Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Recruitment
2.1.2. Analysis Participants
2.2. Data Collection
2.3. Groups According to Frequency of Snacking after Dinner
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, Y.; Li, T.; Xie, Y.; Tao, S.; Yang, Y.; Zou, L.; Zhang, D.; Zhai, S.; Tao, F.; Wu, X. Association of chronotype, social jetlag, sleep duration and depressive symptoms in Chinese college students. J. Affect. Disord. 2023, 320, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Contreras, C.; Zerón-Rugerio, M.F.; Izquierdo-Pulido, M. Life before and after COVID-19: The ‘new normal’ benefits the regularity of daily sleep and eating routines among college students. Nutrients 2022, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muñoz, P.M.; Carmona-Torres, J.M.; Rivera-Picón, C.; Fabbian, F.; Manfredini, R.; Rodríguez-Borrego, M.A.; López-Soto, P.J. Associations between chronotype, adherence to the Mediterranean diet and sexual opinion among university students. Nutrients 2020, 12, 1900. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Tamari, Y.; Yamaguchi, H.; Onodera, S.; Nagasaki, K. Examination of sleep factors affecting social jetlag in Japanese male college students. Chronobiol. Int. 2022, 1–7. [Google Scholar] [CrossRef]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Tamari, Y.; Yamaguchi, H.; Onodera, S.; Nagasaki, K. The relationship between variation in time of waking up and going to bed for a week and social jetlag in young men. Jpn. J. Biometeorol. 2022, 59, 15–24. [Google Scholar] [CrossRef]
- Rutters, F.; Lemmens, S.G.; Adam, T.C.; Bremmer, M.A.; Elders, P.J.; Nijpels, G.; Dekker, J.M. Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile? J. Biol. Rhythms 2014, 29, 377–383. [Google Scholar] [CrossRef]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social jetlag and obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef]
- Islam, Z.; Akter, S.; Kochi, T.; Hu, H.; Eguchi, M.; Yamaguchi, M.; Kuwahara, K.; Kabe, I.; Mizoue, T. Association of social jetlag with metabolic syndrome among Japanese working population: The Furukawa Nutrition and Health Study. Sleep Med. 2018, 51, 53–58. [Google Scholar] [CrossRef]
- Parsons, M.J.; Moffitt, T.E.; Gregory, A.M.; Goldman-Mellor, S.; Nolan, P.M.; Poulton, R.; Caspi, A. Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int. J. Obes. 2015, 39, 842–848. [Google Scholar] [CrossRef]
- Wong, P.M.; Hasler, B.P.; Kamarck, T.W.; Muldoon, M.F.; Manuck, S.B. Social jetlag, chronotype, and cardiometabolic risk. J. Clin. Endocrinol. Metab. 2015, 100, 4612–4620. [Google Scholar] [CrossRef] [PubMed]
- Levandovski, R.; Dantas, G.; Fernandes, L.C.; Caumo, W.; Torres, I.; Roenneberg, T.; Hidalgo, M.P.; Allebrandt, K.V. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol. Int. 2011, 28, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Komada, Y.; Okajima, I.; Kitamura, S.; Inoue, Y. A survey on social jetlag in Japan: A nationwide, cross-sectional internet survey. Sleep Biol. Rhythms 2019, 17, 417–422. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.F.; Hernáez, Á.; Porras-Loaiza, A.P.; Cambras, T.; Izquierdo-Pulido, M. Eating jet lag: A marker of the variability in meal timing and its association with body mass index. Nutrients 2019, 11, 2980. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Palla, L.; Walshe, I.; Vingeliene, S.; Ellis, J.G. Long sleep duration and social jetlag are associated inversely with a healthy dietary pattern in adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1-Y4. Nutrients 2018, 10, 1131. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K.; American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; et al. Meal timing and frequency: Implications for cardiovascular disease prevention: A scientific statement from the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.A.J.L.; Saxena, R.; Garaulet, M. Timing of food intake: Identifying contributing factors to design effective interventions. Adv. Nutr. 2019, 10, 606–620. [Google Scholar] [CrossRef]
- Garaulet, M.; Gomez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.C.; Ordovás, J.M.; Scheer, F.A.J.L. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef]
- Bandín, C.; Scheer, F.A.; Luque, A.J.; Ávila-Gandía, V.; Zamora, S.; Madrid, J.A.; Gómez-Abellán, P.; Garaulet, M. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int. J. Obes. 2015, 39, 828–833. [Google Scholar] [CrossRef]
- Ruiz-Lozano, T.; Vidal, J.; de Hollanda, A.; Scheer, F.A.J.L.; Garaulet, M.; Izquierdo-Pulido, M. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin. Nutr. 2016, 35, 1308–1314. [Google Scholar] [CrossRef]
- Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Vollmers, C.; Gill, S.; DiTacchio, L.; Pulivarthy, S.R.; Le, H.D.; Panda, S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. USA 2009, 106, 21453–21458. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Makino, S.; Suiko, T.; Nagamori, Y.; Iwai, T.; Aono, M.; Shibata, S. Association between irregular meal timing and the mental health of Japanese workers. Nutrients 2021, 13, 2775. [Google Scholar] [CrossRef]
- Sasawaki, Y.; Inokawa, H.; Obata, Y.; Nagao, S.; Yagita, K. Association of social jetlag and eating patterns with sleep quality and daytime sleepiness in Japanese high school students. J. Sleep Res. 2023, 32, e13661. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Hida, A.; Aritake, S.; Higuchi, S.; Enomoto, M.; Kato, M.; Vetter, C.; Roenneberg, T.; Mishima, K. Validity of the Japanese Version of the Munich ChronoType Questionnaire. Chronobiol. Int. 2014, 31, 845–850. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Roßbach, S.; Diederichs, T.; Nöthlings, U.; Buyken, A.E.; Alexy, U. Relevance of chronotype for eating patterns in adolescents. Chronobiol. Int. 2018, 35, 336–347. [Google Scholar] [CrossRef]
- Gill, S.; Panda, S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef]
- Silva, C.M.; Mota, M.C.; Miranda, M.T.; Paim, S.L.; Waterhouse, J.; Crispim, C.A. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. Chronobiol. Int. 2016, 33, 740–748. [Google Scholar] [CrossRef]
- Moreno, J.P.; Crowley, S.J.; Alfano, C.A.; Hannay, K.M.; Thompson, D.; Baranowski, T. Potential circadian and circannual rhythm contributions to the obesity epidemic in elementary school age children. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 25. [Google Scholar] [CrossRef]
- Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 2019, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal timing regulates the human circadian system. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.M.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Nutrition and the circadian system. Br. J. Nutr. 2016, 116, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.M.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr. Rev. 2016, 37, 584–608. [Google Scholar] [CrossRef]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.R. The impact of sleep on adolescent depressed mood, alertness and academic performance. J. Adolesc. 2013, 36, 1025–1033. [Google Scholar] [CrossRef]
Class Days | School Holidays | p-Value | Effect Size | 95% Confidence Interval | T-Score | |
---|---|---|---|---|---|---|
First mealtime (h) | 9.8 ± 2.4 | 11.0 ± 2.7 | 0.000 | 0.50 | 1.187–1.402 | 23.612 |
Last mealtime (h) | 20.2 ± 1.5 | 20.3 ± 1.8 | 0.011 | 0.06 | 0.019–0.148 | 2.534 |
Midpoint of non-eating duration (h) | 3.0 ± 1.5 | 3.7 ± 1.7 | 0.000 | 0.45 | 0.624–0.754 | 20.759 |
Non-eating duration (h) | 13.5 ± 2.5 | 14.8 ± 3.0 | 0.000 | 0.43 | 1.090–1.332 | 19.690 |
Mean ± SD | |
---|---|
Relative social jet lag (h) | 0.9 ± 1.2 |
Absolute social jet lag (h) | 1.1 ± 0.9 |
Chronotype (h) | 5.3 ± 1.5 |
Relative eating jet lag (h) | 0.7 ± 1.4 |
Absolute eating jet lag (h) | 1.1 ± 1.0 |
Midpoint of non-eating duration (h) | 3.2 ± 1.5 |
First mealtime (h) | 10.1 ± 2.2 |
Last mealtime (h) | 20.2 ± 1.5 |
Non-eating duration (h) | 13.9 ± 2.4 |
Standard Deviations in First Mealtime | Standard Deviations in Last Mealtime | Coefficient of Variation in Non-Eating Duration | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |
Absolute social jet lag | 0.408 | 0.368–0.447 | 0.000 | 0.146 | 0.099–0.192 | 0.000 | 0.276 | 0.232–0.319 | 0.000 |
Chronotype | 0.347 | 0.305–0.388 | 0.000 | 0.136 | 0.089–0.182 | 0.000 | 0.198 | 0.152–0.243 | 0.000 |
Absolute eating jet lag | 0.571 | 0.538–0.602 | 0.000 | 0.299 | 0.255–0.342 | 0.000 | 0.370 | 0.328–0.410 | 0.000 |
Midpoint of non-eating duration during school holidays | 0.486 | 0.449–0.521 | 0.000 | 0.196 | 0.150–0.241 | 0.000 | 0.280 | 0.236–0.323 | 0.000 |
Difference in first mealtime between school holidays and class days | 0.690 | 0.664–0.714 | 0.000 | 0.160 | 0.113–0.206 | 0.000 | 0.493 | 0.456–0.528 | 0.000 |
Difference in last mealtime between school holidays and class days | 0.182 | 0.136–0.228 | 0.000 | 0.627 | 0.597–0.655 | 0.000 | 0.345 | 0.302–0.386 | 0.000 |
Difference in non-eating duration between school holidays and class days | 0.581 | 0.549–0.612 | 0.000 | 0.245 | 0.200–0.289 | 0.000 | 0.594 | 0.562–0.624 | 0.000 |
Group | p-Value | F-Value | |||
---|---|---|---|---|---|
Skipping | Low Frequency | High Frequency | |||
Number | 1154 | 444 | 105 | ||
Social jet lag (h) | 1.1 ± 0.9 | 1.2 ± 1.0 | 1.2 ± 0.9 | 0.041 | 3.192 |
Chronotype (h) | 5.2 ± 1.4 | 5.4 ± 1.5 a | 5.9 ± 1.5 a,b | 0.000 | 15.62 |
Eating jet lag (h) | 1.1 ± 1.0 | 1.2 ± 1.1 a | 1.2 ± 1.1 | 0.019 | 3.954 |
Midpoint of non-eating duration in class days (h) | 2.8 ± 1.5 | 3.3 ± 1.4 a | 3.9 ± 1.5 a,b | 0.000 | 36.892 |
Midpoint of non-eating duration in school holidays (h) | 3.5 ± 1.6 | 3.9 ± 1.6 a | 4.6 ± 1.8 a,b | 0.000 | 35.223 |
Group | p-Value | F-Value | |||
---|---|---|---|---|---|
Skipping | Low Frequency | High Frequency | |||
Number | 1154 | 444 | 105 | ||
First mealtime (h) | 10.0 ± 2.3 | 10.3 ± 2.1 | 10.3 ± 2.1 | 0.098 | 2.329 |
Last mealtime (h) | 19.9 ± 1.3 | 20.6 ± 1.1 a | 21.9 ± 1.5 a,b | 0.000 | 135.214 |
Midpoint of non-eating duration (h) | 3.0 ± 1.4 | 3.5 ± 1.3 a | 4.1 ± 1.4 a,b | 0.000 | 43.921 |
Non-eating duration (h) | 14.1 ± 2.5 | 13.6 ± 2.0 a | 12.5 ± 2.2 a,b | 0.000 | 25.342 |
Standard deviations in first mealtime (h) | 1.7 ± 1.1 | 1.9 ± 1.0 a | 1.8 ± 1.0 | 0.026 | 3.644 |
Standard deviations in last mealtime (h) | 1.2 ± 0.9 | 1.7 ± 0.8 a | 1.5 ± 0.9 a | 0.000 | 52.738 |
Standard deviations in midpoint of non-eating duration (h) | 1.1 ± 0.6 | 1.3 ± 0.6 a | 1.3 ± 0.7 | 0.000 | 20.798 |
Coefficient of variation in non-eating duration (%) | 15.4 ± 8.0 | 18.2 ± 7.6 a | 18.6 ± 9.0 a | 0.000 | 23.877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, K.; Tamari, Y.; Nose, Y.; Yamaguchi, H.; Onodera, S.; Nagasaki, K. Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students. Nutrients 2023, 15, 2128. https://doi.org/10.3390/nu15092128
Nishimura K, Tamari Y, Nose Y, Yamaguchi H, Onodera S, Nagasaki K. Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students. Nutrients. 2023; 15(9):2128. https://doi.org/10.3390/nu15092128
Chicago/Turabian StyleNishimura, Kazuki, Yutaro Tamari, Yuka Nose, Hidetaka Yamaguchi, Sho Onodera, and Koji Nagasaki. 2023. "Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students" Nutrients 15, no. 9: 2128. https://doi.org/10.3390/nu15092128
APA StyleNishimura, K., Tamari, Y., Nose, Y., Yamaguchi, H., Onodera, S., & Nagasaki, K. (2023). Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students. Nutrients, 15(9), 2128. https://doi.org/10.3390/nu15092128