Longitudinal Trajectories of Dietary Fibre Intake and Its Determinants in Early Childhood: Results from the Melbourne InFANT Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Anthropometrics
2.4. Child and Maternal Factors
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Fibre Intake
3.3. Fibre Intake Trajectory
3.4. Child and Maternal Predictors of Low Fibre Trajectory Groups
3.5. Fibre Trajectory Groups and BMI z-Score at Age 60 Months
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.C.; Chen, P.H. Health consequences of nutrition in childhood and early infancy. Pediatr. Neonatol. 2009, 50, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- De Santis, S.; Cavalcanti, E.; Mastronardi, M.; Jirillo, E.; Chieppa, M. Nutritional Keys for Intestinal Barrier Modulation. Front. Immunol. 2015, 6, 612. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Ip, K.S.; Chan, J.S.; Lui, N.W.; Young, B.W. Increased prevalence of constipation in pre-school children is attributable to under-consumption of plant foods: A community-based study. J. Paediatr. Child Health 2008, 44, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M.; Kunitsugu, I.; Yoshitake, N.; Sasaki, S. The Relationship between Functional Constipation and Dietary Habits in School-Age Japanese Children. J. Nutr. Sci. Vitaminol. 2019, 65, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, S.; Luque, V.; Grote, V.; Closa-Monasterolo, R.; Ferré, N.; Koletzko, B.; Verduci, E.; Gruszfeld, D.; Xhonneux, A.; Escribano, J. Fibre Intake Is Associated with Cardiovascular Health in European Children. Nutrients 2020, 13, 12. [Google Scholar] [CrossRef]
- Kranz, S.; Brauchla, M.; Slavin, J.L.; Miller, K.B. What Do We Know about Dietary Fiber Intake in Children and Health? The Effects of Fiber Intake on Constipation, Obesity, and Diabetes in Children. Adv. Nutr. 2012, 3, 47–53. [Google Scholar] [CrossRef]
- Naveed, S.; Venalainen, T.; Eloranta, A.M.; Erkkila, A.T.; Jalkanen, H.; Lindi, V.; Lakka, T.A.; Haapala, E.A. Associations of dietary carbohydrate and fatty acid intakes with cognition among children. Public Health Nutr. 2020, 23, 1657–1663. [Google Scholar] [CrossRef]
- Hassevoort, K.M.; Lin, A.S.; Khan, N.A.; Hillman, C.H.; Cohen, N.J. Added sugar and dietary fiber consumption are associated with creativity in preadolescent children. Nutr. Neurosci. 2018, 23, 791–802. [Google Scholar] [CrossRef]
- USDA. Dietary Guidelines for Americans, 2020–2025. 2020. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 14 April 2023).
- EFSA. Dietary Reference Values for Nutrients, Summary Report. EFSA Support. Publ. 2019, 14, e15121. [Google Scholar] [CrossRef]
- Nutrient Reference Values for Australia and New Zealand: Dietary Fibre. National Health and Medical Rsearch Council, Ministry of Health. 2005. Available online: https://www.nrv.gov.au/nutrients/dietary-fibre (accessed on 2 March 2020).
- Costa, P.N.; Soares, A.M.; Filho, J.Q.; Junior, F.S.; Ambikapathi, R.; Rogawski McQuade, E.T.; Guerrant, R.L.; Caulfield, L.E.; Lima, A.A.M.; Maciel, B.L.L. Dietary intake from complementary feeding is associated with intestinal barrier function and environmental enteropathy in Brazilian children from the MAL-ED cohort study. Br. J. Nutr. 2020, 123, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- van Gijssel, R.M.; Braun, K.V.; Kiefte-de Jong, J.C.; Jaddoe, V.W.; Franco, O.H.; Voortman, T. Associations between Dietary Fiber Intake in Infancy and Cardiometabolic Health at School Age: The Generation R Study. Nutrients 2016, 8, 531. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Banderali, G.; Montanari, C.; Berni Canani, R.; Cimmino Caserta, L.; Corsello, G.; Mosca, F.; Piazzolla, R.; Rescigno, M.; Terracciano, L.; et al. Childhood Dietary Intake in Italy: The Epidemiological “MY FOOD DIARY” Survey. Nutrients 2019, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Catellier, D.J.; Jun, S.; Dwyer, J.T.; Jacquier, E.F.; Anater, A.S.; Eldridge, A.L. Total Usual Nutrient Intakes of US Children (Under 48 Months): Findings from the Feeding Infants and Toddlers Study (FITS) 2016. J. Nutr. 2018, 148, 1557s–1566s. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients 2018, 10, 599. [Google Scholar] [CrossRef]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper II: Comparative Examination of Food Sources of Fibre among High and Low Fibre Consumers. Nutrients 2018, 10, 1223. [Google Scholar] [CrossRef]
- Ventura, A.K.; Worobey, J. Early influences on the development of food preferences. Curr. Biol. 2013, 23, R401–R408. [Google Scholar] [CrossRef]
- Campbell, K.J.; Lioret, S.; McNaughton, S.A.; Crawford, D.A.; Salmon, J.; Ball, K.; McCallum, Z.; Gerner, B.E.; Spence, A.C.; Cameron, A.J.; et al. A parent-focused intervention to reduce infant obesity risk behaviors: A randomized trial. Pediatrics 2013, 131, 652–660. [Google Scholar] [CrossRef]
- Hesketh, K.D.; Campbell, K.; Salmon, J.; McNaughton, S.A.; McCallum, Z.; Cameron, A.; Ball, K.; Gold, L.; Andrianopoulos, N.; Crawford, D. The Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program follow-up. Contemp. Clin. Trials 2013, 34, 145–151. [Google Scholar] [CrossRef]
- Campbell, K.; Hesketh, K.; Crawford, D.; Salmon, J.; Ball, K.; McCallum, Z. The Infant Feeding Activity and Nutrition Trial (INFANT) an early intervention to prevent childhood obesity: Cluster-randomized controlled trial. BMC Public Health 2008, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- FSANZ. Australian Foood, Supplement and Nutrient Database (AUSNUT 2007). 2007. Available online: https://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/Pages/ausnut2007.aspx (accessed on 14 April 2023).
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; EFCOVAL Consortium. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), 87–91. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; WHO Multicentre Growth Reference Study Group: Geneva, Switzerland, 2006. [Google Scholar]
- Obesity and Overweight. World Health Organization. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 14 April 2023).
- Zheng, M.; Cameron, A.J.; Birken, C.S.; Keown-Stoneman, C.; Laws, R.; Wen, L.M.; Campbell, K.J. Early Infant Feeding and BMI Trajectories in the First 5 Years of Life. Obesity 2020, 28, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D. Group-Based Modeling of Development; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Zhou, S.J.; Gibson, R.A.; Gibson, R.S.; Makrides, M. Nutrient intakes and status of preschool children in Adelaide, South Australia. Med. J. Aust. 2012, 196, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Healey, G.; Murphy, R.; Butts, C.; Brough, L.; Whelan, K.; Coad, J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomized, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 2018, 119, 176–189. [Google Scholar] [CrossRef]
- Zhong, H.; Penders, J.; Shi, Z.; Ren, H.; Cai, K.; Fang, C.; Ding, Q.; Thijs, C.; Blaak, E.E.; Stehouwer, C.D.A.; et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 2019, 7, 2. [Google Scholar] [CrossRef]
- De Cosmi, V.; Scaglioni, S.; Agostoni, C. Early Taste Experiences and Later Food Choices. Nutrients 2017, 9, 107. [Google Scholar] [CrossRef]
- van Ansem, W.J.; Schrijvers, C.T.; Rodenburg, G.; van de Mheen, D. Maternal educational level and children’s healthy eating behaviour: Role of the home food environment (cross-sectional results from the INPACT study). Int. J. Behav. Nutr. Phys. Act. 2014, 11, 113. [Google Scholar] [CrossRef]
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary fiber and weight regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef] [PubMed]
n | % or Mean (SD) | |
---|---|---|
Intervention group | ||
Intervention | 257 | 51.1 |
Control | 246 | 48.9 |
Child sex | ||
Girl | 235 | 46.7 |
Boy | 268 | 53.3 |
Child age in months at each time point | ||
9 months | 503 | 9.2 (1.1) |
18 months | 486 | 17.9 (1.7) |
42 months | 359 | 43.3 (2.5) |
60 months | 360 | 60.7 (1.6) |
Child BMI z-score | ||
9 months | 502 | 0.15 (0.98) |
18 months | 466 | 0.82 (0.99) |
42 months | 353 | 0.63 (0.87) |
60 months | 361 | 0.53 (0.97) |
Birthweight | ||
Low (<2.5 kg) | 35 | 7.0 |
Normal (≥2.5 kg) | 462 | 91.8 |
Missing | 6 | 1.2 |
Any breastfeeding duration | ||
<6 months | 175 | 34.8 |
≥6 months | 317 | 63.0 |
Missing | 11 | 2.2 |
Timing of solids food introduction | ||
Before <6 months | 337 | 67.0 |
At and after ≥6 months | 141 | 28.0 |
Missing | 25 | 5.0 |
Maternal employment status | ||
Employed | 45 | 8.9 |
Unemployed | 450 | 89.5 |
Missing | 8 | 1.6 |
Maternal education | ||
University | 272 | 54.1 |
Preuniversity | 228 | 45.3 |
Missing | 3 | 0.6 |
Maternal weight status | ||
Normal weight | 181 | 36.0 |
Overweight or obese | 318 | 63.2 |
Missing | 4 | 0.8 |
Maternal country of birth | ||
Australia | 396 | 78.7 |
Other | 104 | 20.7 |
Missing | 3 | 0.6 |
9 Months (n = 495) | 18 Months (n = 428) | 42 Months (n = 261) | 60 Months (n = 270) | |
---|---|---|---|---|
Mean ± SD | ||||
Fibre intake (g/day) | 8.7 ± 4.5 | 13.0 ± 4.4 | 16.1 ± 5.3 | 18.3 ± 5.3 |
Fibre density (g/MJ) | 2.4 ± 1.0 | 2.9 ± 0.8 | 3.0 ± 0.8 | 3.1 ± 0.8 |
Energy intake (MJ/day) | 3.6 ± 0.9 | 4.5 ± 0.9 | 5.4 ± 1.2 | 5.9 ± 1.2 |
Median (IQR) | ||||
Fibre intake (g/day) | 7.7 (5.5–10.8) | 12.5 (9.7–15.6) | 14.9 (12.6–18.7) | 17.6 (14.5–21.6) |
9 Months (n = 495) | 18 Months (n = 428) | 42 Months (n = 261) | 60 Months (n = 270) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Food Group a | % b | % Total Fibre | Total Fibre (g) | % b | % Total Fibre | Total Fibre (g) | % b | % Total Fibre | Total Fibre (g) | % b | % Total Fibre | Total Fibre (g) |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||||||
Vegetables | 92 | 24.2 ± 17.2 | 2.1 ± 2.1 | 89 | 12.6 ± 11.0 | 1.6 ± 1.7 | 92 | 10.6 ± 7.6 | 1.7 ± 1.4 | 94 | 12.7 ± 9.1 | 2.4 ± 1.9 |
Fruit | 95 | 23.5 ± 15.7 | 2.1 ± 1.8 | 99 | 27.1 ± 12.6 | 3.6 ± 2.0 | 99 | 26.2 ± 12.1 | 4.3 ± 2.5 | 99 | 24.8 ± 11.1 | 4.7 ± 2.7 |
Breads/cereals—whole-grain | 83 | 16.5 ± 14.6 | 1.4 ± 1.4 | 97 | 26.9 ± 13.4 | 3.6 ± 2.2 | 94 | 26.9 ± 14.4 | 4.4 ± 2.9 | 96 | 25.1 ± 14.7 | 4.7 ± 3.3 |
Breads/cereals—refined | 74 | 4.8 ± 7.1 | 0.4 ± 0.8 | 94 | 8.8 ± 8.5 | 1.0 ± 1.0 | 98 | 10.7 ± 9.1 | 1.6 ± 1.4 | 96 | 11.8 ± 9.4 | 2.0 ± 1.5 |
Infant foods | 61 | 9.5 ± 13.9 | 0.7 ± 1.1 | 36 | 2.2 ± 5.3 | 0.3 ± 0.6 | 8 | 0.7 ± 3.5 | 0.1 ± 0.5 | 3 | 0.2 ± 1.7 | 0.0 ± 0.3 |
Infant cereals | 73 | 6.7 ± 10.1 | 0.5 ± 0.8 | 20 | 0.6 ± 2.4 | 0.1 ± 0.2 | 1 | 0.0 ± 0.5 | 0.0 ± 0.1 | 0 | - | - |
Red meat mixed dishes | 34 | 2.7 ± 6.8 | 0.2 ± 0.7 | 48 | 2.2 ± 4.5 | 0.3 ± 0.6 | 39 | 1.3 ± 2.5 | 0.2 ± 0.4 | 37 | 1.3 ± 2.7 | 0.2 ± 0.5 |
Potatoes | 39 | 2.0 ± 4.2 | 0.2 ± 0.4 | 49 | 2.6 ± 4.7 | 0.3 ± 0.5 | 66 | 3.8 ± 5.3 | 0.6 ± 0.7 | 66 | 3.7 ± 4.9 | 0.6 ± 0.8 |
Cakes/Cookies | 25 | 0.6 ± 1.8 | 0.0 ± 0.2 | 72 | 2.6 ± 3.3 | 0.3 ± 0.4 | 81 | 3.8 ± 4.2 | 0.6 ± 0.6 | 85 | 3.8 ± 4.2 | 0.7 ± 0.7 |
Legumes | 17 | 2.1 ± 6.0 | 0.2 ± 0.7 | 25 | 2.8 ± 6.8 | 0.5 ± 1.2 | 23 | 2.1 ± 5.4 | 0.4 ± 1.2 | 21 | 2.3 ± 6.5 | 0.5 ± 1.5 |
Pasta—refined | 41 | 2.0 ± 4.0 | 0.2 ± 0.4 | 55 | 3.0 ± 4.7 | 0.4 ± 0.6 | 54 | 3.2 ± 4.9 | 0.5 ± 0.7 | 49 | 2.9 ± 5.0 | 0.5 ± 0.8 |
Univariable | Multivariable a | |
---|---|---|
OR (95% CI) | ||
Child sex (girl vs. boy) | 1.56 (1.08, 2.27) | 1.67 (1.13, 2.46) |
Birthweight (<2.5 vs. ≥2.5 kg) | 1.53 (0.71, 3.29) | 1.13 (0.51, 2.51) |
Breastfeeding duration (≥ 6 vs. <6 months) | 0.45 (0.30, 0.68) | 0.47 (0.30, 0.72) |
Introduction to solid food (before 6 vs. after 6 months) | 0.73 (0.48, 1.10) | 0.69 (0.45, 1.07) |
Maternal employment status (yes vs. no) | 1.49 (0.75, 2.95) | 1.45 (0.72, 2.94) |
Maternal education (university vs. non-university) | 0.59 (0.40, 0.86) | 0.66 (0.44, 0.98) |
Maternal pre-pregnancy BMI (≥25 kg/m2 vs. <25 kg/m2) | 1.43 (0.97, 2.11) | 1.25 (0.83, 1.90) |
Mother not born in Australia vs. born in Australia | 1.15 (0.72, 1.81) | 1.29 (0.79, 2.09) |
Intervention | 0.91 (0.63, 1.31) | 0.84 (0.57, 1.23) |
BMI z-Score * | Mean Δ (95%CI) | p |
---|---|---|
Model 1 (n = 345) | −0.10 (−0.28–0.08) | 0.27 |
Model 2 (n = 345) | −0.12 (−0.30–0.07) | 0.20 |
Model 3 (n = 342) | −0.12 (−0.31–0.07) | 0.20 |
Child Overweight Status * | OR (95%CI) | p |
Model 1 (n = 345) | 1.00 (0.57–1.78) | 0.96 |
Model 2 (n = 345) | 0.94 (0.51–1.73) | 0.85 |
Model 3 (n = 342) | 0.94 (0.51–1.73) | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorsteinsdottir, F.; Campbell, K.J.; Heitmann, B.L.; Zheng, M. Longitudinal Trajectories of Dietary Fibre Intake and Its Determinants in Early Childhood: Results from the Melbourne InFANT Program. Nutrients 2023, 15, 1932. https://doi.org/10.3390/nu15081932
Thorsteinsdottir F, Campbell KJ, Heitmann BL, Zheng M. Longitudinal Trajectories of Dietary Fibre Intake and Its Determinants in Early Childhood: Results from the Melbourne InFANT Program. Nutrients. 2023; 15(8):1932. https://doi.org/10.3390/nu15081932
Chicago/Turabian StyleThorsteinsdottir, Fanney, Karen J. Campbell, Berit L. Heitmann, and Miaobing Zheng. 2023. "Longitudinal Trajectories of Dietary Fibre Intake and Its Determinants in Early Childhood: Results from the Melbourne InFANT Program" Nutrients 15, no. 8: 1932. https://doi.org/10.3390/nu15081932
APA StyleThorsteinsdottir, F., Campbell, K. J., Heitmann, B. L., & Zheng, M. (2023). Longitudinal Trajectories of Dietary Fibre Intake and Its Determinants in Early Childhood: Results from the Melbourne InFANT Program. Nutrients, 15(8), 1932. https://doi.org/10.3390/nu15081932