New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations
Abstract
:1. Introduction
2. Comparison of PUFA Levels between Global Child Populations
3. PUFAs and Growth Parameters
3.1. Associations between PUFAs and Growth Outcomes in Children
Country | Study Size | Age | Design | Intervention | Tissue | Growth Outcome Measured | Fatty Acids Measured | Main Outcomes | Study |
---|---|---|---|---|---|---|---|---|---|
Burkina Faso | 1609 | 6–23 months | Cross sectional | - | Whole blood | MUAC, WHZ, HAZ | n-3 and n-6 PUFAs | Children with MAM had low levels of total PUFA, particularly n-3 PUFA Children diagnosed with MAM based on MUAC only had lower ARA levels than those diagnosed with MAM based on MUAC + WHZ or WHZ only | [39] |
Cambodia | 174 | 4 months–16 years | Cross sectional | - | Whole blood | HAZ, WAZ, BAZ, MUAC | SFA, MUFA, n-6 and n-3 PUFAs, T:T ratio, DPAn-6:DHA, n-6:n-3 ratio | HAZ was positively associated with total PUFA, LA, ARA, and total n-6 PUFA Height was positively associated with DHA and total n-3 PUFA | [36] |
Colombia | 668 | 5–12 years | Cross sectional | - | Serum | BAZ | n-3 and n-6 PUFAs, n-6:n-3 ratio | ALA was negatively associated with BAZ | [45] |
Gambia | 50 | 3–9 months | RCT | 200 mg DHA and 300 mg EPA or 2 mL olive oil/day for 6 months | Plasma | MUAC, HC, skinfold thickness | n-3 and n-6 PUFAs | PUFA supplementation increased MUAC at 9 and 12 months and increased skinfold thickness at 12 months | [38] |
Ghana (north) | 307 | 2–6 years | Cross sectional | - | Whole blood | HAZ, BAZ, WAZ, WHZ | n-3, n-6, and n-9 PUFAs, T:T ratio, GLA:ARA, EDA:LA, DGLA:LA, ARA:DGLA | HAZ and WAZ were positively associated with ARA, DGLA, DTA, and DGLA/LA | [59] |
Ghana (south) | 209 | 2–6 years | Cross sectional | - | Whole blood | HAZ, WAZ | n-3 and n-6 PUFAs | No relation between essential fatty acids and other fatty acids and growth | [47] |
Greece and Netherlands | 529 | 4–6 years | Longitudinal | - | Blood PLs | WAZ, BAZ | n-3 and n-6 PUFAs, n-6:n-3 ratio | No association between cord blood PUFA levels and rapid infant growth nor BMI at 4–6 years of age | [69] |
India | 598 | 6–10 years | RCT | 900 mg ALA + 100 mg DHA or 140 mg ALA/day for 12 months | Whole blood | HAZ, WAZ, MUAC | Total n-3 FAs, ALA, EPA, DHA | n-3 FA supplementation did not affect growth | [70] |
Malawi | 400 | 12–59 months | Cross sectional | - | Serum PL | HAZ | DHA and ARA | HAZ was positively associated with serum phospholipid DHA and ARA levels | [66] |
Mexico | 193 | 12–30 months | RCT | ~1240 mg LA + 156 mg ALA + 33 mg DHA/day for 4 months | Serum | HAZ, WAZ, BAZ at 2 months and 4 months | SFAs, n-3 and n-6 PUFAs | Supplementation significantly increased ALA and DHA serum levels Supplementation did not significantly improve growth parameters | [71] |
Nepal | 303 | 4–10 months | Cross sectional | - | RBC | HAZ, WAZ | SFA, MUFA, n-6 and n-3 PUFAs, n-6:n-3 ratio, Omega 3 Index | HAZ was positively associated with DHA and ARA levels | [50] |
Tanzania | 334 | 2–6 years | Cross sectional | - | Whole blood | HAZ, WAZ, BAZ | n-3, n-6, and n-9 PUFAs, T:T ratio | HAZ was positively associated with LA and total n-6 PUFAs and negatively associated with Mead acid, T:T ratio, and total n-9 PUFAs BAZ was positively associated with oleic acid, total n-9 PUFAs, and T:T ratio and negatively associated with ARA and total n-6 PUFAs Weight-for-height z-score was positively associated with oleic acid and total n-9 PUFAs and negatively associated with ARA and total n-6 PUFAs | [68] |
Uganda | 240 | 6–10 years | Cross sectional | - | Serum | HAZ | SFA, MUFA, n-6 and n-3 PUFAs, T:T ratio, n-6:n-3 ratio, HUFA score | Total SFAs were negatively associated and total n-6 PUFAs were positively associated with HAZ regardless of HIV status Total MUFAs were negatively associated with WAZ regardless of HIV status Children with lowest DHA and LA levels had significantly lower WAZ Children with lowest DHA, total n-3 LPUFAs, and LA had significantly lower HAZ | [32] |
Uganda | 237 | 6–10 years | Longitudinal | - | Serum | HAZ | SFA, MUFA, LA, n-6 and n-3 PUFAs, Mead acid, T:T ratio, n-6:n-3 ratio | SFA levels were inversely associated with HAZ over 12 months Low vs. high LA, total n-6, and total PUFA levels predicted low HAZ over 12 months Low v. high levels of Mead acid and T:T ratio were each associated with high HAZ over 12 months | [33] |
United States | 27 | 0–6 months | Longitudinal | - | Plasma | HAZ, WAZ, BAZ | SFA, MUFA, PUFA, n-6:n-3 ratio | Low n-3 PUFAs and high SFA levels at birth were positively associated with high skinfold thickness at birth and an increase in BAZ from birth to 6 months | [72] |
United States | 348 | 10–16 months | RCT | 200 mg DHA + 200 mg ARA via powder added to milk for 180 days | RBC | LAZ, WAZ, HC, MUAC, skinfold thickness, BAZ | n-3 and n-6 PUFAs, n-6:n-3 ratio | DHA + ARA supplementation did not influence growth or adiposity outcomes | [73] |
3.2. Potential Mechanisms Relating PUFAs and Growth Outcomes in Children
4. PUFAs and Cognitive Development
4.1. Associations between PUFAs and Cognitive Outcomes in Children
4.2. Potential Mechanisms Relating PUFAs and Cognitive Outcomes in Children
5. HUFAs, Growth Parameters, and Cognitive Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Malnutrition. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 15 July 2022).
- World Health Organization. Levels and Trends in Child Malnutrition: UNICEF/WHO/The World Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2021 Edition; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- de Onis, M.; Branca, F. Childhood stunting: A global perspective. Matern. Child Nutr. 2016, 12 (Suppl. 1), 12–26. [Google Scholar] [CrossRef] [PubMed]
- Suryawan, A.; Jalaludin, M.Y.; Poh, B.K.; Sanusi, R.; Tan, V.M.H.; Geurts, J.M.; Muhardi, L. Malnutrition in early life and its neurodevelopmental and cognitive consequences: A scoping review. Nutr. Res. Rev. 2022, 35, 136–149. [Google Scholar] [CrossRef]
- Christian, P.; Smith, E.R. Adolescent Undernutrition: Global Burden, Physiology, and Nutritional Risks. Ann. Nutr. Metab. 2018, 72, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Jeyaseelan, V.; Jeyaseelan, L.; Yadav, B. Incidence of, and risk factors for, malnutrition among children aged 5–7 years in South India. J. Biosoc. Sci. 2016, 48, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Obasohan, P.E.; Walters, S.J.; Jacques, R.; Khatab, K. Risk Factors Associated with Malnutrition among Children Under-Five Years in Sub-Saharan African Countries: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 8782. [Google Scholar] [CrossRef]
- Bernard, J.Y.; Pan, H.; Aris, I.M.; Moreno-Betancur, M.; Soh, S.E.; Yap, F.; Tan, K.H.; Shek, L.P.; Chong, Y.S.; Gluckman, P.D.; et al. Long-chain polyunsaturated fatty acids, gestation duration, and birth size: A Mendelian randomization study using fatty acid desaturase variants. Am. J. Clin. Nutr. 2018, 108, 92–100. [Google Scholar] [CrossRef]
- Adetunji, H.; Salami, G.; Fadil, M.; Zaman, T.; Bakri, M.; Khalil, M.; Bushara, M. Relative Merits of Selected Anthropometric Measurements for Detecting Protein-Energy-Malnutrition (PEM) in Children Under Five Years in a Resource Limited Setting. Int. J. Med. Public Health 2019, 9, 154–159. [Google Scholar] [CrossRef]
- Teigen, L.M.; Kuchnia, A.J.; Nagel, E.M.; Price, K.L.; Hurt, R.T.; Earthman, C.P. Diagnosing clinical malnutrition: Perspectives from the past and implications for the future. Clin. Nutr. ESPEN 2018, 26, 13–20. [Google Scholar] [CrossRef]
- Isabirye, N.; Bukenya, J.N.; Nakafeero, M.; Ssekamatte, T.; Guwatudde, D.; Fawzi, W. Dietary diversity and associated factors among adolescents in eastern Uganda: A cross-sectional study. BMC Public Health 2020, 20, 534. [Google Scholar] [CrossRef]
- Kabwama, S.N.; Bahendeka, S.K.; Wesonga, R.; Mutungi, G.; Guwatudde, D. Low consumption of fruits and vegetables among adults in Uganda: Findings from a countrywide cross-sectional survey. Arch. Public Health 2019, 77, 4. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Cervera, M.; Valenzuela, R.; Hernandez-Rodas, M.C.; Barrera, C.; Espinosa, A.; Marambio, M.; Valenzuela, A. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot Essent Fat. Acids 2016, 111, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Cormier, H.; Rudkowska, I.; Lemieux, S.; Couture, P.; Julien, P.; Vohl, M.C. Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: Results from a pre-post fish oil supplementation. Genes Nutr. 2014, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Czumaj, A.; Śledziński, T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, L.; Ireton-Jones, C.; Miles, J.M.; Morrison, M.; Pontes-Arruda, A. Essential Fatty Acid Requirements and Intravenous Lipid Emulsions. JPEN J. Parenter. Enteral Nutr. 2019, 43, 697–707. [Google Scholar] [CrossRef]
- Siguel, E.N.; Chee, K.M.; Gong, J.X.; Schaefer, E.J. Criteria for essential fatty acid deficiency in plasma as assessed by capillary column gas-liquid chromatography. Clin. Chem. 1987, 33, 1869–1873. [Google Scholar] [CrossRef]
- Holman, R.T.; Johnson, S.B.; Mercuri, O.; Itarte, H.J.; Rodrigo, M.A.; De Tomas, M.E. Essential fatty acid deficiency in malnourished children. Am. J. Clin. Nutr. 1981, 34, 1534–1539. [Google Scholar] [CrossRef]
- Anez-Bustillos, L.; Dao, D.T.; Fell, G.L.; Baker, M.A.; Gura, K.M.; Bistrian, B.R.; Puder, M. Redefining essential fatty acids in the era of novel intravenous lipid emulsions. Clin. Nutr. 2018, 37, 784–789. [Google Scholar] [CrossRef]
- Carey, A.N.; Rudie, C.; Mitchell, P.D.; Raphael, B.P.; Gura, K.M.; Puder, M. Essential Fatty Acid Status in Surgical Infants Receiving Parenteral Nutrition With a Composite Lipid Emulsion: A Case Series. JPEN J. Parenter. Enteral Nutr. 2019, 43, 305–310. [Google Scholar] [CrossRef]
- Memon, N.; Hussein, K.; Hegyi, T.; Herdt, A.; Griffin, I.J. Essential Fatty Acid Deficiency with SMOFlipid Reduction in an Infant with Intestinal Failure-Associated Liver Disease. JPEN J. Parenter. Enteral Nutr. 2019, 43, 438–441. [Google Scholar] [CrossRef]
- Mirza, F.N.; Leventhal, J.S. The rash in life-threatening metabolic and endocrine disorders. Clin. Dermatol. 2020, 38, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.; Dean, D., 3rd; Joelson, S.; O’Regan, J.; Schneider, N. Early nutrition influences developmental myelination and cognition in infants and young children. Neuroimage 2018, 178, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Willatts, P. Effects of Nutrition on the Development of Higher-Order Cognition. Nestlé Nutr. Inst. Workshop Ser. 2018, 89, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Lands, B. Omega-3 PUFAs Lower the Propensity for Arachidonic Acid Cascade Overreactions. Biomed. Res. Int. 2015, 2015, 285135. [Google Scholar] [CrossRef]
- Brew, B.K.; Toelle, B.G.; Webb, K.L.; Almqvist, C.; Marks, G.B. Omega-3 supplementation during the first 5 years of life and later academic performance: A randomised controlled trial. Eur. J. Clin. Nutr. 2015, 69, 419–424. [Google Scholar] [CrossRef]
- Teisen, M.N.; Vuholm, S.; Niclasen, J.; Aristizabal-Henao, J.J.; Stark, K.D.; Geertsen, S.S.; Damsgaard, C.T.; Lauritzen, L. Effects of oily fish intake on cognitive and socioemotional function in healthy 8-9-year-old children: The FiSK Junior randomized trial. Am. J. Clin. Nutr. 2020, 112, 74–83. [Google Scholar] [CrossRef]
- Smit, E.N.; Dijkstra, J.M.; Schnater, T.A.; Seerat, E.; Muskiet, F.A.; Boersma, E.R. Effects of malnutrition on the erythrocyte fatty acid composition and plasma vitamin E levels of Pakistani children. Acta Paediatr. 1997, 86, 690–695. [Google Scholar] [CrossRef]
- Jain, R.; Ezeamama, A.E.; Sikorskii, A.; Yakah, W.; Zalwango, S.; Musoke, P.; Boivin, M.J.; Fenton, J.I. Serum n-6 Fatty Acids are Positively Associated with Growth in 6-to-10-Year Old Ugandan Children Regardless of HIV Status-A Cross-Sectional Study. Nutrients 2019, 11, 1268. [Google Scholar] [CrossRef]
- Pobee, R.A.; Fenton, J.I.; Sikorskii, A.; Zalwango, S.K.; Felzer-Kim, I.; Medina, I.M.; Giordani, B.; Ezeamama, A.E. Association of serum PUFA and linear growth over 12 months among 6-10 years old Ugandan children with or without HIV. Public Health Nutr. 2022, 25, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PLoS ONE 2013, 8, e66697. [Google Scholar] [CrossRef]
- Hwang, I.; Cha, A.; Lee, H.; Yoon, H.; Yoon, T.; Cho, B.; Lee, S.; Park, Y. N-3 polyunsaturated fatty acids and atopy in Korean preschoolers. Lipids 2007, 42, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Sigh, S.; Lauritzen, L.; Wieringa, F.T.; Laillou, A.; Chamnan, C.; Angkeabos, N.; Moniboth, D.; Berger, J.; Stark, K.D.; Roos, N. Whole-blood PUFA and associations with markers of nutritional and health status in acutely malnourished children in Cambodia. Public Health Nutr. 2020, 23, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, R.; Lauziere, J.; Gagne, D.; Vezina, C.; Ayotte, P.; O’Brien, H.T. Usual dietary fatty acid intakes and red-blood-cell membrane fatty acid composition in Inuit children attending child-care centres in Nunavik, northern Quebec, Canada. Public Health Nutr. 2014, 17, 2844–2852. [Google Scholar] [CrossRef]
- van der Merwe, L.F.; Moore, S.E.; Fulford, A.J.; Halliday, K.E.; Drammeh, S.; Young, S.; Prentice, A.M. Long-chain PUFA supplementation in rural African infants: A randomized controlled trial of effects on gut integrity, growth, and cognitive development. Am. J. Clin. Nutr. 2013, 97, 45–57. [Google Scholar] [CrossRef]
- Yaméogo, C.W.; Cichon, B.; Fabiansen, C.; Rytter, M.J.H.; Faurholt-Jepsen, D.; Stark, K.D.; Briend, A.; Shepherd, S.; Traoré, A.S.; Christensen, V.B.; et al. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition. Nutr. J. 2017, 16, 44. [Google Scholar] [CrossRef]
- Gurzell, E.A.; Wiesinger, J.A.; Morkam, C.; Hemmrich, S.; Harris, W.S.; Fenton, J.I. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content? Prostaglandins Leukot Essent Fat. Acids 2014, 91, 87–96. [Google Scholar] [CrossRef]
- Harris, W.S.; Varvel, S.A.; Pottala, J.V.; Warnick, G.R.; McConnell, J.P. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: Implications for clinical utility. J. Clin. Lipidol. 2013, 7, 433–440. [Google Scholar] [CrossRef]
- Micalizzi, G.; Ragosta, E.; Farnetti, S.; Dugo, P.; Tranchida, P.Q.; Mondello, L.; Rigano, F. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids. Anal. Bioanal. Chem. 2020, 412, 2327–2337. [Google Scholar] [CrossRef]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot Essent Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Wu, T.; Huang, S.Y.; Huang, B.X.; Wang, H.L.; Lan, Q.Y.; Li, C.L.; Zhu, H.L.; Fang, A.P. No effect of 6-month supplementation with 300 mg/d docosahexaenoic acid on executive functions among healthy school-aged children: A randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2021, 60, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Villamor, E.; Mora-Plazas, M.; Marin, C.; Baylin, A. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. Eur. J. Clin. Nutr. 2015, 69, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Adjepong, M.; Yakah, W.; Harris, W.S.; Annan, R.A.; Pontifex, M.B.; Fenton, J.I. Whole blood n-3 fatty acids are associated with executive function in 2-6-year-old Northern Ghanaian children. J. Nutr. Biochem. 2018, 57, 287–293. [Google Scholar] [CrossRef]
- Adjepong, M.; Yakah, W.; Harris, W.S.; Colecraft, E.; Marquis, G.S.; Fenton, J.I. Association of Whole Blood Fatty Acids and Growth in Southern Ghanaian Children 2(-)6 Years of Age. Nutrients 2018, 10, 954. [Google Scholar] [CrossRef]
- Parasannanavar, D.; Gaddam, I.; Bukya, T.; Ibrahim, S.A.; Reddy, K.S.; Banjara, S.K.; Salvadi, B.P.P.; Kumar, B.N.; Rao, S.F.; Geddam, J.J.B.; et al. Omega-3 polyunsaturated fatty acid intake and plasma fatty acids of school going Indian children—A cross-sectional study. Prostaglandins Leukot Essent Fat. Acids 2021, 170, 102294. [Google Scholar] [CrossRef]
- Wolters, M.; Schlenz, H.; Bornhorst, C.; Rise, P.; Galli, C.; Moreno, L.A.; Pala, V.; Siani, A.; Veidebaum, T.; Tornaritis, M.; et al. Desaturase Activity Is Associated With Weight Status and Metabolic Risk Markers in Young Children. J. Clin. Endocrinol. Metab. 2015, 100, 3760–3769. [Google Scholar] [CrossRef]
- Henjum, S.; Lie, Ø.; Ulak, M.; Thorne-Lyman, A.L.; Chandyo, R.K.; Shrestha, P.S.; Wafaie, W.F.; Strand, T.A.; Kjellevold, M. Erythrocyte fatty acid composition of Nepal breast-fed infants. Eur. J. Nutr. 2018, 57, 1003–1013. [Google Scholar] [CrossRef]
- Bakker, E.C.; Ghys, A.J.; Kester, A.D.; Vles, J.S.; Dubas, J.S.; Blanco, C.E.; Hornstra, G. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 y of age. Eur. J. Clin. Nutr. 2003, 57, 89–95. [Google Scholar] [CrossRef]
- Dalton, A.; Wolmarans, P.; Witthuhn, R.C.; van Stuijvenberg, M.E.; Swanevelder, S.A.; Smuts, C.M. A randomised control trial in schoolchildren showed improvement in cognitive function after consuming a bread spread, containing fish flour from a marine source. Prostaglandins Leukot Essent Fat. Acids 2009, 80, 143–149. [Google Scholar] [CrossRef]
- Kamenju, P.; Hertzmark, E.; Kabagambe, E.K.; Smith, E.R.; Muhihi, A.; Noor, R.A.; Mshamu, S.; Briegleb, C.; Sudfeld, C.; Masanja, H.; et al. Factors associated with plasma n-3 and n-6 polyunsaturated fatty acid levels in Tanzanian infants. Eur. J. Clin. Nutr. 2020, 74, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Jumbe, T.; Comstock, S.S.; Harris, W.S.; Kinabo, J.; Pontifex, M.B.; Fenton, J.I. Whole-blood fatty acids are associated with executive function in Tanzanian children aged 4-6 years: A cross-sectional study. Br. J. Nutr. 2016, 116, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, S.; Gautier, S.; Salem, N., Jr. Global Estimates of Dietary Intake of Docosahexaenoic Acid and Arachidonic Acid in Developing and Developed Countries. Ann. Nutr. Metab. 2016, 68, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D.; et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef]
- Braarud, H.C.; Markhus, M.W.; Skotheim, S.; Stormark, K.M.; Froyland, L.; Graff, I.E.; Kjellevold, M. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study. Nutrients 2018, 10, 529. [Google Scholar] [CrossRef]
- Adjepong, M.; Pickens, C.A.; Jain, R.; Harris, W.S.; Annan, R.A.; Fenton, J.I. Association of whole blood n-6 fatty acids with stunting in 2-to-6-year-old Northern Ghanaian children: A cross-sectional study. PLoS ONE 2018, 13, e0193301. [Google Scholar] [CrossRef]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014, 824, 61–81. [Google Scholar] [CrossRef]
- Fumagalli, M.; Moltke, I.; Grarup, N.; Racimo, F.; Bjerregaard, P.; Jorgensen, M.E.; Korneliussen, T.S.; Gerbault, P.; Skotte, L.; Linneberg, A.; et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 2015, 349, 1343–1347. [Google Scholar] [CrossRef]
- Brayner, B.; Kaur, G.; Keske, M.A.; Livingstone, K.M. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients 2018, 10, 758. [Google Scholar] [CrossRef]
- Carlson, S.J.; Fallon, E.M.; Kalish, B.T.; Gura, K.M.; Puder, M. The role of the ω-3 fatty acid DHA in the human life cycle. JPEN J. Parenter. Enteral Nutr. 2013, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Darcey, V.L.; McQuaid, G.A.; Fishbein, D.H.; VanMeter, J.W. Relationship between whole blood omega-3 fatty acid levels and dorsal cingulate gray matter volume: Sex differences and implications for impulse control. Nutr. Neurosci. 2020, 23, 505–515. [Google Scholar] [CrossRef]
- Falomir-Lockhart, L.J.; Cavazzutti, G.F.; Giménez, E.; Toscani, A.M. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front. Cell Neurosci. 2019, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Trehan, I.; Li, X.; Salem, N., Jr.; Moaddel, R.; Ordiz, M.I.; Maleta, K.M.; Kraemer, K.; Manary, M.J. Low serum ω-3 and ω-6 polyunsaturated fatty acids and other metabolites are associated with poor linear growth in young children from rural Malawi. Am. J. Clin. Nutr. 2017, 106, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Demmelmair, H.; von Berg, A.; Lehmann, I.; Flexeder, C.; Koletzko, B.; Heinrich, J.; Standl, M. Associations between fatty acids and low-grade inflammation in children from the LISAplus birth cohort study. Eur. J. Clin. Nutr. 2017, 71, 1303–1311. [Google Scholar] [CrossRef]
- Jumbe, T.; Comstock, S.S.; Hahn, S.L.; Harris, W.S.; Kinabo, J.; Fenton, J.I. Whole Blood Levels of the n-6 Essential Fatty Acid Linoleic Acid Are Inversely Associated with Stunting in 2-to-6 Year Old Tanzanian Children: A Cross-Sectional Study. PLoS ONE 2016, 11, e0154715. [Google Scholar] [CrossRef]
- Stratakis, N.; Gielen, M.; Margetaki, K.; de Groot, R.H.M.; Apostolaki, M.; Chalkiadaki, G.; Vafeiadi, M.; Leventakou, V.; Karachaliou, M.; Godschalk, R.W.; et al. Polyunsaturated fatty acid status at birth, childhood growth, and cardiometabolic risk: A pooled analysis of the MEFAB and RHEA cohorts. Eur. J. Clin. Nutr. 2019, 73, 566–576. [Google Scholar] [CrossRef]
- Muthayya, S.; Eilander, A.; Transler, C.; Thomas, T.; van der Knaap, H.C.; Srinivasan, K.; van Klinken, B.J.; Osendarp, S.J.; Kurpad, A.V. Effect of fortification with multiple micronutrients and n-3 fatty acids on growth and cognitive performance in Indian schoolchildren: The CHAMPION (Children’s Health and Mental Performance Influenced by Optimal Nutrition) Study. Am. J. Clin. Nutr. 2009, 89, 1766–1775. [Google Scholar] [CrossRef]
- Rivera-Pasquel, M.; Flores-Aldana, M.; Parra-Cabrera, M.S.; Quezada-Sánchez, A.D.; García-Guerra, A.; Maldonado-Hernández, J. Effect of Milk-Based Infant Formula Fortified with PUFAs on Lipid Profile, Growth and Micronutrient Status of Young Children: A Randomized Double-Blind Clinical Trial. Nutrients 2020, 13, 4. [Google Scholar] [CrossRef]
- O’Tierney-Ginn, P.F.; Davina, D.; Gillingham, M.; Barker, D.J.P.; Morris, C.; Thornburg, K.L. Neonatal fatty acid profiles are correlated with infant growth measures at 6 months. J. Dev. Orig. Health Dis. 2017, 8, 474–482. [Google Scholar] [CrossRef]
- Ingol, T.T.; Li, R.; Boone, K.M.; Rausch, J.; Klebanoff, M.A.; Turner, A.N.; Yeates, K.O.; Nelin, M.A.; Sheppard, K.W.; Keim, S.A. Docosahexaenoic and Arachidonic Acid Supplementation of Toddlers Born Preterm Does Not Affect Short-Term Growth or Adiposity. J. Nutr. 2019, 149, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Schönfeldt, H.C.; Gibson Hall, N. Dietary protein quality and malnutrition in Africa. Br. J. Nutr. 2012, 108 (Suppl. 2), S69–S76. [Google Scholar] [CrossRef] [PubMed]
- Hoile, S.P.; Clarke-Harris, R.; Huang, R.C.; Calder, P.C.; Mori, T.A.; Beilin, L.J.; Lillycrop, K.A.; Burdge, G.C. Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells. PLoS ONE 2014, 9, e109896. [Google Scholar] [CrossRef] [PubMed]
- Zuccarello, D.; Sorrentino, U.; Brasson, V.; Marin, L.; Piccolo, C.; Capalbo, A.; Andrisani, A.; Cassina, M. Epigenetics of pregnancy: Looking beyond the DNA code. J. Assist. Reprod. Genet. 2022, 39, 801–816. [Google Scholar] [CrossRef] [PubMed]
- Howard, T.D.; Mathias, R.A.; Seeds, M.C.; Herrington, D.M.; Hixson, J.E.; Shimmin, L.C.; Hawkins, G.A.; Sellers, M.; Ainsworth, H.C.; Sergeant, S.; et al. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. PLoS ONE 2014, 9, e97510. [Google Scholar] [CrossRef]
- Rancourt, R.C.; Harris, H.R.; Barault, L.; Michels, K.B. The prevalence of loss of imprinting of H19 and IGF2 at birth. Faseb J. 2013, 27, 3335–3343. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Barraza-Villarreal, A.; Biessy, C.; Duarte-Salles, T.; Sly, P.D.; Ramakrishnan, U.; Rivera, J.; Herceg, Z.; Romieu, I. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol. Genom. 2014, 46, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Worsch, S.; Heikenwalder, M.; Hauner, H.; Bader, B.L. Dietary n-3 long-chain polyunsaturated fatty acids upregulate energy dissipating metabolic pathways conveying anti-obesogenic effects in mice. Nutr. Metab. 2018, 15, 65. [Google Scholar] [CrossRef]
- Echeverría, F.; Valenzuela, R.; Bustamante, A.; Álvarez, D.; Ortiz, M.; Espinosa, A.; Illesca, P.; Gonzalez-Mañan, D.; Videla, L.A. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: Attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct. 2019, 10, 6170–6183. [Google Scholar] [CrossRef]
- Kasbi-Chadli, F.; Ferchaud-Roucher, V.; Krempf, M.; Ouguerram, K. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur. J. Nutr. 2016, 55, 589–599. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kelly, O.J.; Ilich, J.Z. Synergism of α-linolenic acid, conjugated linoleic acid and calcium in decreasing adipocyte and increasing osteoblast cell growth. Lipids 2013, 48, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.L.; Shu, G.; Zhang, Z.Q.; Wang, S.B.; Zhu, X.T.; Gao, P.; Xi, Q.Y.; Zhang, Y.L.; Jiang, Q.Y. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. Mol. Biol. Rep. 2012, 39, 10987–10996. [Google Scholar] [CrossRef] [PubMed]
- Abshirini, M.; Ilesanmi-Oyelere, B.L.; Kruger, M.C. Potential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism. Prog. Lipid Res. 2021, 83, 101113. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Brendemuhl, J.H.; Jeong, K.C.; Badinga, L. Effects of dietary omega-3 polyunsaturated fatty acids on growth and immune response of weanling pigs. J. Anim. Sci. Technol. 2014, 56, 7. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, C.; Lelijveld, N.; Thompson, D.; Dalvi, P.S.; Gonzales, G.B.; Wang, D.; Alipour, M.; Wine, E.; Chimwezi, E.; Wells, J.C.; et al. Metabolomics in plasma of Malawian children 7 years after surviving severe acute malnutrition: “ChroSAM” a cohort study. EBioMedicine 2019, 45, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, N.; Ferrari, S.L. Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice. J. Nutr. Biochem. 2011, 22, 665–672. [Google Scholar] [CrossRef]
- Young, L.R.; Kurzer, M.S.; Thomas, W.; Redmon, J.B.; Raatz, S.K. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women. Nutr. Res. 2013, 33, 565–571. [Google Scholar] [CrossRef]
- Gholamhosseini, S.; Nematipour, E.; Djazayery, A.; Javanbakht, M.H.; Koohdani, F.; Zareei, M.; Djalali, M. ω-3 fatty acid differentially modulated serum levels of IGF1 and IGFBP3 in men with CVD: A randomized, double-blind placebo-controlled study. Nutrition 2015, 31, 480–484. [Google Scholar] [CrossRef]
- Henriksen, C.; Almaas, A.N.; Westerberg, A.C.; Drevon, C.A.; Iversen, P.O.; Nakstad, B. Growth, metabolic markers, and cognition in 8-year old children born prematurely, follow-up of a randomized controlled trial with essential fatty acids. Eur. J. Pediatr. 2016, 175, 1165–1174. [Google Scholar] [CrossRef]
- McNamara, R.K.; Asch, R.H.; Lindquist, D.M.; Krikorian, R. Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: An update on neuroimaging findings. Prostaglandins Leukot Essent Fat. Acids 2018, 136, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Macaron, T.; Giudici, K.V.; Bowman, G.L.; Sinclair, A.; Stephan, E.; Vellas, B.; de Souto Barreto, P. Associations of Omega-3 fatty acids with brain morphology and volume in cognitively healthy older adults: A narrative review. Ageing Res. Rev. 2021, 67, 101300. [Google Scholar] [CrossRef] [PubMed]
- Calabro, F.J.; Murty, V.P.; Jalbrzikowski, M.; Tervo-Clemmens, B.; Luna, B. Development of Hippocampal-Prefrontal Cortex Interactions through Adolescence. Cereb Cortex 2020, 30, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Keresztes, A.; Ngo, C.T.; Lindenberger, U.; Werkle-Bergner, M.; Newcombe, N.S. Hippocampal Maturation Drives Memory from Generalization to Specificity. Trends Cogn. Sci. 2018, 22, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Kolk, S.M.; Rakic, P. Development of prefrontal cortex. Neuropsychopharmacology 2022, 47, 41–57. [Google Scholar] [CrossRef]
- Yavas, E.; Gonzalez, S.; Fanselow, M.S. Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000Res 2019, 8, F1000 Faculty Rev-1292. [Google Scholar] [CrossRef]
- Roach, L.A.; Byrne, M.K.; Howard, S.J.; Johnstone, S.J.; Batterham, M.; Wright, I.M.R.; Okely, A.D.; de Groot, R.H.M.; van der Wurff, I.S.M.; Jones, A.L.; et al. Effect of Omega-3 Supplementation on Self-Regulation in Typically Developing Preschool-Aged Children: Results of the Omega Kid Pilot Study-A Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 3561. [Google Scholar] [CrossRef]
- Osendarp, S.J.; Baghurst, K.I.; Bryan, J.; Calvaresi, E.; Hughes, D.; Hussaini, M.; Karyadi, S.J.; van Klinken, B.J.; van der Knaap, H.C.; Lukito, W.; et al. Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am. J. Clin. Nutr. 2007, 86, 1082–1093. [Google Scholar] [CrossRef]
- Stephenson, K.; Callaghan-Gillespie, M.; Maleta, K.; Nkhoma, M.; George, M.; Park, H.G.; Lee, R.; Humphries-Cuff, I.; Lacombe, R.J.S.; Wegner, D.R.; et al. Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: A randomized, triple-blinded, controlled clinical trial. Am. J. Clin. Nutr. 2022, 115, 1322–1333. [Google Scholar] [CrossRef]
- Oyen, J.; Kvestad, I.; Midtbo, L.K.; Graff, I.E.; Hysing, M.; Stormark, K.M.; Markhus, M.W.; Baste, V.; Froyland, L.; Koletzko, B.; et al. Fatty fish intake and cognitive function: FINS-KIDS, a randomized controlled trial in preschool children. BMC Med. 2018, 16, 41. [Google Scholar] [CrossRef]
- Al-Ghannami, S.S.; Al-Adawi, S.; Ghebremeskel, K.; Hussein, I.S.; Min, Y.; Jeyaseelan, L.; Al-Shammakhi, S.M.; Mabry, R.M.; Al-Oufi, H.S. Randomized open-label trial of docosahexaenoic acid-enriched fish oil and fish meal on cognitive and behavioral functioning in Omani children. Nutrition 2019, 57, 167–172. [Google Scholar] [CrossRef]
- Keim, S.A.; Boone, K.M.; Klebanoff, M.A.; Turner, A.N.; Rausch, J.; Nelin, M.A.; Rogers, L.K.; Yeates, K.O.; Nelin, L.; Sheppard, K.W. Effect of Docosahexaenoic Acid Supplementation vs Placebo on Developmental Outcomes of Toddlers Born Preterm: A Randomized Clinical Trial. JAMA Pediatr. 2018, 172, 1126–1134. [Google Scholar] [CrossRef]
- Auestad, N.; Halter, R.; Hall, R.T.; Blatter, M.; Bogle, M.L.; Burks, W.; Erickson, J.R.; Fitzgerald, K.M.; Dobson, V.; Innis, S.M.; et al. Growth and development in term infants fed long-chain polyunsaturated fatty acids: A double-masked, randomized, parallel, prospective, multivariate study. Pediatrics 2001, 108, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Birch, E.E.; Garfield, S.; Hoffman, D.R.; Uauy, R.; Birch, D.G. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Med. Child Neurol. 2000, 42, 174–181. [Google Scholar] [CrossRef]
- Mulder, K.A.; Elango, R.; Innis, S.M. Fetal DHA inadequacy and the impact on child neurodevelopment: A follow-up of a randomised trial of maternal DHA supplementation in pregnancy. Br. J. Nutr. 2018, 119, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Fiske, A.; Holmboe, K. Neural substrates of early executive function development. Dev. Rev. 2019, 52, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, W.; Poets, C.F.; Franz, A.R. Choline and choline-related nutrients in regular and preterm infant growth. Eur. J. Nutr. 2019, 58, 931–945. [Google Scholar] [CrossRef]
- Nakazaki, E.; Yabuki, Y.; Izumi, H.; Shinoda, Y.; Watanabe, F.; Hishida, Y.; Kamimura, A.; Fukunaga, K. Combined citicoline and docosahexaenoic acid treatment improves cognitive dysfunction following transient brain ischemia. J. Pharmacol. Sci. 2019, 139, 319–324. [Google Scholar] [CrossRef]
- Scheltens, P.; Kamphuis, P.J.; Verhey, F.R.; Olde Rikkert, M.G.; Wurtman, R.J.; Wilkinson, D.; Twisk, J.W.; Kurz, A. Efficacy of a medical food in mild Alzheimer’s disease: A randomized, controlled trial. Alzheimers Dement. 2010, 6, 1–10.e1. [Google Scholar] [CrossRef]
- Scheltens, P.; Twisk, J.W.; Blesa, R.; Scarpini, E.; von Arnim, C.A.; Bongers, A.; Harrison, J.; Swinkels, S.H.; Stam, C.J.; de Waal, H.; et al. Efficacy of Souvenaid in mild Alzheimer’s disease: Results from a randomized, controlled trial. J. Alzheimers Dis. 2012, 31, 225–236. [Google Scholar] [CrossRef]
- Wang, D.D.; Wu, F.; Ding, L.; Shi, H.H.; Xue, C.H.; Wang, Y.M.; Zhang, T.T. Dietary n-3 PUFA Deficiency Increases Vulnerability to Scopolamine-Induced Cognitive Impairment in Male C57BL/6 Mice. J. Nutr. 2021, 151, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Aïd, S.; Vancassel, S.; Poumès-Ballihaut, C.; Chalon, S.; Guesnet, P.; Lavialle, M. Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J. Lipid Res. 2003, 44, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Moriguchi, T.; Slotnick, B.; Murthy, M.; Greiner, R.S.; Salem, N., Jr. Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci. 2002, 116, 1022–1031. [Google Scholar] [CrossRef]
- Moreira, J.D.; Knorr, L.; Ganzella, M.; Thomazi, A.P.; de Souza, C.G.; de Souza, D.G.; Pitta, C.F.; Mello e Souza, T.; Wofchuk, S.; Elisabetsky, E.; et al. Omega-3 fatty acids deprivation affects ontogeny of glutamatergic synapses in rats: Relevance for behavior alterations. Neurochem. Int. 2010, 56, 753–759. [Google Scholar] [CrossRef]
- Dyall, S.C.; Michael, G.J.; Michael-Titus, A.T. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J. Neurosci. Res. 2010, 88, 2091–2102. [Google Scholar] [CrossRef]
- Sidhu, V.K.; Huang, B.X.; Kim, H. Effects of docosahexaneoic acid on mouse brain synaptic plasma membrane proteome analyzed by mass spectrometry and 16O/18O labeling. J. Proteome Res. 2011, 10, 5472–5480. [Google Scholar] [CrossRef]
- Kodas, E.; Vancassel, S.; Lejeune, B.; Guilloteau, D.; Chalon, S. Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: Critical role of developmental stage. J. Lipid Res. 2002, 43, 1209–1219. [Google Scholar] [CrossRef]
- Chalon, S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fat. Acids 2006, 75, 259–269. [Google Scholar] [CrossRef]
- de la Presa Owens, S.; Innis, S.M. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J. Nutr. 1999, 129, 2088–2093. [Google Scholar] [CrossRef]
- Lands, B.; Bibus, D.; Stark, K.D. Dynamic interactions of n-3 and n-6 fatty acid nutrients. Prostaglandins Leukot Essent Fat. Acids 2018, 136, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Borsini, A.; Zunszain, P.A.; Thuret, S.; Pariante, C.M. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015, 38, 145–157. [Google Scholar] [CrossRef]
- Lima, I.V.d.A.; Bastos, L.F.S.; Limborço-Filho, M.; Fiebich, B.L.; de Oliveira, A.C.P. Role of Prostaglandins in Neuroinflammatory and Neurodegenerative Diseases. Mediat. Inflamm. 2012, 2012, 946813. [Google Scholar] [CrossRef] [PubMed]
- Ern, C.; Frasheri, I.; Berger, T.; Kirchner, H.G.; Heym, R.; Hickel, R.; Folwaczny, M. Effects of prostaglandin E(2) and D(2) on cell proliferation and osteogenic capacity of human mesenchymal stem cells. Prostaglandins Leukot Essent Fat. Acids 2019, 151, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lands, B. A critique of paradoxes in current advice on dietary lipids. Prog. Lipid Res. 2008, 47, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J.; Akbari, P.; Wierenga, K.A.; Bates, M.A.; Gilley, K.N.; Wagner, J.G.; Lewandowski, R.P.; Rajasinghe, L.D.; Chauhan, P.S.; Lock, A.L.; et al. Omega-3 Polyunsaturated Fatty Acid Intervention Against Established Autoimmunity in a Murine Model of Toxicant-Triggered Lupus. Front. Immunol. 2021, 12, 653464. [Google Scholar] [CrossRef]
- Wierenga, K.A.; Harkema, J.R.; Pestka, J.J. Lupus, Silica, and Dietary Omega-3 Fatty Acid Interventions. Toxicol. Pathol. 2019, 47, 1004–1011. [Google Scholar] [CrossRef]
- Muller, O.; Krawinkel, M. Malnutrition and health in developing countries. CMAJ 2005, 173, 279–286. [Google Scholar] [CrossRef]
Country | Study Size | Age | Tissue | LA | DGLA | ARA | DTA | DPA n-6 | ALA | EPA | DPA n-3 | DHA | Mead Acid | Study |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Burkina Faso | 1609 | 6–23 months | Whole blood | 16.2 (2.26) | 0.85 (0.21) | 7.08 (1.53) | - | 0.38 (0.12) | 0.21 (0.09) | 0.13 (0.10, 0.18) 1 | 0.43 (0.12) | 1.64 (0.53) | 0.07 (0.03) | [39] |
Cambodia | 174 | 4 months–16 years | Whole blood | 13.2 (2.7) | 0.7 (0.2) | 3.6 (1.3) | - | 0.2 (0.1) | 0.2 (0.1) | 0.1 (0.1) | 0.2 (0.1) | 0.8 (0.3) | 0.08 (0.06) | [36] |
Canada (Inuit) | 167 | 11–53 months | RBC | 15.7 (3.02) | 1.9 (0.59) | 10.1 (3.37) | 1.60 (0.66) | 0.30 (0.30) | 0.30 (0.14) | 0.84 (0.61) | 1.54 (0.69) | 2.67 (1.52) | - | [37] |
China ** | 94 | 7–12 years | RBC | 14.64 (1.28) | - | 16.27 (1.46) | - | - | 0.09 (0.07–0.11) 1 | 0.32 (0.26–0.45) 1 | - | 2.75 (0.59) | - | [44] |
Colombia | 668 | 5–12 years | Serum | 30.3 (3.10) | 1.61 (0.38) | 5.96 (1.16) | - | - | 0.49 (0.15) | 0.22 (0.15) | - | 2.30 (0.90) | - | [45] |
Gambia * | 50 | 3–9 months | Plasma | 322 (91.9) 2 | 19.1 (6.49) 2 | 7.25 (1.35) 2 | - | 3.32 (1.24) 2 | 4.76 (2.16) 2 | 1.34 (0.94, 1.72) 1 | 11.9 (3.82) 2 | 4.44 (0.81) 2 | - | [38] |
Ghana (north) | 307 | 2–6 years | Whole blood | 20.6 (0.11) 3 | 1.36 (0.01) 3 | 10.8 (0.09) 3 | 1.69 (0.02) 3 | - | 0.18 (0.01) 3 | 0.22 (0.01) 3 | - | 2.62 (0.04) 3 | 0.14 (0.003) 3 | [46] |
Ghana (south) | 209 | 2–6 years | Whole blood | 16.7 (1.92) | 1.24 (0.23) | 9.18 (1.56) | 1.03 (0.25) | 0.45 (0.13) | 0.25 (0.10) | 0.80 (0.35) | 1.01 (0.21) | 5.09 (0.98) | 0.09 (0.01) | [47] |
India | 625 | 7–13 years | Plasma | 27.3 (0.24) | - | 9.71 (0.11) | 2.80 (0.07) | 0.64 (0.02) | - | - | 0.18 (0.01) | 0.98 (0.03) | - | [48] |
Italy | 728 | 2–9 years | Whole blood | 19.4 (2.73) | 1.41 (0.15) | 9.01 (0.82) | 1.06 (0.06) | 0.26 (0.05) | 0.24 (0.07) | 0.69 (0.46) | 0.96 (0.20) | 2.69 (0.66) | - | [49] |
Nepal | 303 | 0–12 months | RBC | 11.3 | - | 13.2 | - | - | 0.2 | 0.3 | 1.6 | 4.9 | - | [50] |
Netherlands | 306 | 7–8 years | Plasma | 23.2 (2.3) | - | 9.2 (1.2) | - | 0.32 (0.08) | 0.19 (0.07) | 0.51 (0.22) | - | 2.8 (0.7) | - | [51] |
Pakistan ** | 26 | 0–5 years | RBC | 8.83 (5.67–13.62) 4 | 1.60 (1.25–2.36) 4 | 14.68 | 3.05 (2.13–3.85) 4 | 1.08 (0.78–2.16) 4 | 0.17 (0.07–0.35) 4 | 0.24 (0.13–0.94) 4 | 1.40 (0.62–2.91) 4 | 2.90 (1.72–4.04) 4 | 0.37 (0.14–1.32) 4 | [31] |
South Africa ** | 183 | 7–9 years | Plasma PC | - | - | 10.4 (1.67) | - | - | - | 0.70 (0.41) | - | 4.53 (1.25) | - | [52] |
South Korea ** | 218 | 4–6 years | RBC | 13.6 (1.3) | - | 15.3 (1.6) | 3.0 (0.6) | - | - | 0.8 (0.3) | 1.6 (0.3) | 8.3 (1.3) | - | [35] |
Tanzania | 238 | 3 months | Plasma | 20.73 (2.77) | 1.95 (0.50) | 8.35 (1.83) | 0.35 (0.10) | - | 0.32 (0.15) | 0.37 (0.19) | 0.46 (0.13) | 2.96 (0.90) | - | [53] |
Tanzania | 130 | 4–6 years | Whole Blood | 17.58 (2.74) | 1.77 (0.42) | 10.0 (1.65) | 1.35 (0.32) | 0.78 (0.16) | 0.41 (0.19) | 0.43 (0.18) | 0.95 (0.26) | 2.94 (0.76) | 0.14 (0.06) | [54] |
Uganda | 240 | 6–10 years | Serum | 36.8 (0.35) 3 | 0.56 (0.02) 3 | 11.8 (0.15) 3 | 0.018 (0.001) 3 | 0.014 (0.001) 3 | 0.26 (0.01) 3 | 0.46 (0.02) 3 | 0.067 (0.003) 3 | 2.11 (0.06) 3 | 0.085 (0.004) 3 | [32,33] |
United Kingdom | 493 | 7–9 years | Whole blood | 19.2 (2.29) | 1.56 (0.34) | 8.17 (1.31) | - | 0.25 (0.10) | 0.54 (0.26) | 0.56 (0.20) | 1.03 (0.27) | 1.9 (0.53) | - | [34] |
Country | Study Size | Age | Design | Intervention | Tissue | Cognitive Outcome Measured | Fatty Acids Measured | Main Outcomes | Study |
---|---|---|---|---|---|---|---|---|---|
Australia | 78 | 3–5 years | RCT | 1.3 g DHA + 0.3 g EPA/day via powder in milk/yogurt for 12 weeks | RBC | Head, Toes, Knees Shoulders (HTKS) task and Child-Self-Regulation and Social Behavior Questionnaire (CSBQ), Go/No-Go and Mr. Ant tasks, Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) | Omega-3 Index | DHA + EPA supplementation significantly increased Omega-3 Index Post-intervention CSBQ behavioral self-regulation was significantly higher in the placebo group Supplementation did not improve self-regulation or executive function outcomes | [99] |
Australia | 396 | 6–10 years | RCT | 88 mg DHA and 22 mg EPA in powder form 6 days a week for 12 months | Plasma | Weschler Intelligence Scale for Children III (WISC-III), Developmental Neuropsychological Assessment (NEPSY), Rey Auditory Verbal Learning Test (RAVLT) | ALA, EPA, DPA, DHA, total n-3 PUFAs | No effect of DHA + EPA supplementation on cognitive test performance | [100] |
China | 94 | 7–12 years | RCT | 800 mg DHA/day via capsule for 6 months | RBC | Digit Span Backwards and Wisconsin card sorting test at 3 and 6 months | SFAs, MUFAs, n-3 and n-6 PUFAs, n-6:n-3 ratio | Both the intervention and control groups showed a significant increase in Digit Span Backwards and Wisconsin card sorting test scores No effect of DHA supplementation on test scores | [44] |
Gambia | 50 | 3–9 months | RCT | 200 mg DHA and 300 mg EPA or 2 mL olive oil/day for 6 months | Plasma | Willatts Infant Planning Test | n-3 and n-6 PUFAs | PUFA supplementation did not impact cognitive performance at 9 nor 12 months of age | [38] |
Ghana (north) | 307 | 2–6 years | Cross sectional | - | Whole blood | Dimensional change card sort (DCCS) total pass | SFA, MUFA, n-3, n-6, and n-9 PUFAs, T:T ratio, ARA:EPA | FA levels were associated with variation in DCCS performance Positive association between DCCS total pass and DHA and ALA levels Children with highest levels of DHA, DHA + EPA, and total n-3 PUFAs were more likely to pass at least one condition of DCCS test | [46] |
Indonesia | 384 | 6–10 years | RCT | 88 mg DHA and 22 mg EPA in powder form 6 days a week for 12 months | Plasma | WISC-III, NEPSY, RAVLT | ALA, EPA, DPA, DHA, total n-3 PUFAs | No effect of DHA + EPA supplementation on cognitive test performance | [100] |
Malawi | 2565 | 6–59 months | RCT | DHA + high-oleic (HO) ready-to-use therapeutic food (RUTF) or HO RUTF for 1 month | Plasma PL | Malawi Developmental Assessment Tool (MDAT) global z-score and Willatts problem-solving assessment (PSA) intention score | n-3 and n-6 PUFAs | DHA + HO RUTF and HO RUTF supplementation increased plasma PL EPA and ALA levels DHA + HO RUTF also increased plasma PL DHA levels Children with severe acute malnutrition who received DHA + HO RUTF had higher gross motor and social domain MDAT scores than those who received standard RUTF PSA scores did not differ between study groups | [101] |
Netherlands | 304 | 7 years | Longitudinal | - | Plasma PL | Kaufman Assessment Battery for Children | n-3 and n-6 PUFAs | PUFA levels at birth and 7 years were not associated with scores from the Kaufman Assessment Battery for Children at 7 years old | [51] |
Norway | 82 | 1 year | Longitudinal | - | RBC | Ages and Stages Questionnaire | SFA, MUFA, n-3 and n-6 PUFAs, Omega-3 Index | DHA status at three months was positively associated with problem solving at 12 months | [58] |
Norway | 218 | 4–6 years | RCT | ~1000 mg EPA + DHA from fatty fish or red meat for 4 months | RBC | Wechsler Preschool and Primary Scale of Intelligence III (WPPSI-III) and 9-Hole Peg Test | SFA, MUFA, n-3 and n-6 PUFAs, Omega-3 Index | Intent-to-treat analysis did not show an effect of fatty fish supplementation on cognitive outcomes After adjusting for dietary compliance, fatty fish supplementation showed a higher improvement in WPPSI-III total raw score, vocabulary score, block design score, and symbol search score | [102] |
Oman | 132 | 9–10 years | RCT | 403 mg DHA/weekday from fish oil capsule or 150–200 DHA mg/weekday from grilled fish for 12 weeks | RBC | Verbal Fluency Test, Buschke Selective Reminding Test, Trail Making Test | EPA, DHA, DPA | Both fish oil and grilled fish supplementation showed a positive effect on Trail Making Test Part B score, but capsule supplementation showed a significantly greater positive effect | [103] |
South Africa | 183 | 7–9 years | RCT | 192 mg DHA and 82 mg EPA/weekday in fish spread for 6 months (104 days) | Plasma and RBC PC | Hopkins Verbal Learning Test (HVLT), Afrikaans reading test, Afrikaans spelling test | EPA, DHA, ARA | Fish spread supplementation yielded positive intervention effects for HVLT recognition index, HVLT discrimination index, and spelling test score After adjusting for dietary compliance, fish spread supplementation yielded a positive intervention effect for above measures and reading test score | [52] |
Tanzania | 130 | 4–6 years | Cross sectional | - | Whole blood | DCCS total pass and highest test passed | SFA, n-3, n-6, and n-9 PUFAs, T:T ratio | FA levels were associated with variation in DCCS performance LA levels were positively associated with DCCS performance, and ALA levels were negatively associated with DCCS performance Absence of EFAD levels is associated with increased likelihood of successful DCCS performance | [54] |
United Kingdom | 493 | 7–9 years | Cross sectional | - | Whole blood | British Ability Scales II Word Reading Achievement subtest and Recall of Digits Forward and Recall of Digits Backward sub-tests | n-3 and n-6 PUFAs | Reading scores were positively associated with DHA, EPA, DPA, DHA+EPA, and total n-6 PUFAs Working memory was positively associated with DHA, EPA, DPA, DHA+EPA, and total n-3 PUFAs | [34] |
United States | 338 | 10–16 months | RCT | 200 mg DHA + 200 mg ARA/day in powder form in milk for 6 months | RBC | Bayley Scales of Infant Development III (BSID-III) cognitive composite score | n-3 and n-6 PUFAs, n-6:n-3 ratio | RBC DHA and ARA levels significantly increased with supplementation Mean baseline BSID-III cognitive composite scores did not improve with DHA and ARA supplementation | [104] |
United States | 239 | 12 months | RCT | ~51 mg DHA + ~165 mg ARA in fish/fungal oil or egg-derived triglyceride-supplemented formula for 12 months | RBC PC, RBC PE | Fagan Test of Infant Intelligence (6 and 9 months), BSID-II (6 and 12 months), MacArthur Communicative Development Inventories (9 and 14 months) | ARA, DHA | Neither supplementation affected cognitive test performance at any age | [105] |
United States | 56 | 18 months | RCT | ~131 mg DHA or ~131 mg DHA + 270 mg ARA/can of formula for 16 weeks after birth | Plasma RBC | BSID-II | LA, ALA, ARA, EPA, DHA | DHA + ARA supplementation yielded an average 7-point Mental Development Index (MDI) increase, and DHA supplementation yielded an average 4-point MDI increase at 18 months Both DHA + ARA and DHA-supplemented children had higher developmental age scores on the cognitive and motor subscales of BSID-II at 18 months Plasma and RBC DHA at 4 months of age were correlated with MDI at 18 months of age | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardino, V.N.; Goeden, T.; Yakah, W.; Ezeamama, A.E.; Fenton, J.I. New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations. Nutrients 2023, 15, 1933. https://doi.org/10.3390/nu15081933
Cardino VN, Goeden T, Yakah W, Ezeamama AE, Fenton JI. New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations. Nutrients. 2023; 15(8):1933. https://doi.org/10.3390/nu15081933
Chicago/Turabian StyleCardino, Vanessa N., Travis Goeden, William Yakah, Amara E. Ezeamama, and Jenifer I. Fenton. 2023. "New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations" Nutrients 15, no. 8: 1933. https://doi.org/10.3390/nu15081933
APA StyleCardino, V. N., Goeden, T., Yakah, W., Ezeamama, A. E., & Fenton, J. I. (2023). New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations. Nutrients, 15(8), 1933. https://doi.org/10.3390/nu15081933