |
Purified vs. whole | Red grape | D: 49–52% (no food matrix) 30–45% (food matrix) | ND | ND | [53] | ||
Purified | Strawberry | ND | Pg3G: 10 μg/mL Pg3R: 50 μg/mL | Caco-2 | Pg3R: 1.13%; Pg3G 0.28% | ND | [143] |
Purified | Wild Chinese blueberries | D: 42% | 50 mg/mL; 2 h | Caco-2 | 1.59% to 4.22% | ND | [106] |
Purified | Hibiscus sabdariffa L. | Gastric: 49% d3s, 70% c3s Intestine: 3% d3s, 10% c3s | ND | Antimicrobial | [140] | ||
Crude extract | Red grape/bilberry | MO-fermented ACNs | 50 μmol/L | Co-culture: Caco-2 and HUVECs | ND | Anti-inflammatory and antiadhesive | [56] |
Crude extract | Raspberry | ~5% in serum; ~70% in GIT | ND | ND | [144] | ||
Crude extract | Blueberry | 50 μg/mL | Caco-2 | ∼3–4% | ND | [55] | |
Crude extract | Cornelian cherry | Stomach: 107.23% Intestine: 26.46% | Antioxidant | [78] | |||
Crude extract | Purple rice | 76% degraded | BRL-3A | Antioxidant | [60] | ||
Crude extract (separate) | Blackberries, red apples, strawberries, and grapes. | S: gastric: 114–179% Intestine: 1.6–82.5% | ND | ND | [79] | ||
Crude extract | Black raspberries | ND | 1 mg/mL | 6 prostate cancer cells: LNCaP, LAPC-4, VCaP, 22Rv1, PC-3, and C4-2 | No effect on prostate cancer | [128] | |
Concentrate | Commercial Montmorency tart cherry | ND | PCA: 32 μM; VA: 4 μM | VSMC | Vascular protective | [57] | |
Extract | Commercial Bilberry and blackcurrant | Gastric > oral > intestine | 0.18, 0.37, 0.75, and 1.5 μg/mL | Caco- 2 | ND | Anti-inflammatory | [145] |
Extract | Commercial Black currant | ND | 180.3 ± 19.3 µmol/L; 20 min | Caco-2 | 11% at 20 min; Del > Cy | ND | [146] |
Juice | Pomegranate | R: 2.4–15.3% | ND | ND | [147] | ||
Wine | Commercial Chinese red wine | D: 14.5–28.3% | 0.5 ml | Caco-2 | 2.08–24.01%. | Antioxidant | [54] |
Wine | Commercial red wine | R: serum: 3.7%; colon: 37% | ND | ND | [115] | ||
Freeze-dried powder | Purple carrots (PC) and purple potatoes (PP) | R: PC: 45; PP: 71.8% | 200 µg/mL (semi-purified extract) | Caco-2 BBe; THP-1 | PC: 6%; PP: 36% | Anti-inflammatory | [119] |
Frozen | Wild blueberries | R: gastric: 97%; intestine: 17%; fermented: 1.5% | 10, 25, 50, 75, or 100 μg/ml | CRL 1790; HT 29 | ND | Antioxidant and anticancer | [94] |
ACN Form | ACN Source | Treatment and Dose | Model | Bioavailability | Bioactivity | Ref. |
---|---|---|---|---|---|---|
>99% pure Cy-3G | Commercial (blackberry) | 500 mg/kg gavage (n = 21); C3G at 1 mg/kg via tail vein injection (n = 40) | C57BL6J mice | Systemic bioavailability: parent Cy-3G and total ACNs were 1.7% and 3.3%, respectively. | NA | [7] |
>96.5% pure Cy-3G | Black rice | 3 groups Control (vehicle) olive oil only, 10% CCl4 in olive oil, CCl4 plus 800 mg/kg of C3G. | Male C57BL/6 mice (8 wks old) | Serum and liver: no Cy-3G but PCA detected, which was confirmed to be a metabolite of C3G. | Liver function: Cy-3G with CCL4 inhibited liver fibrosis and the activation of hepatic stellate cells. | [122] |
Purified Cy-3G | Commercial | 2 groups (n = 22) Control (0.2 mL of PBS), PBS with 668 nmol Cy-3G at specific time points (0.25, 5, 10, 15, 20 min) | Male Wistar rats (15 wks old); BW: 293–390 g | Plasma: Cy-3G > Mv-3G > Peo-3G > Pel-3G (AUC) Brain: Cy-3G > Pet-3G > Peo-3G (AUC) Liver: Cy-3G, Peo-3G, Pet-3G Kidney: Cy-3G, Peo-3G, Pet-3G Urine: Cy-3G, Peo-3G | NA | [148] |
Purified Cy-3G | Commercial | Cy-3G (50 mg/kg BW), PCA (5 mg/kg BW), or Cy-3G (50 mg/kg BW) plus PCA (5 mg/kg BW). 14 days; 4 weeks. | ApoE−/− mice | NA | PCA: antiatherogenic effect by inducing ABCA1 and ABCG1 expression in macrophages. | [149] |
Purified ACNs | Blackberry and bilberry | In situ perfusion, 45 min Purified ACNs: 9.2 nmol/min, blackberry ACNs: 9.0 nmol/min, and bilberry ACNs: 45.2 nmol/min. | Male Wistar rats, ~200 g BW | Small intestine: rate of absorption: 10.7 to 22.4% Plasma and urine: native cyanidin 3-glucoside was recovered in urine, and plasma from the aorta and mesenteric vein along with methylated and/or glucuronidated derivatives. Bile: cyanidin 3-glucoside and its methylated derivatives. | NA | [68] |
Purified | Commercial delphinidin chloride | sRANKL-induced osteoporosis model mice: (n = 17), 10 mg/kg/day. 17 days Ovariectomised (OVX) mice (n = 24) Control, 1 mg/kg, 3 mg/kg, 10 mg/kg; 28 days (n = 6 each) | Female C57BL/6 mice (7 wks old) | NA | Osteoprotective: ↓ bone loss in both RANKL-induced osteoporosis and OVX mice by suppressing the activity of NF-kB, c-Fos, and NFATc1, master transcriptional factors for osteoclastogenesis. | [141] |
Purified | Blueberry and bilberry | Study 1: 5% blueberry powder and an AIN-93 M diet for 10 days. Study 2: 10 mg bilberry ACNs in 10% dimethyl sulphoxide 2 h. | Female athymic nude mice (5–6 wks old) | Plasma: recovered 55–95% of ACNs, 63–100% of anthocyanidins. Lungs: Cy is readily detected. | NA | [75] |
Purified | Commercial (blackcurrant) (BC) | 4 groups (n = 5 each) Control, 63% BC juice concentrate, and 79% pure ACN. | Watanabe heritable hyperlipidaemic rabbits (6 wks old) | Plasma: detected at tmax 30 min Urine: 0.035% in the first 4 h | Antioxidant activity: TEAC: no effect; FRAP: BC juice > pure ACNs | [110] |
Purified | Mulberry ACN (MAS) | 4 groups, oral, 17 days Control, DSS-fed, DSS + 100 mg/kg BW of MAS, DSS + 200 mg/kg BW of MAS. | Male C57BL/6J mice (6–7 weeks old; 20 ± 2 g BW) | NA | Weight loss: p < 0.001; ↓ Disease activity index Anti-inflammatory and ↓ gut dysbiosis | [120] |
Crude extract | Black rice anthocyanin extract (BRAE) | 3 groups (n = 10 each) Control, DSS, and DSS + BRAE (200 mg/kg/day) by gavage. | The DSS murine model of colitis Male C57BL/6 mice (8 wks old) | NA | Inflammation: BRAE ↓ DSS-induced colonic inflammatory phenotypes, maintained colon length in mice, ↓ intestinal permeability, and improved intestinal barrier dysfunction in mice with colitis. Gut: BRAE ↓ inflammatory bacteria, and ↑ anti-inflammatory probiotics, including Akkermansia spp. | [116] |
ACN-rich extracts (AREs) | Commercial bilberry, chokeberry, and grape | 2 groups, 14 weeks Control diet and control diet with AREs. | Fischer 344 male rats (4 wks old) | Serum: detectable below quantifiable levels Urine: 7.8 mg/L to 23.6 mg/L Faeces: up to 2.0 mg/L in bilberry and chokeberry, and 0.7 mg/L in grape. | Colon cancer: bilberry ARE (p = 0.008) and chokeberry ARE (p = 0.015); grape ARE has no effect | [6] |
Crude extract | Bilberry | Study 1: 100 mg/kg BW and vehicle control group after 12 h of starvation. (n = 5 each) Study 2: 500 mg/kg body weight (n = 5) without prior starvation. Study 3: 0.5% by weight. (n = 10) and control. | Male C57BL/6 mice | Plasma: total ACNs peaked at 1.18 ± 0.3 μM after 15 min; Urine: 1.88%. Tissues: detected in the liver, kidney, testes, and lung, with a maximum of 605, 207, 149, and 116 pmol/g, respectively. not detectable in the spleen, thymus, heart, muscle, brain, white fat, or eyes. | NA | [150] |
Crude extract (32%) | Blueberry | 5 groups (n = 10 each), 6 days 1 vehicle group, a TNBS control group (inducing colitis), and three ACN groups receiving daily doses of 10, 20, and 40 mg/kg of ACNs. | Female C57BL/6 mice | NA | Anti-inflammatory (colon) also prevented weight loss, improved diarrhoea scores, morphology, and histology, | [117] |
Crude extract | Mulberry | 6 groups (n = 10 each) oral gavage; 8 weeks. 1. Young rats—normal diet and 300 mg/kg mulberry extract 2. Aging rats—normal diet, 100, 200, and 300 mg/kg mulberry extract. | Male Sprague-Dawley rats at 8 and 80 wks of age. | Cardiovascular protection alleviated endothelial senescence, oxidative stress in the aorta, and improved eNOS function in aging rats. | [151] | |
Crude extract | Purple yam | 7 groups (n = 10 each) Control; TNBS; TNBS with 75 mg/kg 5-aminosalicylic acid; 20, 40, and 80 mg/kg ACNs; 75 mg/kg 5-aminosalicylic acid without TNBS induction; and 80 mg/kg ACNs without TNBS induction. | Male C57BL/6 mice (6 wks old); colitis induced by TNBS intra-rectally. | NA | Anti-inflammatory: the TNBS-A80 group showed a stronger protective effect. TNF α, interferon γ in serum ↓. All doses of ACN reduced iNOS concentrations. Body weight: TNBS-A80 rapid weight recovery from day 3 | [121] |
ACN-rich extract | Portuguese blueberries | 4 groups (n = 10 each) Noncolitic control, TNBS-colitic control, TNBS-induced rats treated 10 mg/kg with ARF, and TNBS-induced rats treated with 100 mg/kg 5-5-aminosalicylic acid. | Male Wistar rats (4 weeks old); 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis rat model. | NA | Anti-inflammatory, ↓ leukocyte infiltration, antioxidant activity ARF > 5-ASA. | [118] |
Anthocyanin-extract | Commercial (bilberry) | 3 groups (n = 50) Control diet and diet with 1% and 10% bilberry extract. | Female BALB/c mice (20–22 g BW) colonic cancer induced by azoxymethan (AOM) and DSS (3 or 5%) | NA | Anticancer and anti-inflammatory | [152] |
ACN extract powder | Commercial (blackberry) | 2 groups (n = 6 each) Control diet, 15 g BB per kg diet (14.8 mmol ACNs per kg diet), 15 days | Male Wistar rats, 250 g BW | Stomach: 91.7%, jejunum: 80.2%, kidney: 66.1%, liver: 13.2%, brain: 84%, plasma: 41.7% urine: 0.19 ± 0.02%. | NA | [153] |
100% juice | Commercial (cranberry) CJ | 2 groups (n = 7 each) administered i.p. daily for 7 days. Control, 1 mL of CJ | 14 Syrian golden hamsters | Liver, kidney, heart, bladder, and brain | Antioxidant activity | [109] |
Juice | Lingonberry (LBJ) | 5 groups, 3 weeks Control, control + 33% LBJ, IR, IR + 33% LBJ, and IR + 20% LBJ | Sprague–Dawley rats Ischemia–reperfusion-induced (IR) | NA | Anti-inflammatory: kidney | [125] |
Juice | Grape–bilberry (80:20) | 2 groups (n = 24 each), 10 weeks Control and ACN-rich juice. | Male Fischer 344 rats (10 wks old) | Plasma and urine: low nanomolar concentrations. Small intestine: 570 ng/g | No effect on inflammation (serum) | [126] |
Individually quick freeze-dried | Tart cherry | 2 groups (n = 9 each) 1% tart cherry diet, 10% tart cherry diet (n = 9) | Male Wistar rats (6 wks old) | Tissues: the highest total ACNs found in the bladder and kidney for both groups, followed by the liver, heart, and brain. | NA | [154] |
Air-dried powder | Bilberry | 3 groups (n = 20) Low-fat diet (10%), high-fat diet (46%), and bilberry powder-supplemented high-fat diet (20% w/w). | Male C57BL/6N mice (8 wks old) | NA | Weight: no effect Hepatoprotective Metabolism: partially prevented the increase in serum cholesterol, glucose, and insulin levels. | [103] |
Baked and freeze-dried | Purple-fleshed potato (PFP) | 3 groups Control (AIN-93G diet) and 15% and 25% PFP diet. | The DSS murine model of colitis | NA | Anti-inflammatory (colon) ↓ gut dysbiosis | [123] |
Baked and freeze-dried | Purple-fleshed potatoes | 3 groups Control diet, 20% PFP supplemented diet, microbiota-ablated group. | Four-week-old male mice (C57BL6) | NA | Anti-inflammatory | [124] |
Freeze-dried powder | Blackberry | 2 groups (n = 18 each) Control diet and control diet supplemented with 200 g/kg blackberry powder plus 20 g/kg citric acid, 8 days | Male Wistar rats BW: ~170 g | Plasma: NIL Urine: cyanidin: ~0.26%; malvidin: 0.67% Caecal: recovered low amounts of glucosides and cyanidin | NA | [155] |
Freeze-dried powder | Jaboticaba peel | 5 different diets: (n = 8 each) Standard AIN-93G diet with 12% protein, modified AIN-93G high-fat diet (HF diet) with 12% protein and 35% lipids, and 3 groups of high-fat diet supplemented with 1%, 2%, and 4% freeze-dried jaboticaba peel powder. | Swiss male mice and Sprague-Dawley males | NA | Obesity: reduced insulin resistance. 2% FJP ↑ HDL-cholesterol levels by 41.65%. compared to the HF control freeze-dried No effect on energy intake, weight gain, and body fat. | [131] |
Freeze-dried powder | Blueberry (BB) and black raspberry (BRB) | 3 treatments, 6 groups Control diet, 5% w/w BB powder, 5% w/w BRB powder. | Female ACI rats (6 wks old) | NA | Anticancer (mammary) BB diet: 50.7% reduction; BRB diet: 42.4% reduction. | [129] |
Freeze-dried powder | Blueberry and black raspberry | 4 groups 1. AIN-93M diet (n = 25), BB diet (2.5% wt/wt) (n = 19), BRB diet (2.5% wt/wt); (n = 19), ellagic acid diet (400 ppm) (n = 22) | Female ACI rats (7–8 wks old) | NA | Anticancer (mammary) Tumour volume reduction BRB: 69%, BB: 40%. | [130] |
Freeze-dried powder | Blueberry | Control, 2% (w/w) BB. 8 wks, | Neutered male Yorkshire X Landrace pig (32–41 days old) | Brain: detected 279–432 fmol/g of tissue in the brain. | NA | [156] |
ACN Form | ACN Source | Treatment and Dose | Study Design | Participants | Bioaccessibility/Absorption Findings | Bioactivity Findings | Ref. |
---|---|---|---|---|---|---|---|
Capsule | Commercial (aronia berry) | 500 mg | Single-dose pharmacokinetic trial | 6 adults Age: 8–65 y BMI: 18.5–39 kg/m2 Former smokers | Plasma: 70–110% Urine: 43–119% Tmax: 1.0 h to 6.33 h | NA | [157] |
Capsule | Commercial (bilberry, blackcurrant) | 320 mg | Random, double-blind | 58 adults Age: 56–67 y 24 wks | Plasma: 9.37 nmol/L | Antidiabetic, antioxidant, anti-dyslipidaemia | [132] |
Juice | Commercial (20% blackcurrant) | 250 mL of juice or control drink. | Randomised, cross-over, double-blind, placebo-controlled acute meal study. | 9 males, 11 females; Age: 44.6 ± 13.3 y BMI: 23.9 ± 2.5 kg/m2 | Plasma: ↑ plasma ascorbic acid, insulin, and urinary ACNs. Microbial metabolites were detected. Urine: (p < 0.001) | Vascular function: no effect | [136] |
Juice | Commercial (blueberry, 216 mg cy) | 250 mL daily for 28 days. | Randomised | 4 males, 13 females; Age: 24–60 y | Urine: Total and parent anthocyanin varied 10-fold among all participants. | NA | [158] |
Juice | Commercial Concord grape juice | 200 mL of purple grape juice, control | Randomised, placebo-controlled, double-blind, counterbalanced-crossover study. | 7 males, 13 females; Age: 18–35 y | NA | ↑ Cognitive function | [142] |
Juice | Red grape | 400 mL red grape juice, organic red grape juice, and water (control). | Randomised, controlled, crossover study | 5 males, 19 females; Age: 20–55 y BMI: 18–30 kg/m2. | NA | Antioxidant activity | [159] |
Pulp, juice | Commercial (acai berry) Pulp, juice; 972 ± 27 mg/kg, 531 ± 0.2 mg/L ACN | 7 mL/kg BW of acai pulp, clarified acai juice, and applesauce (negative control). | Acute four-way crossover | 11 adults; Age: 21–31 y BMI: 17.8–25.9 kg/m2. | Plasma: Cmax 2321 and 1138 ng/L at tmax 2.2 and 2.0 h for pulp and juice Tmax 3 h for apple sauce, clarified acai juice, and acai pulp, and 2 h for the control beverage. | Antioxidant activity: in plasma pulp > juice. In urine, there is no difference. | [114] |
Juice | Blood orange | 600 mL juice; diet without juice for 21 days. | Crossover study | 16 females Age: 20–27 y BMI: 16.0–23.3 kg/m2. | Plasma: ↑ plasma vitamin C, cyanidin-3-glucoside, â-cryptoxanthin, and zeaxanthin. | Oxidative stress: improved resistance of lymphocyte DNA to oxidative stress. whereas no effect was observed on the lipid oxidation biomarker. | [160] |
Juice | Purple grumixama fruit | 10 mL juice/kg BW. | Observational In vitro: breast cancer cells MDA-MB-231 | 10 females. Age: 29.3 ± 7.7 y BMI: 23 ± 3 kg/m2. | Urine: no significant difference. | Anticancer (breast) | [161] |
Juice | Blueberry | 250 mL juice (~216 mg C3G) | 4 males, 13 females. Age: 24–60 y | Urine: 4% parent ACNs, and 96% ACN metabolites at 24 h. 226 known ACN and predicted ACN metabolites were identified, of which 91% were aglycones. AcnM persisted even after 5 days of abstaining from dietary Acn. | [162] | ||
Juice | Blood orange | 1 L of juice and control, 4 weeks. | Randomised, controlled, and crossover. | 4 males, 4 females. Age: 23–44 y BMI: 18–27 kg/m2. | Plasma: Nil Urine: ↑ urinary excretion of ACN at 24 h | Cardioprotective: no effect | [163] |
Concentrate | Montmorency tart cherry (MC) | 30- or 60-mL | Randomised, double-blinded, and crossover. | 12 males; Age: 26 ± 3 y BMI: 26.7 ± 3.2 kg/m2. | Plasma: ↑ ACN metabolites PCA, and VA at 1–2 h | Proliferation: no effect. Vascular function: ↑ only in combination with PCA and VA. | [57] |
Wine and juice | Commercial Red wine, red grape juice; (279.6, 283.5 mg ACN) | 400 mL of red wine or red grape juice | Non-randomised | 4 males, 5 females; Age: 24–34 y BMI: 19.7–26.3 kg/m2. | Urine: <1% for both treatments after 7 h. Plasma: red wine > red grape juice (76.3% relative bioavailability) | NA | [164] |
Urine: TACNs are 0.18% in red wine and 0.23% in red grape juice. | Antioxidant activity: ↑ grape juice > wine | [111] | |||||
Smoothie, juice, and extract | Grape/blueberry (80:20) | 0.33 litres of juice (841 mg ACN/L) or smoothie (983 mg ACN/L) | Randomised, double-blind, cross-over. | 5 males, 5 females; Age: 23–27 y BMI: 19.6–25.1 kg/m2 in vitro: Caco-2 | Plasma: Mal and peo > del, cy, pet juice > smoothie (80% relative bioavailability) Urine: juice > smoothie (71% relative bioavailability) Absorption: <0.1%. | NA | [89] |
Puree | Strawberry | 100 g, 200 g, and 400 g (~15 mmol, 30 mmol, and 60 mmol ACN) | Randomised, crossover | 6 males, females; Age: 45 ± 8.4 y BMI: 24.4 ± 3.31 kg/m2. | Urine: 50% in the first 4 h. Pel-3g major ACN and are not saturated at dose ≤ 60μmol. Recovery increased linearly with increasing doses. | [165] | |
Fruit | Bilberry | 180 g | Human | 13 males Age: 22–24 y BMI: 18.3–22.8 kg/m2. | Plasma: AUC 0–6 h = 386.0 nmol h/mL; Cmax = 139.1 nM. Urine: 0.21%. | NA | [166] |
Freeze-dried powder | Wild blueberries | 25 g or placebo beverage. | A single-blind, randomised, two-arm crossover-controlled study | 6 males, 6 females; Age: 20–45 y BMI: 25–33 kg/m2. | Plasma: ACNs were 1.1% and 3-CGA was 0.2%. Absorption: peonidin glycosides are the highest, and malvidin is the lowest. | [167] | |
Freeze-dried powder | Wild blueberry | 240, 400, and 560 g and control drink. | Randomised controlled, double-blind, crossover. | 21 males; Age: 18–40 y | Plasma: polyphenol metabolites (73% ± 2%) 32 total polyphenol metabolites were identified. | ↑ Vascular function | [137] |
Individually quick-frozen fruit | Blueberry | 300 g (348 mg ACNs), control jelly | Randomised, crossover. | 10 males; Age: 20.8 ± 1.6 y BMI: 22.5 ± 2.1 kg/m2 | Plasma: ↑ at 1 and 2 h after consumption. No ACNs were detected after 24 h. | Antioxidant, Vascular function: no effect | [168] |
Steamed | Red cabbage | 100, 200, and 300 g | Randomised, crossover | 6 males, 6 females; Mean age: 46 y Mean BMI: 25.4 kg/m2 | Urine: 11 red cabbage ACNs and 4 CAN metabolites detected. Recovery: a linear decrease with increasing doses. Nonacylated anthocyanins 4 times higher than the acylated type. | NA | [169] |
Cooked whole | Pigmented potatoes | 150 g white (WP), yellow (YP), and purple (PP) potatoes, 6 wks. | Randomised, controlled, placebo, or crossover. | 36 adults; Age: 18–40 y | NA | Anti-inflammatory: YP, PP Antioxidant activity: PP (160%) | [127] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Wu, B.; Fu, W.; Reddivari, L. The Anti-Inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int. J. Mol. Sci. 2019, 20, 2588. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lim, H.J.; Lee, D.Y.; Kim, J.S.; Kim, D.H.; Lee, H.J.; Kim, H.D.; Jeon, R.; Ryu, J.H. In Vitro Anti-Inflammatory Activity of Lignans Isolated from Magnolia fargesii. Bioorg. Med. Chem. Lett. 2009, 19, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Edwards, A.; Martín-Pérez, L.; Jiménez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G.; Larrosa, M. Anti-Inflammatory Effect of Polyphenols from Chilean Currants (Ribes Magellanicum and R. Punctatum) after in Vitro Gastrointestinal Digestion on Caco-2 Cells: Anti-Inflammatory Activity of in Vitro Digested Chilean Currants. J. Funct. Foods 2019, 59, 329–336. [Google Scholar] [CrossRef]
- Li, C.X.; Zhao, X.H.; Zuo, W.F.; Zhang, T.L.; Zhang, Z.Y.; Chen, X. Sen Phytochemical Profiles, Antioxidant, and Antiproliferative Activities of Red-Fleshed Apple as Affected by in Vitro Digestion. J. Food Sci. 2020, 85, 2952–2959. [Google Scholar] [CrossRef] [PubMed]
- Jakesevic, M.; Aaby, K.; Borge, G.I.A.; Jeppsson, B.; Ahrné, S.; Molin, G. Antioxidative Protection of Dietary Bilberry, Chokeberry and Lactobacillus plantarum HEAL19 in Mice Subjected to Intestinal Oxidative Stress by Ischemia-Reperfusion. BMC Complement. Altern. Med. 2011, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Lala, G.; Malik, M.; Zhao, C.; He, J.; Kwon, Y.; Giusti, M.M.; Magnuson, B.A. Anthocyanin-Rich Extracts Inhibit Multiple Biomarkers of Colon Cancer in Rats. Nutr. Cancer 2006, 54, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Marczylo, T.H.; Cooke, D.; Brown, K.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and Metabolism of the Putative Cancer Chemopreventive Agent Cyanidin-3-Glucoside in Mice. Cancer Chemother. Pharmacol. 2009, 64, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C. Cranberry and Blueberry: Evidence for Protective Effects against Cancer and Vascular Diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef]
- Ramirez-Tortosa, C.; Andersen, Ø.M.; Gardner, P.T.; Morrice, P.C.; Wood, S.G.; Duthie, S.J.; Collins, A.R.; Duthie, G.G. Anthocyanin-Rich Extract Decreases Indices of Lipid Peroxidation and DNA Damage in Vitamin E-Depleted Rats. Free Radic. Biol. Med. 2001, 31, 1033–1037. [Google Scholar] [CrossRef]
- Min, H.K.; Kim, S.-M.; Baek, S.-Y.; Woo, J.-W.; Park, J.-S.; Cho, M.-L.; Lee, J.; Kwok, S.-K.; Kim, S.W.; Park, S.-H. Anthocyanin Extracted from Black Soybean Seed Coats Prevents Autoimmune Arthritis by Suppressing the Development of Th17 Cells and Synthesis of Proinflammatory Cytokines by Such Cells, via Inhibition of NF-ΚB. PLoS ONE 2015, 10, e0138201. [Google Scholar] [CrossRef]
- Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as Antimicrobial Agents of Natural Plant Origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tang, X.; Mao, B.; Zhang, Q.; Tian, F.; Zhao, J.; Cui, S.; Chen, W. Anti-Aging Effects and Mechanisms of Anthocyanins and Their Intestinal Microflora Metabolites. Crit. Rev. Food Sci. Nutr. 2022, 64, 2358–2374. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Monteiro, V.V.S.; de Souza Gomes, R.; do Carmo, M.M.; da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14, 315. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Hutabarat, R.P.; Beta, T.; Feng, J.; Ma, K.; Li, D.; Huang, W. Hypoglycemic and Hypolipidemic Effects of Blueberry Anthocyanins by AMPK Activation: In Vitro and in Vivo Studies. Redox Biol. 2021, 46, 102100. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins—Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 2019, 8, 550. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors Influencing Levels of Phytochemicals in Selected Fruit and Vegetables during Pre- and Post-Harvest Food Processing Operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Remini, H.; Dahmoune, F.; Sahraoui, Y.; Madani, K.; Kapranov, V.N.; Kiselev, E.F. Recent Advances on Stability of Anthocyanins. RUDN J. Agron. Anim. Ind. 2018, 13, 257–286. [Google Scholar] [CrossRef]
- Grand View Research. GVR Report. Cover Nutraceuticals Market Size, Share & Trends Report. Nutraceuticals Market Size, Share & Trends Analysis Report. by Product. (Dietary Supplements, Functional Foods, Functional Beverages), by Ingredient, by Application, by Region, and. Segment Forecasts, 2023–2030; Grand View Research: San Francisco, CA, USA, 2023. [Google Scholar]
- Zhang, P.; Li, Y.; Wang, T.; Cai, Z.; Cao, H.; Zhang, H.; Cao, Y.; Chen, B.; Yang, D. Statistics on the Bioactive Anthocyanin/Proanthocyanin Products in China Online Sales. Food Sci. Nutr. 2021, 9, 5428–5434. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Gross, M.D.; Tapsell, L.C. Food Synergy: An Operational Concept for Understanding Nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Walton, M.C. The Bioavailability and Absorption of Anthocyanins: Towards a Better Understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Gull, A.; Sheikh, M.A.; Kour, J.; Zehra, B.; Zargar, I.A.; Wani, A.A.; Bhatia, S.; Lone, M.A. Anthocyanins. In Nutraceuticals and Health Care; Elsevier: Amsterdam, The Netherlands, 2021; pp. 317–329. ISBN 9780323897792. [Google Scholar]
- Kammerer, D.R. Anthocyanins. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 61–80. ISBN 9780081003923. [Google Scholar]
- Bendokas, V.; Stanys, V.; Mažeikienė, I.; Trumbeckaite, S.; Baniene, R.; Liobikas, J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Domitrovic, R. The Molecular Basis for the Pharmacological Activity of Anthocyans. Curr. Med. Chem. 2011, 18, 4454–4469. [Google Scholar] [CrossRef] [PubMed]
- Cortez, R.; Luna-Vital, D.A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 180–198. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and Stabilization of Anthocyanins Using Organic Molecules and Encapsulation Techniques. Curr. Plant Biol. 2022, 29, 100238. [Google Scholar] [CrossRef]
- Wu, J.; Guan, Y.; Zhong, Q. Yeast Mannoproteins Improve Thermal Stability of Anthocyanins at PH 7.0. Food Chem. 2015, 172, 121–128. [Google Scholar] [CrossRef]
- Li, Y. Effects of Different Metal Ions on the Stability of Anthocyanins as Indicators. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 052015. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, X.; Lu, B.; Zhang, J. Preparation of Blueberry Anthocyanin Liposomes and Changes of Vesicle Properties, Physicochemical Properties, in Vitro Release, and Antioxidant Activity before and after Chitosan Modification. Food Sci. Nutr. 2022, 10, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, X.; Ren, G.; Bu, Q.; Ruan, Y.; Feng, Y.; Li, B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, B.; Wang, D.; Luo, L.; Liu, G.; Zhou, Y. Microencapsulation and Stability Analysis of Blueberry Anthocyanins. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 052133. [Google Scholar] [CrossRef]
- FDA; CDER; Purdief. Guidance for Industry Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs-General. Considerations Draft Guidance; Federal Register: Rockville, MD, USA, 2014. [Google Scholar]
- Vauzour, D. Dietary Polyphenols as Modulators of Brain Functions: Biological Actions and Molecular Mechanisms Underpinning Their Beneficial Effects. Oxid. Med. Cell Longev. 2012, 2012, 914273. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of Bioactive Food Compounds: A Challenging Journey to Bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability and Bioaccessibility of Food Bioactive Compounds; Overview and Assessment by in Vitro Methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2862–2884. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Liu, G.; Hao, S.; Wang, C.; Wang, Y. Black Rice Anthocyanin-Rich Extract and Rosmarinic Acid, Alone and in Combination, Protect against DSS-Induced Colitis in Mice. Food Funct. 2018, 9, 2796–2808. [Google Scholar] [CrossRef]
- Rehman, S.; Ali Ashfaq, U.; Sufyan, M.; Shahid, I.; Ijaz, B.; Hussain, M. The Insight of In Silico and In Vitro Evaluation of Beta Vulgaris Phytochemicals against Alzheimer’s Disease Targeting Acetylcholinesterase. PLoS ONE 2022, 17, e0264074. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Kubow, S.; Iskandar, M.M.; Sabally, K.; Azadi, B.; Sadeghi Ekbatan, S.; Kumarathasan, P.; Das, D.D.; Prakash, S.; Burgos, G.; zum Felde, T. Biotransformation of Anthocyanins from Two Purple-Fleshed Sweet Potato Accessions in a Dynamic Gastrointestinal System. Food Chem. 2016, 192, 171–177. [Google Scholar] [CrossRef]
- Kubow, S.; Iskandar, M.; Melgar-Bermudez, E.; Sleno, L.; Sabally, K.; Azadi, B.; How, E.; Prakash, S.; Burgos, G.; Felde, T. zum Effects of Simulated Human Gastrointestinal Digestion of Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells. Nutrients 2017, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Ribnicky, D.M.; Roopchand, D.E.; Oren, A.; Grace, M.; Poulev, A.; Lila, M.A.; Havenaar, R.; Raskin, I. Effects of a High Fat Meal Matrix and Protein Complexation on the Bioaccessibility of Blueberry Anthocyanins Using the TNO Gastrointestinal Model (TIM-1). Food Chem. 2014, 142, 349–357. [Google Scholar] [CrossRef]
- Lu, F.; MacPherson, C.W.; Tremblay, J.; Iskandar, M.M.; Kubow, S. Anthocyanin-Rich Blue Potato Meals Protect against Polychlorinated Biphenyl-Mediated Disruption of Short-Chain Fatty Acid Production and Gut Microbiota Profiles in a Simulated Human Digestion Model. Front. Nutr. 2023, 10, 1130841. [Google Scholar] [CrossRef]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can Dynamic in Vitro Digestion Systems Mimic the Physiological Reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- Han, F.; Oliveira, H.; Brás, N.F.; Fernandes, I.; Cruz, L.; De Freitas, V.; Mateus, N. In Vitro Gastrointestinal Absorption of Red Wine Anthocyanins–Impact of Structural Complexity and Phase II Metabolization. Food Chem. 2020, 317, 126398. [Google Scholar] [CrossRef]
- Oliveira, H.; Perez-Gregório, R.; de Freitas, V.; Mateus, N.; Fernandes, I. Comparison of the in Vitro Gastrointestinal Bioavailability of Acylated and Non-Acylated Anthocyanins: Purple-Fleshed Sweet Potato vs. Red Wine. Food Chem. 2019, 276, 410–418. [Google Scholar] [CrossRef]
- Xu, C.; Kong, L.; Tian, Y. Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as Well as the Antioxidant Activity in Chinese Red Wine. Foods 2022, 11, 3108. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Akoh, C.C.; Fischer, J.; Krewer, G. Absorption of Anthocyanins from Blueberry Extracts by Caco-2 Human Intestinal Cell Monolayers. J. Agric. Food Chem. 2006, 54, 5651–5658. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, S.; Kunz, C.; Domann, E.; Würdemann, N.; Unger, F.; Römpp, A.; Rudloff, S. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro. Nutrients 2016, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Keane, K.M.; Bell, P.G.; Lodge, J.K.; Constantinou, C.L.; Jenkinson, S.E.; Bass, R.; Howatson, G. Phytochemical Uptake Following Human Consumption of Montmorency Tart Cherry (L. Prunus Cerasus) and Influence of Phenolic Acids on Vascular Smooth Muscle Cells in Vitro. Eur. J. Nutr. 2016, 55, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Megson, I.L. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. Oxid. Med. Cell Longev. 2017, 2017, 9260701. [Google Scholar] [CrossRef] [PubMed]
- Tarozzi, A.; Morroni, F.; Hrelia, S.; Angeloni, C.; Marchesi, A.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective Effects of Anthocyanins and Their in Vivo Metabolites in SH-SY5Y Cells. Neurosci. Lett. 2007, 424, 36–40. [Google Scholar] [CrossRef]
- Sun, D.; Huang, S.; Cai, S.; Cao, J.; Han, P. Digestion Property and Synergistic Effect on Biological Activity of Purple Rice (Oryza sativa L.) Anthocyanins Subjected to a Simulated Gastrointestinal Digestion in Vitro. Food Res. Int. 2015, 78, 114–123. [Google Scholar] [CrossRef]
- de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The Pharmacokinetics of Anthocyanins and Their Metabolites in Humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; McDonald, J.E.; Liu, Y.; Fillmore, S.A.E. Flavonoid Metabolites in Human Urine during Blueberry Anthocyanin Intake. J. Agric. Food Chem. 2017, 65, 1582–1591. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, F.; Wang, F.; Cheng, J.; Zou, H.; Li, Y.; Du, J.; Kan, J. Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies. Nutrients 2023, 15, 970. [Google Scholar] [CrossRef]
- Lila, M.A. Anthocyanins and Human Health: An In Vitro Investigative Approach. J. Biomed. Biotechnol. 2004, 2004, 306–313. [Google Scholar] [CrossRef]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and Biotransformation of Various Dietary Anthocyanins in Vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Deng, Z.; Liu, R.; Loewen, S.; Tsao, R. Bioaccessibility, in Vitro Antioxidant Activities and in Vivo Anti-Inflammatory Activities of a Purple Tomato (Solanum lycopersicum L.). Food Chem. 2014, 159, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Talavéra, S.; Felgines, C.; Texier, O.; Lamaison, J.-L.; Besson, C.; Rémésy, C. Anthocyanins Are Efficiently Absorbed from the Stomach in Anesthetized Rats. J. Nutr. 2003, 133, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
- Verine Talavé, S.; Felgines, C.; Texier, O.; Besson, C.; Manach, C.; Lamaison, J.-L.; Ré, C.; Sy, M. Anthocyanins are efficiently absorbed from the small intestine in rats. J. Nutr. 2004, 134, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; He, F.; Li, L.; Guo, L.; Zhang, B.; Yu, S.; Zhao, W. Bioavailability Based on the Gut Microbiota: A New Perspective. Microbiol. Mol. Biol. Rev. MMBR 2020, 84, e00072-19. [Google Scholar] [CrossRef] [PubMed]
- Jayarathne, S.; Stull, A.J.; Park, O.H.; Kim, J.H.; Thompson, L.; Moustaid-Moussa, N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol. Nutr. Food Res. 2019, 63, 1900149. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.; Huang, J.; Wong, H.C.; Li, J.; Zhao, D. Metabolic Fate of Black Raspberry Polyphenols in Association with Gut Microbiota of Different Origins in Vitro. Food Chem. 2023, 404, 134644. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.; Tiwari, A.; Sharma, S.; Tiwari, V.; Sheoran, B.; Ali, U.; Garg, M. Effect of Anthocyanins on Gut Health Markers, Firmicutes-Bacteroidetes Ratio and Short-Chain Fatty Acids: A Systematic Review via Meta-Analysis. Sci. Rep. 2023, 13, 1729. [Google Scholar] [CrossRef]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; Mcdougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Aqil, F.; Vadhanam, M.V.; Jeyabalan, J.; Cai, J.; Singh, I.P.; Gupta, R.C. Detection of Anthocyanins/Anthocyanidins in Animal Tissues. J. Agric. Food Chem. 2014, 62, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Mallery, S.R.; Budendorf, D.E.; Larsen, M.P.; Pei, P.; Tong, M.; Holpuch, A.S.; Larsen, P.E.; Stoner, G.D.; Fields, H.W.; Chan, K.K.; et al. Effects of Human Oral Mucosal Tissue, Saliva, and Oral Microflora on Intraoral Metabolism and Bioactivation of Black Raspberry Anthocyanins. Cancer Prev. Res. 2011, 4, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Kamonpatana, K.; Giusti, M.M.; Chitchumroonchokchai, C.; MorenoCruz, M.; Riedl, K.M.; Kumar, P.; Failla, M.L. Susceptibility of Anthocyanins to Ex Vivo Degradation in Human Saliva. Food Chem. 2012, 135, 738–747. [Google Scholar] [CrossRef]
- David, L.; Danciu, V.; Moldovan, B.; Filip, A. Effects of in Vitro Gastrointestinal Digestion on the Antioxidant Capacity and Anthocyanin Content of Cornelian Cherry Fruit Extract. Antioxidants 2019, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Victoria-Campos, C.I.; de Jesús Ornelas-Paz, J.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Failla, M.L.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra-Junquera, V. Gastrointestinal Metabolism and Bioaccessibility of Selected Anthocyanins Isolated from Commonly Consumed Fruits. Food Chem. 2022, 383, 132451. [Google Scholar] [CrossRef] [PubMed]
- Fazzari, M.; Fukumoto, L.; Mazza, G.; Livrea, M.A.; Tesoriere, L.; Marco, L. Di In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus avium L.). J. Agric. Food Chem. 2008, 56, 3561–3568. [Google Scholar] [CrossRef]
- Fernandes, I.; Faria, A.; de Freitas, V.; Calhau, C.; Mateus, N. Multiple-Approach Studies to Assess Anthocyanin Bioavailability. Phytochem. Rev. 2015, 14, 899–919. [Google Scholar] [CrossRef]
- Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. The Stomach as a Site for Anthocyanins Absorption from Food. FEBS Lett. 2003, 544, 210–213. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Wulandari, L.; Wartono, M.W.; Munawaroh, H.; Ramelan, A.H. The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conf. Ser. Mater. Sci. Eng. 2017, 193, 012047. [Google Scholar] [CrossRef]
- Fossen, T.; Cabrita, L.; Andersen, O.M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar] [CrossRef]
- Miyazawa, T.; Nakagawa, K.; Kudo, M.; Muraishi, K.; Someya, K. Direct Intestinal Absorption of Red Fruit Anthocyanins, Cyanidin-3-Glucoside and Cyanidin-3,5-Diglucoside, into Rats and Humans. J. Agric. Food Chem. 1999, 47, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Pestana, D.; Azevedo, J.; Martel, F.; de Freitas, V.; Azevedo, I.; Mateus, N.; Calhau, C. Absorption of Anthocyanins through Intestinal Epithelial Cells - Putative Involvement of GLUT2. Mol. Nutr. Food Res. 2009, 53, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of Anthocyanins and Derivatives. J. Funct. Foods 2014, 7, 54–66. [Google Scholar] [CrossRef]
- Sun, H.; Chow, E.C.; Liu, S.; Du, Y.; Pang, K.S. The Caco-2 Cell Monolayer: Usefulness and Limitations. Expert. Opin. Drug Metab. Toxicol. 2008, 4, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, S.; Rudloff, S.; Asseburg, H.; Borsch, C.; Fröhling, B.; Unger, F.; Dold, S.; Spengler, B.; Römpp, A.; Kunz, C. Uptake and Bioavailability of Anthocyanins and Phenolic Acids from Grape/Blueberry Juice and Smoothie In Vitro and In Vivo. Br. J. Nutr. 2015, 113, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Quintanar, L.; Roa, R.I.L.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals that Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediat. Inflamm. 2018, 2018, 9734845. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Santos, A.R.D.O.D.; Carvalho, A.C.A.D.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.D.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-KB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef]
- Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay between Anthocyanins and Gut Microbiota. J. Agric. Food Chem. 2014, 62, 6898–6902. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and Biological Activity of Wild Blueberry (Vaccinium angustifolium) Polyphenols during Simulated in Vitro Gastrointestinal Digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef]
- Keppler, K.; Humpf, H.-U. Metabolism of Anthocyanins and Their Phenolic Degradation Products by the Intestinal Microflora. Bioorg. Med. Chem. 2005, 13, 5195–5205. [Google Scholar] [CrossRef]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Boto-Ordóñez, M.; Urpi-Sarda, M.; Queipo-Ortuño, M.I.; Tulipani, S.; Tinahones, F.J.; Andres-Lacueva, C. High Levels of Bifidobacteria Are Associated with Increased Levels of Anthocyanin Microbial Metabolites: A Randomized Clinical Trial. Food Funct. 2014, 5, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.E.; Gibson, G.R.; de Pascual-Teresa, S. Metabolism of Anthocyanins by Human Gut Microflora and Their Influence on Gut Bacterial Growth. J. Agric. Food Chem. 2012, 60, 3882–3890. [Google Scholar] [CrossRef]
- Frank, D.N.; St. Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of Anthocyanin-Rich Foods in Obesity Control through Gut Microbiota Interactions. BioFactors 2017, 43, 507–516. [Google Scholar] [CrossRef]
- Park, S.; Choi, M.; Lee, M. Effects of Anthocyanin Supplementation on Reduction of Obesity Criteria: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Pemmari, T.; Hämäläinen, M.; Ryyti, R.; Peltola, R.; Moilanen, E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int. J. Mol. Sci. 2022, 23, 11021. [Google Scholar] [CrossRef]
- Capuano, E.; Oliviero, T.; van Boekel, M.A.J.S. Modeling Food Matrix Effects on Chemical Reactivity: Challenges and Perspectives. Crit. Rev. Food Sci. Nutr. 2018, 58, 2814–2828. [Google Scholar] [CrossRef]
- Podsȩdek, A.; Redzynia, M.; Klewicka, E.; Koziołkiewicz, M. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion. Biomed. Res. Int. 2014, 2014, 365738. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.; Wu, Y.; Wang, D.; Wei, Y.; Wu, J.; Ji, B. Stability and Absorption of Anthocyanins from Blueberries Subjected to a Simulated Digestion Process. Int. J. Food Sci. Nutr. 2014, 65, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, Y.; Tao, Y.; Li, D.; Xie, G.; Show, P.L.; Lee, S.Y. In Vitro Gastrointestinal Digestion and Fecal Fermentation Reveal the Effect of Different Encapsulation Materials on the Release, Degradation and Modulation of Gut Microbiota of Blueberry Anthocyanin Extract. Food Res. Int. 2020, 132, 109098. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Bariexca, T.; Ezdebski, J.; Redan, B.W.; Vinson, J. Pure Polyphenols and Cranberry Juice High in Anthocyanins Increase Antioxidant Capacity in Animal Organs. Foods 2019, 8, 340. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, I.L.F.; Dragsted, L.O.; Ravn-haren, G.; Freese, R.; Rasmussen, S.E. Absorption and Excretion of Black Currant Anthocyanins in Humans and Watanabe Heritable Hyperlipidemic Rabbits. J. Agric. Food Chem. 2003, 51, 2813–2820. [Google Scholar] [CrossRef]
- Bitsch, R.; Netzel, M.; Frank, T.; Strass, G.; Bitsch, I. Bioavailability and Biokinetics of Anthocyanins from Red Grape Juice and Red Wine. J. Biomed. Biotechnol. 2004, 2004, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah, E.; Khayamy, M.; Heidari, R.; Jamee, R. Effect of Sugar Treatment on Stability of Anthocyanin Pigments in Berries. J. Biol. Sci. 2007, 7, 1412–1417. [Google Scholar] [CrossRef]
- Tsai, P.J.; Delva, L.; Yu, T.Y.; Huang, Y.T.; Dufossé, L. Effect of Sucrose on the Anthocyanin and Antioxidant Capacity of Mulberry Extract during High Temperature Heating. Food Res. Int. 2005, 38, 1059–1065. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Rios, J.; Jilma-Stohlawetz, P.; Pacheco-Palencia, L.A.; Meibohm, B.; Talcott, S.T.; Derendorf, H. Pharmacokinetics of Anthocyanins and Antioxidant Effects after the Consumption of Anthocyanin-Rich Açai Juice and Pulp (Euterpe oleracea Mart.) in Human Healthy Volunteers. J. Agric. Food Chem. 2008, 56, 7796–7802. [Google Scholar] [CrossRef]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from Red Wine-Their Stability under Simulated Gastrointestinal Digestion. Phytochemistry 2005, 66, 2540–2548. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, F.; He, X.; Fu, S.; Fan, B. Anthocyanin Extract from Black Rice Attenuates Chronic Inflammation in DSS-Induced Colitis Mouse Model by Modulating the Gut Microbiota. Open Chem. 2023, 21, 20220288. [Google Scholar] [CrossRef]
- Yu, H.; Wu, L.H.; Xu, Z.L.; Dong, D.; He, S.A. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice. Evid. Based Complement. Altern. Med. 2011, 2011, 525462. [Google Scholar] [CrossRef]
- Pereira, S.R.; Pereira, R.; Figueiredo, I.; Freitas, V.; Dinis, T.C.P.; Almeida, L.M. Comparison of Anti-Inflammatory Activities of an Anthocyanin-Rich Fraction from Portuguese Blueberries (Vaccinium corymbosum L.) and 5-Aminosalicylic Acid in a TNBS-Induced Colitis Rat Model. PLoS ONE 2017, 12, e0174116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, Bioavailability, and Anti-Inflammatory Effects of Anthocyanins from Purple Root Vegetables Using Mono- and Co-Culture Cell Models. Mol. Nutr. Food Res. 2017, 61, 1600928. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Ni, J.; Zhang, M.; Xu, Y.; Li, Y.; Karim, N.; Chen, W. Mulberry Anthocyanins Ameliorate DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota. Antioxidants 2022, 11, 1674. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Hu, S.; Zhang, H.; Guan, Q.; Yang, Y.; Wang, X. Anti-Inflammatory Effects of Dioscorea Alata L. Anthocyanins in a TNBS-Induced Colitis Model. Food Funct. 2017, 8, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shen, T.; Tang, X.; Yang, W.; Guo, H.; Ling, W. Cyanidin-3-: O -β-Glucoside Combined with Its Metabolite Protocatechuic Acid Attenuated the Activation of Mice Hepatic Stellate Cells. Food Funct. 2017, 8, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, T.; Wu, B.; Fu, W.; Xu, B.; Pamuru, R.R.; Kennett, M.; Vanamala, J.K.P.; Reddivari, L. Anthocyanin-Containing Purple Potatoes Ameliorate DSS-Induced Colitis in Mice. J. Nutr. Biochem. 2021, 93, 108616. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Fu, W.; Kennett, M.; Cox, A.D.; Lee, D.; Vanamala, J.K.P.; Reddivari, L. Role of Gut Microbiota in the Anti-Colitic Effects of Anthocyanin-Containing Potatoes. Mol. Nutr. Food Res. 2021, 65, 2100152. [Google Scholar] [CrossRef]
- Isaak, C.K.; Wang, P.; Prashar, S.; Karmin, O.; Brown, D.C.W.; Debnath, S.C.; Siow, Y.L. Supplementing Diet with Manitoba Lingonberry Juice Reduces Kidney Ischemia-Reperfusion Injury. J. Sci. Food Agric. 2017, 97, 3065–3076. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.; Seifert, S.; Bub, A.; Fröhling, B.; Dold, S.; Unger, F.; Römpp, A.; Watzl, B. Anthocyanin-Rich Juice Does Not Affect Gut-Associated Immunity in Fischer Rats. Mol. Nutr. Food Res. 2013, 57, 1753–1761. [Google Scholar] [CrossRef]
- Kaspar, K.L.; Park, J.S.; Brown, C.R.; Mathison, B.D.; Navarre, D.A.; Chew, B.P. Pigmented Potato Consumption Alters Oxidative Stress and Inflammatory Damage in Men. J. Nutr. 2011, 141, 108–111. [Google Scholar] [CrossRef]
- Eskra, J.N.; Dodge, A.; Schlicht, M.J.; Bosland, M.C. Effects of Black Raspberries and Their Constituents on Rat Prostate Carcinogenesis and Human Prostate Cancer Cell Growth In Vitro. Nutr. Cancer 2020, 72, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Ravoori, S.; Vadhanam, M.V.; Aqil, F.; Gupta, R.C. Inhibition of Estrogen-Mediated Mammary Tumorigenesis by Blueberry and Black Raspberry. J. Agric. Food Chem. 2012, 60, 5547–5555. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, H.S.; Srinivasan, C.; Gupta, R.C. Dietary Berries and Ellagic Acid Diminish Estrogen-Mediated Mammary Tumorigenesis in ACI Rats. Nutr. Cancer 2008, 60, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.Y.C.; Dragano, N.R.; Lenquiste, S.A.; Batista, A.G.; Palazzo, C.C.; Maróstica, M.R. Freeze-Dried Jaboticaba Peel Powder Rich in Anthocyanins Did Not Reduce Weight Gain and Lipid Content in Mice and Rats. Arch. Latinoam. Nutr. 2012, 62, 37–43. [Google Scholar]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified Anthocyanin Supplementation Reduces Dyslipidemia, Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients. J. Nutr. 2015, 145, 742–748. [Google Scholar] [CrossRef]
- Shanmuganayagam, D.; Beahm, M.R.; Osman, H.E.; Folts, J.D.; Krueger, C.G.; Reed, J.D. Grape Seed and Grape Skin Extracts Elicit a Greater Antiplatelet Effect When Used in Combination than When Used Individually in Dogs and Humans. J. Nutr. 2002, 132, 3592–3598. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; del Pino-García, R.; George, T.W.; Vidal-Diez, A.; Heiss, C.; Spencer, J.P.E. Impact of Processing on the Bioavailability and Vascular Effects of Blueberry (Poly)Phenols. Mol. Nutr. Food Res. 2014, 58, 1952–1961. [Google Scholar] [CrossRef]
- Keane, K.M.; Haskell-Ramsay, C.F.; Veasey, R.C.; Howatson, G. Montmorency Tart Cherries (Prunus cerasus L.) Modulate Vascular Function Acutely, in the Absence of Improvement in Cognitive Performance. Br. J. Nutr. 2016, 116, 1935–1944. [Google Scholar] [CrossRef]
- Jin, Y.; Alimbetov, D.; George, T.; Gordon, M.H.; Lovegrove, J.A. A Randomised Trial to Investigate the Effects of Acute Consumption of a Blackcurrant Juice Drink on Markers of Vascular Reactivity and Bioavailability of Anthocyanins in Human Subjects. Eur. J. Clin. Nutr. 2011, 65, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P.E. Intake and Time Dependence of Blueberry Flavonoid-Induced Improvements in Vascular Function: A Randomized, Controlled, Double-Blind, Crossover Intervention Study with Mechanistic Insights into Biological Activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Onuh, J.O.; Dawkins, N.L.; Aluko, R.E. Cardiovascular Disease Protective Properties of Blueberry Polyphenols (Vaccinium corymbosum): A Concise Review. Food Prod. Process. Nutr. 2023, 5, 27. [Google Scholar] [CrossRef]
- Caponio, G.R.; Noviello, M.; Calabrese, F.M.; Gambacorta, G.; Giannelli, G.; De Angelis, M. Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds. Antioxidants 2022, 11, 567. [Google Scholar] [CrossRef]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The Digestibility of Hibiscus Sabdariffa L. Polyphenols Using an in Vitro Human Digestion Model and Evaluation of Their Antimicrobial Activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, S.; Suzuki, K.; Muramatsu, M.; Nomura, A.; Inoue, F.; Into, T.; Yoshiko, Y.; Niida, S. Delphinidin, One of the Major Anthocyanidins, Prevents Bone Loss through the Inhibition of Excessive Osteoclastogenesis in Osteoporosis Model Mice. PLoS ONE 2014, 9, e97177. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Ramsay, C.F.; Stuart, R.C.; Okello, E.J.; Watson, A.W. Cognitive and Mood Improvements Following Acute Supplementation with Purple Grape Juice in Healthy Young Adults. Eur. J. Nutr. 2017, 56, 2621–2631. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Xie, J.; Xie, L.; Mo, J.; Chen, W. Bioavailability, Absorption, and Metabolism of Pelargonidin-Based Anthocyanins Using Sprague-Dawley Rats and Caco-2 Cell Monolayers. J. Agric. Food Chem. 2021, 69, 7841–7850. [Google Scholar] [CrossRef]
- McDougall, G.J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing Potential Bioavailability of Raspberry Anthocyanins Using an in Vitro Digestion System. J. Agric. Food Chem. 2005, 53, 5896–5904. [Google Scholar] [CrossRef]
- Speciale, A.; Bashllari, R.; Muscarà, C.; Molonia, M.S.; Saija, A.; Saha, S.; Wilde, P.J.; Cimino, F. Anti-Inflammatory Activity of an In Vitro Digested Anthocyanin-Rich Extract on Intestinal Epithelial Cells Exposed to TNF-α. Molecules 2022, 27, 5368. [Google Scholar] [CrossRef]
- Steinert, R.E.; Ditscheid, B.; Netzel, M.; Jahreis, G. Absorption of Black Currant Anthocyanins by Monolayers of Human Intestinal Epithelial Caco-2 Cells Mounted in Ussing Type Chambers. J. Agric. Food Chem. 2008, 56, 4995–5001. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Fornasaro, S.; Ziberna, L.; Gasperotti, M.; Tramer, F.; Vrhovšek, U.; Mattivi, F.; Passamonti, S. Determination of Cyanidin 3-Glucoside in Rat Brain, Liver and Kidneys by UPLC/MS-MS and Its Application to a Short-Term Pharmacokinetic Study. Sci. Rep. 2016, 6, 22815. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xia, M.; Yan, X.; Li, D.; Wang, L.; Xu, Y.; Jin, T.; Ling, W. Gut Microbiota Metabolism of Anthocyanin Promotes Reverse Cholesterol Transport in Mice Via Repressing MiRNA-10b. Circ. Res. 2012, 111, 967–981. [Google Scholar] [CrossRef]
- Hiroyuki, S.; Takeshi, O.; Akiharu, K.; Saori, K.; Toshinao, G.; Shigenori, K.; Hirokazu, K.A.; Shimoi, K. Distribution and Excretion of Bilberry Anthocyanines in Mice. J. Agric. Food Chem. 2009, 57, 7681–7686. [Google Scholar] [CrossRef]
- Lee, G.H.; Hoang, T.H.; Jung, E.S.; Jung, S.J.; Han, S.K.; Chung, M.J.; Chae, S.W.; Chae, H.J. Anthocyanins Attenuate Endothelial Dysfunction through Regulation of Uncoupling of Nitric Oxide Synthase in Aged Rats. Aging Cell 2020, 19, e13279. [Google Scholar] [CrossRef]
- Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins Prevent Colorectal Cancer Development in a Mouse Model. Digestion 2017, 95, 275–280. [Google Scholar] [CrossRef]
- Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin Metabolism in Rats and Their Distribution to Digestive Area, Kidney, and Brain. J. Agric. Food Chem. 2005, 53, 3902–3908. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Wolforth, J.; McNish, R.; Kaufman, P.B.; Bolling, S.F. Tissue Bioavailability of Anthocyanins from Whole Tart Cherry in Healthy Rats. Food Chem. 2015, 171, 26–31. [Google Scholar] [CrossRef]
- Felgines, C.; Texier, O.; Besson, C.; Fraisse, D.; Lamaison, J.-L.; Ré, C.; Sy, M. Blackberry anthocyanins are slightly bioavailable in rats. J. Nutr. 2002, 132, 1249–1253. [Google Scholar] [CrossRef]
- Milbury, P.E.; Kalt, W. Xenobiotic Metabolism and Berry Flavonoid Transport across the blood−Brain Barrier. J. Agric. Food Chem. 2010, 58, 3950–3956. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Lee, S.G.; Vance, T.M.; Wang, Y.; Kim, B.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Bioavailability of Anthocyanins and Colonic Polyphenol Metabolites Following Consumption of Aronia Berry Extract. Food Chem. 2016, 211, 860–868. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Liu, Y.; Fillmore, S.A.E. Human Anthocyanin Bioavailability: Effect of Intake Duration and Dosing. Food Funct. 2017, 8, 4563–4569. [Google Scholar] [CrossRef]
- Toaldo, I.M.; Cruz, F.A.; Alves, T.D.L.; De Gois, J.S.; Borges, D.L.G.; Cunha, H.P.; Da Silva, E.L.; Bordignon-Luiz, M.T. Bioactive Potential of Vitis Labrusca L. Grape Juices from the Southern Region of Brazil: Phenolic and Elemental Composition and Effect on Lipid Peroxidation in Healthy Subjects. Food Chem. 2015, 173, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Visioli, F.; Gardana, C.; Grande, S.; Brusamolino, A.; Galvano, F.; Galvano, G.; Porrini, M. Effects of Blood Orange Juice Intake on Antioxidant Bioavailability and on Different Markers Related to Oxidative Stress. J. Agric. Food Chem. 2005, 53, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.L.; Costa, G.R.; Dörr, F.A.; Ong, T.P.; Pinto, E.; Lajolo, F.M.; Hassimotto, N.M.A. Potential Antiproliferative Activity of Polyphenol Metabolites against Human Breast Cancer Cells and Their Urine Excretion Pattern in Healthy Subjects Following Acute Intake of a Polyphenol-Rich Juice of Grumixama (Eugenia brasiliensis Lam.). Food Funct. 2017, 8, 2266–2274. [Google Scholar] [CrossRef]
- Kalt, W.; Liu, Y.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Anthocyanin Metabolites Are Abundant and Persistent in Human Urine. J. Agric. Food Chem. 2014, 62, 3926–3934. [Google Scholar] [CrossRef]
- Giordano, L.; Coletta, W.; Tamburrelli, C.; D’Imperio, M.; Crescente, M.; Silvestri, C.; Rapisarda, P.; Reforgiato Recupero, G.; De Curtis, A.; Iacoviello, L.; et al. Four-Week Ingestion of Blood Orange Juice Results in Measurable Anthocyanin Urinary Levels but Does Not Affect Cellular Markers Related to Cardiovascular Risk: A Randomized Cross-over Study in Healthy Volunteers. Eur. J. Nutr. 2012, 51, 541–548. [Google Scholar] [CrossRef]
- Frank, T.; Netzel, M.; Strass, G.; Bitsch, R.; Bitsch, I. Bioavailability of Anthocyanidin-3-Glucosides Following Consumption of Red Wine and Red Grape Juice. Can. J. Physiol. Pharmacol. 2003, 81, 423–435. [Google Scholar] [CrossRef]
- Carkeet, C.; Clevidence, B.A.; Novotny, J.A. Anthocyanin Excretion by Humans Increases Linearly with Increasing Strawberry Dose. J. Nutr. 2008, 138, 897–902. [Google Scholar] [CrossRef]
- Sakakibara, H.; Ichikawa, Y.; Tajima, S.; Makino, Y.; Wakasugi, Y.; Shimoi, K.; Kobayashi, S.; Kumazawa, S.; Goda, T. Practical Application of Flavonoid-Poor Menu Meals to the Study of the Bioavailability of Bilberry Anthocyanins in Human Subjects. Biosci. Biotechnol. Biochem. 2014, 78, 1748–1752. [Google Scholar] [CrossRef]
- Zhong, S.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B. Characterization of Wild Blueberry Polyphenols Bioavailability and Kinetic Profile in Plasma over 24-h Period in Human Subjects. Mol. Nutr. Food Res. 2017, 61, 1700405. [Google Scholar] [CrossRef]
- Del Bo, C.; Riso, P.; Campolo, J.; Møller, P.; Loft, S.; Klimis-Zacas, D.; Brambilla, A.; Rizzolo, A.; Porrini, M. A Single Portion of Blueberry (Vaccinium corymbosum L) Improves Protection against DNA Damage but Not Vascular Function in Healthy Male Volunteers. Nutr. Res. 2013, 33, 220–227. [Google Scholar] [CrossRef]
- Charron, C.S.; Clevidence, B.A.; Britz, S.J.; Novotny, J.A. Effect of Dose Size on Bioavailability of Acylated and Nonacylated Anthocyanins from Red Cabbage (Brassica oleracea L. Var. capitata). J. Agric. Food Chem. 2007, 55, 5354–5362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumkum, R.; Aston-Mourney, K.; McNeill, B.A.; Hernández, D.; Rivera, L.R. Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients 2024, 16, 1403. https://doi.org/10.3390/nu16101403
Kumkum R, Aston-Mourney K, McNeill BA, Hernández D, Rivera LR. Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients. 2024; 16(10):1403. https://doi.org/10.3390/nu16101403
Chicago/Turabian StyleKumkum, Ravish, Kathryn Aston-Mourney, Bryony A. McNeill, Damián Hernández, and Leni R. Rivera. 2024. "Bioavailability of Anthocyanins: Whole Foods versus Extracts" Nutrients 16, no. 10: 1403. https://doi.org/10.3390/nu16101403
APA StyleKumkum, R., Aston-Mourney, K., McNeill, B. A., Hernández, D., & Rivera, L. R. (2024). Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients, 16(10), 1403. https://doi.org/10.3390/nu16101403