Virgin Olive Oil Ranks First in a New Nutritional Quality Score Due to Its Compositional Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recommended Dietary Intakes and Health Claims
2.2. Nutritional Composition of Edible Oils and Fats
2.3. Algorithm and Calculation of the Nutritional Quality Score
2.4. Statistical Analysis
3. Results
3.1. Nutritional Quality Score of Edible Oils and Fats
3.2. Correlation between Components of Oils and Fats and the Nutritional Quality Score
3.3. Prediction of the Nutritional Quality Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jinadasa, B.K.K.K.; Van Bockstaele, F.; Cvejic, J.H.; Simal-Gandara, J. Current trends and next generation of future edible oils. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; pp. 203–231. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible plant oil: Global status, health issues, and perspectives. Front. Plant Sci. 2020, 11, 1315. [Google Scholar] [CrossRef]
- Pușcaș, A.; Mureșan, V.; Socaciu, C.; Muste, S. Oleogels in food: A review of current and potential applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemist Society, 6th ed.; AOCS: Urbana, IL, USA, 2012. [Google Scholar]
- FAO/WHO. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- FAO/WHO. APPENDIX 1 Recommended nutrient intakes-minerals*. In Human Vitamins and Mineral Requirements. Report of a Joint FAO/WHO Expert Consultation Bangkok, Thailand; FAO: Roma, Italy, 2002. [Google Scholar]
- EFSA. DRV Finder. Diet. Ref. Values EU. FATS, Adults—Both Genders—18 Years. 2019. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 20 April 2023).
- Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B.; Berg, H.V.L.; Verhagen, H. Labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to labelling reference intake values for n-3 and n-6 poly. EFSA J. 2009, 1–11. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids (Commentary). J. Am. Diet. Assoc. 2002, 102, 1621–1631. [Google Scholar] [CrossRef]
- Van Horn, L.; Carson, J.A.S.; Appel, L.J.; Burke, L.E.; Economos, C.; Karmally, W.; Lancaster, K.; Lichtenstein, A.H.; Johnson, R.K.; Thomas, R.J.; et al. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines: A scientific statement from the American Heart Association. Circulation 2016, 134, e505–e529. [Google Scholar] [CrossRef]
- Zhao, X.; Xiang, X.; Huang, J.; Ma, Y.; Sun, J.; Zhu, D. Studying the evaluation model of the nutritional quality of edible vegetable oil based on dietary nutrient reference intake. ACS Omega 2021, 6, 6691–6698. [Google Scholar] [CrossRef]
- Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2693. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products N and A (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- Tarassevych, O. Health and Nutritional Claims for Food Products. 2021. Available online: https://food.ec.europa.eu/safety/labelling-and-nutrition/nutrition-and-health-claims (accessed on 20 April 2023).
- Balentine, D.A. Petition for Authorized Health Claim for Oleic Acid in Edible Oils and a Reduction in the Risk of Coronary Heart Disease—Docket Number FDA-2017-Q-0807. FDA: Washington, DC, USA, 2018. Available online: https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-review-qualified-health-claim-petition-oleic-acid-and-risk-coronary-heart-disease (accessed on 20 April 2023).
- FDA. Completes Review Qualified Health Claim Petition Oleic Acid and Risk Coronary Heart Disease. Available online: https://www.fda.gov (accessed on 20 April 2023).
- Efsa, N.D.A. EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014, 12, 3894. [Google Scholar]
- Schwingshackl, L.; Krause, M.; Schmucker, C.; Hoffmann, G.; Rücker, G.; Meerpohl, J.J. Impact of different types of olive oil on cardiovascular risk factors: A systematic review and network meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.; Ard, J.; Bazzano, L.; Heymsfield, S.; Mayer-Davis, E.; Sabaté, J.; Snetselaar, L.; Van Horn, L.; Schneeman, B.; English, L.K.; et al. Dietary Patterns and All-Cause Mortality: A Systematic Review. USDA Nutr. Evid. Syst. Rev. 2020, 2. [Google Scholar] [CrossRef]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.C.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 2019, CD009825. [Google Scholar] [CrossRef] [Green Version]
- Mahmudiono, T.; Jasim, S.A.; Karim, Y.S.; Bokov, D.O.; Abdelbasset, W.K.; Akhmedov, K.S.; Yasin, G.; Thangavelu, L.; Mustafa, Y.F.; Shoukat, S.; et al. The effect of flaxseed oil consumtion on blood pressure among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized clinical trials. Phytother. Res. 2022, 36, 3766–3773. [Google Scholar] [CrossRef]
- Musazadeh, V.; Jafarzadeh, J.; Keramati, M.; Zarezadeh, M.; Ahmadi, M.; Farrokhian, Z.; Ostadrahimi, A. Flaxseed oil supplementation augments antioxidant capacity and alleviates oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Altern. Med. 2021, 2021, 4438613. [Google Scholar] [CrossRef]
- Sun, Y.; Neelakantan, N.; Wu, Y.; Lote-Oke, R.; Pan, A.; van Dam, R.M. Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. J. Nutr. 2015, 145, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Badrul Hisham, M.D.; Aziz, Z.; Huin, W.K.; Teoh, C.H.; Abd Jamil, A.H. The effects of palm oil on serum lipid profiles: A systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 2020, 29, 523–536. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, D.; Yang, Y.; Zhang, L. Effect of palm oil consumption on plasma lipid concentrations related to cardiovascular disease: A systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 2019, 28, 495–506. [Google Scholar] [CrossRef]
- Duarte, A.C.; Spiazzi, B.F.; Merello, E.N.; Amazarray, C.R.; de Andrade, L.S.; Socal, M.P.; Trujillo, A.J.; Brietzke, E.; Colpani, V.; Gerchman, F. Misinformation in nutrition through the case of coconut oil: An online before-and-after study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1375–1384. [Google Scholar] [CrossRef]
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation 2020, 141, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Swarnamali, H.; Ranasinghe, P.; Misra, A. Health effects of coconut oil: Summary of evidence from systematic reviews and meta-analysis of interventional studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Spiazzi, B.F.; Zingano, C.P.; Merello, E.N.; Wayerbacher, L.F.; Teixeira, P.P.; Farenzena, L.P.; de Araujo, C.; Amazarray, C.R.; Colpani, V.; et al. The effects of coconut oil on the cardiometabolic profile: A systematic review and meta-analysis of randomized clinical trials. Lipids Health Dis. 2022, 21, 83. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zhao, Y.J.; Khoo, A.L.; Yeo, T.C.; Yong, Q.W.; Lim, B.P. Impact of coconut oil consumption on cardiovascular health: A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 249–259. [Google Scholar] [CrossRef]
- Silva, T.J.; Barrera-Arellano, D.; Ribeiro, A.P.B. Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Int. Food Res. J. 2021, 147, 110486. [Google Scholar] [CrossRef]
- Duarte, M.K.R.N.; de Araújo, J.N.G.; Duarte, V.H.R.; de Oliveira, K.M.; de Oliveira, J.M.; Carioca, A.A.F.; Bortolin, R.H.; Rezende, A.A.; Hirata, M.H.; Hirata, R.D.; et al. The relationship of the oleic acid level and ECHDC3 mRNA expression with the extent of coronary lesion. Lipids Health Dis. 2016, 15, 144. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, A.R.; Sampaio, G.R.; da Silva, L.R.; Portal, V.L.; Markoski, M.M.; de Quadros, A.S.; Rogero, M.M.; da Silva Torres, E.A.F.; Marcadenti, A. Effects of extra virgin olive oil and pecans on plasma fatty acids in patients with stable coronary artery disease. Nutrition 2021, 91, 111411. [Google Scholar] [CrossRef]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Heileson, J.L. Dietary saturated fat and heart disease: A narrative review. Nutr. Rev. 2020, 78, 474–485. [Google Scholar] [CrossRef]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice. Guidelines. Circulation 2014, 129 (Suppl. S2), S76–S99. [Google Scholar] [CrossRef] [Green Version]
- Fialon, M.; Salas-Salvadó, J.; Babio, N.; Touvier, M.; Hercberg, S.; Galan, P. Is fop nutrition label nutri-score well understood by consumers when comparing the nutritional quality of added fats, and does it negatively impact the image of olive oil? Foods 2021, 10, 2209. [Google Scholar] [CrossRef] [PubMed]
Nutrient 1 | FAO/WHO [5,6] | USDA/FDA [9] | EFSA [7,8] | 2000 Kcal | 750 Kcal | 100 g Fat/Oil |
---|---|---|---|---|---|---|
SFA (g/day) | <10% E | ALAP | ALAP | <22.2 | <7.0 | <9.0 |
18:1 | >70% | >70 | ||||
18:2 (g/day) | 2–3% E | 5–10% E | 4% E | 3.6–13.5 | 1.3–4.7 | 1.6–6.1 |
18:3 (g/day) | 0.5–2% E | 0.6–1.2% E | 0.5% E | 1.1–4.4 | 0.4–1.7 | 0.5–2.2 |
EPA + DHA (g/day) | 0.25–2.00 | 0.25 | 0.25–2.00 | 0.09–0.70 | 0.11–0.90 | |
TFA (mg/day) | <1% E | ALAP | ALAP | <2.2 | <0.7 | <0.9 |
Tocopherols (Vit. E) (mg/day) | 7.5–10 | 12–15 | 11–13 | 7.5–15.0 | 2.6–5.3 | 3.4–6.7 |
Hydroxytyrosol | 5 mg/20 mL [13] | 25 mg/100 mL | ||||
Phytosterols (g/day) | 1.5–3.0 [12] | 1.5–3.0 | 0.5–1.1 | 0.7–1.4 |
Rank | Oil | Sum | Normalized Sum 1 | Score |
---|---|---|---|---|
1 | Olive, virgin | 8 | 22 | 100 |
2 | Flaxseed | 5 | 19 | 86 |
3 | Olive, common | 5 | 19 | 86 |
4 | Olive, pomace | 5 | 19 | 86 |
5 | Evening primrose | 4 | 18 | 82 |
6 | Sunflower, high-oleic | 4 | 18 | 82 |
7 | Sesame | 4 | 18 | 82 |
8 | Avocado | 2 | 16 | 73 |
9 | Chia | 2 | 16 | 73 |
9 | Corn | 2 | 16 | 73 |
11 | Grapeseed | 2 | 16 | 73 |
12 | Salmon | 2 | 16 | 73 |
13 | Sardine | 2 | 16 | 73 |
14 | Walnut | 2 | 16 | 73 |
15 | Almond | 1 | 15 | 68 |
16 | Camelia | 1 | 15 | 68 |
17 | Canola | 1 | 15 | 68 |
18 | Hazelnut | 1 | 15 | 68 |
19 | Herring | 1 | 15 | 68 |
20 | Safflower | 1 | 15 | 68 |
21 | Sunflower | 1 | 15 | 68 |
22 | Argan | −1 | 13 | 59 |
23 | Sacha-inchi | −1 | 13 | 59 |
24 | Soybean | −1 | 13 | 59 |
25 | Cotton | −2 | 12 | 55 |
26 | Palm | −2 | 12 | 55 |
27 | Peanut | −2 | 12 | 55 |
28 | Beef tallow | −4 | 10 | 45 |
29 | Lard | −4 | 10 | 45 |
30 | Butter | −7 | 7 | 32 |
31 | Margarine | −11 | 3 | 14 |
32 | Coconut | −14 | 0 | 0 |
Nutrient | Spearman’s Rho Coefficient | p | CI (95%) |
---|---|---|---|
SFA | −0.503 | 0.0034 | −0.724 to −0.187 |
18:1 | 0.190 | 0.3067 | −0.176 to 0.510 |
18:2 | 0.158 | 0.3892 | −0.202 to 0.480 |
18:3 | 0.326 | 0.0684 | −0.025 to 0.606 |
Tocopherols | 0.039 | 0.8329 | −0.314 to 0.382 |
Phytosterols | 0.357 | 0.0449 | 0.009 to 0.628 |
Nutrient | AUC | SD 1 | 95% CI 2 | p Value | Cut-off | Sensitivity | Specificity | Youden Index |
---|---|---|---|---|---|---|---|---|
SFA | 0.906 | 0.045 | 0.818–0.995 | <0.0001 | 42.2 | 0.906 | 0.875 | 0.781 |
18:1 | 0.770 | 0.062 | 0.648–0.892 | 0.0002 | 52.8 | 0.844 | 0.677 | 0.521 |
18:2 | 0.892 | 0.042 | 0.809–0.975 | <0.0001 | 53.9 | 0.844 | 0.844 | 0.688 |
18:3 | 0.954 | 0.032 | 0.891–1.016 | <0.0001 | 12.2 | 0.969 | 0.875 | 0.844 |
Tocopherols | 0.718 | 0.070 | 0.582–0.855 | 0.0027 | 67.6 | 0.656 | 0.681 | 0.338 |
Phytosterols | 0.777 | 0.072 | 0.637–0.918 | 0.0001 | 76.4 | 0.781 | 0.781 | 0.563 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-González, A.; Quintero-Flórez, A.; Ruiz-Méndez, M.-V.; Perona, J.S. Virgin Olive Oil Ranks First in a New Nutritional Quality Score Due to Its Compositional Profile. Nutrients 2023, 15, 2127. https://doi.org/10.3390/nu15092127
García-González A, Quintero-Flórez A, Ruiz-Méndez M-V, Perona JS. Virgin Olive Oil Ranks First in a New Nutritional Quality Score Due to Its Compositional Profile. Nutrients. 2023; 15(9):2127. https://doi.org/10.3390/nu15092127
Chicago/Turabian StyleGarcía-González, Aída, Angelica Quintero-Flórez, María-Victoria Ruiz-Méndez, and Javier S. Perona. 2023. "Virgin Olive Oil Ranks First in a New Nutritional Quality Score Due to Its Compositional Profile" Nutrients 15, no. 9: 2127. https://doi.org/10.3390/nu15092127
APA StyleGarcía-González, A., Quintero-Flórez, A., Ruiz-Méndez, M. -V., & Perona, J. S. (2023). Virgin Olive Oil Ranks First in a New Nutritional Quality Score Due to Its Compositional Profile. Nutrients, 15(9), 2127. https://doi.org/10.3390/nu15092127