Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cardiopulmonary Exercise Test
2.3. Blood Sampling, Plasma Lipids, and Apolipoproteins
2.4. HDL Size and Subfractions
2.5. CETP and LCAT Concentrations
2.6. Paraoxonase 1 (PON1) Activity
2.7. HDL’s Antioxidant Capacity
2.8. Cholesterol Transfer Assay
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adorni, M.P.; Ronda, N.; Bernini, F.; Zimetti, F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021, 10, 574. [Google Scholar] [CrossRef]
- Glomset, J.A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 1968, 9, 155–167. [Google Scholar] [CrossRef]
- Maranhão, R.C.; Freitas, F.R. HDL Metabolism and Atheroprotection: Predictive Value of Lipid Transfer. Adv. Clin. Chem. 2014, 65, 1–41. [Google Scholar]
- Sprandel, M.C.O.; Hueb, W.A.; Segre, A.; Ramires, J.A.F.; Kalil-Filho, R.; Maranhão, R.C. Alterations in lipid transfers to HDL associated with the presence of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 1–9. [Google Scholar] [CrossRef]
- Casella-Filho, A.; Chagas, A.C.P.; Maranhão, R.C.; Trombetta, I.C.; Cesena, F.H.Y.; Silva, V.M.; Tanus-Santos, J.E.; Negrão, C.E.; da Luz, P.L. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome. Am. J. Cardiol. 2011, 107, 1168–1172. [Google Scholar] [CrossRef]
- Bachi, A.L.; Rocha, G.A.; Sprandel, M.C.; Ramos, L.R.; Gravina, C.F.; Pithon-Curi, T.C.; Vaisberg, M.; Maranhão, R.C. Exercise Training Improves Plasma Lipid Inflammatory Profiles and Increases Cholesterol Transfer to High-Density Lipoprotein in Elderly Women. J. Am. Geriatric. Soc. 2015, 63, 1247–1249. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behavior. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Hallal, P.C.; Gomez, L.F.; Parra, D.C.; Lobelo, F.; Mosquera, J.; Florindo, A.A.; Reis, R.S.; Pratt, M.; Sarmiento, O.L. Lessons learned after 10 years of IPAQ use in Brazil and Colombia. J. Phys. Act Health 2010, 7 (Suppl. S2), S259–S264. [Google Scholar] [CrossRef]
- Harriss, D.J.; Atkinson, G. International Journal of Sports Medicine—Ethical standards. Int. J. Sports Med. 2009, 30, 701–702. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Myers, J.; Kaminsky, L.A.; Lima, R.; Christle, J.W.; Ashely, E.; Arena, R. A Reference Equation for Normal Standards for VO2 Max: Analysis from the Fitness Registry and the Importance of Exercise National Database (FRIEND Registry). Prog. Cardiovasc. Dis. 2017, 60, 21–29. [Google Scholar] [CrossRef]
- Skinner, S.; McLellan, T. The transition from aerobic to anaerobic metabolism. Res Exerc Sport. 1980, 51, 234–248. [Google Scholar] [CrossRef]
- Hollenberg, M.; Tager, I.B. Oxygen uptake efficiency slope: An index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J. Am. Coll. Cardiol. 2000, 36, 194–201. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Sentí, M.; Tomás, M.; Fitó, M.; Weinbrenner, T.; Covas, M.I.; Sala, J.; Masiá, R.; Marrugat, J. Antioxidant paraoxonase 1 activity in the metabolic syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 5422–5426. [Google Scholar] [CrossRef]
- Esterbauer, H.; Striegl, G.; Puhl, H.; Rotheneder, M. Continuous monitoring of in vitro oxidation of human low-density lipoprotein. Free Radic. Res. Commun. 1989, 6, 67–75. [Google Scholar] [CrossRef]
- Wood, P.D.; Stefanick, M.L.; Dreon, D.M.; Frey-Hewitt, B.; Garay, S.C.; Williams, P.T.; Superko, H.R.; Fortmann, S.P.; Albers, J.J.; Vranizan, K.M. Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. N. Engl. J. Med. 1988, 319, 915–924. [Google Scholar] [CrossRef]
- Sunami, Y.; Motoyama, M.; Kinoshita, F.; Mizooka, Y.; Sueta, K.; Matsunaga, A.; Sasaki, J.; Tanaka, H.; Shindo, M. Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metabolism 1999, 48, 984–988. [Google Scholar] [CrossRef]
- Couillard, C.; Després, J.P.; Lamarche, B.; Bergeron, J.; Gagnon, J.; Leon, A.S.; Rai, D.C.; Skinner, J.S.; Wilmore, J.H.; Bouchard, C. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: Evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb. Vasc. Biol. 2001, 21, 1226–1232. [Google Scholar] [CrossRef]
- Xu, R.X.; Li, S.; Li, X.L.; Zhang, Y.; Guo, Y.L.; Zhu, C.G.; Wu, N.Q.; Qing, P.; Sun, J.; Dong, Q.; et al. High-density lipoprotein subfractions in relation with the severity of coronary artery disease: A Gensini score assessment. J. Clin. Lipidol. 2015, 9, 26–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, C.G.; Xu, R.X.; Li, S.; Li, X.L.; Guo, Y.L.; Wu, N.Q.; Gao, Y.; Qing, P.; Cui, C.J.; et al. HDL subfractions and very early CAD: Novel findings from untreated patients in a Chinese cohort. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Burton, J.; Rankinen, T.; Blair, S.N.; Church, T.S.; Després, J.P.; Hagberg, J.M.; Landers-Ramos, R.; Leon, A.S.; Mikus, C.R.; et al. The effects of exercise on the lipoprotein subclass profile: A meta-analysis of 10 intervention. Atherosclerosis 2015, 243, 364–372. [Google Scholar] [CrossRef]
- Woudberg, N.J.; Mendham, A.E.; Katz, A.A.; Goedecke, J.H.; Lecour, S. Exercise alters HDL subclasses distribution and function in obese women. Lipids Health Dis. 2018, 17, 232–244. [Google Scholar] [CrossRef]
- Otrane, A.; Trigui, A.; Walha, R.; Berrougui, H.; Fulop, T.; Khalil, A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of HDL Subclasses and Improves Their Functionality. Nutrients 2021, 13, 2235. [Google Scholar] [CrossRef]
- Brites, F.; Zago, V.; Verona, J.; Muzzio, M.L.; Wikinski, R.; Schreier, L. HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci. 2006, 78, 3074–3081. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B., Jr.; Barter, P.J.; Björkegren, J.L.M.; Chapman, M.J.; Gaudet, D.; Kim, D.S.; Niesor, E.; Rye, K.A.; Sacks, F.M.; et al. HDL and atherosclerotic cardiovascular disease: Genetic insights into complex biology. Nat. Rev. 2018, 15, 9–19. [Google Scholar] [CrossRef]
- Vinagre, J.C.; Vinagre, C.G.; Pozzi, F.S.; Zácari, C.Z.; Maranhão, R.C. Plasma kinetics of chylomicron-like emulsion and lipid transfers to high-density lipoprotein (HDL) in lacto-ovo vegetarian and in omnivorous subjects. Eur. J. Nutr. 2014, 53, 981–987. [Google Scholar] [CrossRef]
- Marniemi, J.; Dahlström, S.; Kvist, M.; Seppänen, A.; Hietanen, E. Dependence of serum lipid and lecithin: Cholesterol acyltransferase levels on physical training in young men. Eur. J. Appl. Physiol. 1982, 49, 25–35. [Google Scholar] [CrossRef]
- Olchawa, B.; Kingwell, B.A.; Hoang, A.; Schneider, L.; Miyazaki, O.; Nestel, P.; Sviridov, D. Physical fitness and reverse cholesterol transport. Arterioscler Thromb. Vasc. Biol. 2004, 24, 1087–1091. [Google Scholar] [CrossRef]
- Seip, R.L.; Moulin, P.; Cocke, T.; Tall, A.; Kohrt, W.M.; Mankowitz, K.; Semekovich, C.F.; Ostlund, R.; Schonfeld, G. Exercise training decreases plasma cholesteryl ester transfer protein. Aterioscler Thromb. 1993, 13, 1359–1367. [Google Scholar] [CrossRef]
- Vinagre, C.G.C.; Ficker, E.S.; Finazzo, C.; Alves, M.J.N.N.; Angelis, K.; Irigoyen, M.C.; Negrão, C.E.; Maranhão, R.C. Enhanced removal from the plasma of LDL-like nanoemulsion cholesteryl ester in trained men compared with sedentary healthy men. J. Appl. Physiol. 2007, 103, 1166–1171. [Google Scholar] [CrossRef]
- Kraus, W.E.; Houmard, J.A.; Duscha, B.D.; Knetzger, K.J.; Wharton, M.B.; McCartney, J.S.; Bales, C.W.; Henes, S.; Samsa, G.P.; Orvos, J.D.; et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N. Engl. J. Med. 2002, 347, 1483–1492. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Leduc-Gaudet, J.P.; Hussain, S.N.A.; Barreiro, E.; Gouspillou, G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int. J. Mol. Sci. 2021, 22, 8179. [Google Scholar] [CrossRef]
- Betik, A.C.; Hepple, R.T. Determinants of VO2 max decline with aging: An integrated perspective. Appl. Physiol. Nutr. Metab. 2008, 33, 130–140. [Google Scholar] [CrossRef]
- Breneman, C.B.; Polinski, K.; Sarzynski, M.A.; Lavie, C.J.; Kokkinos, P.F.; Ahmed, A.; Sui, X. The Impact of Cardiorespiratory Fitness Levels on the Risk of Developing Atherogenic Dyslipidemia. Am. J. Med. 2016, 129, 1060–1066. [Google Scholar] [CrossRef]
- Park, Y.M.M.; Sui, X.; Liu, J.; Zhou, H.; Kokkinos, P.F.; Lavie, C.J.; Hardin, J.W.; Blair, S.N. The impact of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins. J. Am. Coll. Cardiol. 2015, 19, 2091–2100. [Google Scholar] [CrossRef]
Parameters | Active Older (n = 24) | Inactive Older (n = 20) | Active Young (n = 39) | Inactive Young (n = 24) | p |
---|---|---|---|---|---|
Sex (M/F, n) | 10/14 | 12/9 | 22/17 | 10/14 | N.S. |
Age (years) | 65 (60:80) a,b | 67 (60:79) c,d | 29 (20:34) | 26 (20:35) | <0.0001 |
Weight (kg) | 64.2 ± 11.3 | 72.2 ± 10.1 | 70.3 ± 12.1 | 67.4 ± 15.1 | N.S. |
BMI (kg/m2) | 24.7 ± 2.7 e | 28.1 ± 4.8 c,d | 24.2 ± 2.4 | 23.5 ± 3.5 | <0.0001 |
WC (cm) | 87 (68:113) | 96 (73:110) c,f | 82 (62:95) | 80 (64:111) | <0.0001 |
WHR (cm) | 0.9 (0.8:1.0) a | 0.9 (0.8:1.1) c,f | 0.8 (0.7:1.0) | 0.9 (0.7:1.0) | <0.0001 |
VO2 | |||||
Absolute (L/min) | 2.0 (1.3:3.2) a | 1.8 (1.2:2.7) c | 3.5 (2.1:4.4) g | 2.3 (1.4:3.8) | <0.0001 |
VT (mL/kg/min) | 22.6 ± 3.0 a,h | 18.4 ± 3.7 c,i | 32.1 ± 6.6 j | 23.0 ± 4.7 | <0.0001 |
Peak (mL/kg/min) | 32.6 ± 5.2 a,h,k | 27.3 ± 5.9 c,d | 46.4 ± 4.9 j | 37.5 ± 7.6 | <0.0001 |
Predicted for age (%) | 119 (86:154) b,h | 102 (75:130) i | 109 (91:129) j | 88 (66:170) | <0.0001 |
Slope (VE/VO2) | 31 (24:38) | 31 (23:41) | 29 (23:37) | 32 (22:37) | N.S. |
MET | 9.3 ± 1.5 a,h | 7.8 ± 1.7 c,d | 13.4 ± 1.6 j | 10.5 ± 1.7 | <0.0001 |
OUES (mL) | 2339 ± 598 a | 2117 ± 405 c | 3561 ± 837 j | 2602 ± 763 | <0.0001 |
Parameters | Active Older (n = 24) | Inactive Older (n = 21) | Active Young (n = 39) | Inactive Young (n = 24) | p |
---|---|---|---|---|---|
Cholesterol (mg/dL) | |||||
Total | 213 ± 32 a,b | 203 ± 31 c,d | 178 ± 30 | 163 ± 32 | <0.0001 |
LDL | 127 ± 26 e,f | 127 ± 24 g,h | 103 ± 28 | 99 ± 26 | <0.0001 |
HDL | 67 ± 14 b,i | 51 ± 14 c | 62 ± 15 j | 49 ± 14 | <0.0001 |
non-HDL | 146 ± 32 e,f | 152 ± 28 d,k | 116 ± 29 | 114 ± 30 | <0.0001 |
Triglycerides (mg/dL) | 79 (29:250) | 122 (34:217) k,h | 64 (24:115) | 67 (20:227) | 0.0004 |
Apolipoprotein (g/L) | |||||
A-I | 1.69 ± 0.18 b | 1.55 ± 0.27 j | 1.58 ± 0.27 l | 1.34 ± 0.26 | <0.0001 |
B | 0.98 ± 0.20 b,e | 1.01 ± 0.21 d,k | 0.80 ± 0.18 | 0.76 ± 0.16 | <0.0001 |
HDL size (nm) | 9.2 (8.5:9.7) | 9.1 (8.7:9.7) | 9.2 (8.6:10.0) | 9.2 (8.5:9.5) | N.S. |
CETP (ug/mL) | 1.08 (0.53:2.31) a,f | 0.89 (0.42:1.44) | 0.58 (0.15:1.53) | 0.74 (0.26:1.43) | <0.0001 |
LCAT (ug/mL) | 8.64 ± 1.80 | 8.01 ± 2.84 | 7.60 ± 1.19 | 7.97 ± 1.88 | N.S. |
Cholesterol transfer to HDL (%) | |||||
Esterified | 4.71 (3.62:5.62) b | 4.20 (3.18:5.91) | 4.23 (3.44:6.06) m | 3.83 (2.68:5.03) | 0.0002 |
Unesterified | 6.43 (4.83:8.94) b,i | 5.45 (3.84:8.20) | 5.98 (4.35:9.47) m | 5.32 (3.16:7.28) | 0.0001 |
Parameters | Active Older (n = 24) | Inactive Older (n = 21) | Active Young (n = 39) | Inactive Young (n = 24) | p |
---|---|---|---|---|---|
PON1 activity (U/L) | 77 (22:143) | 46 (11:185) | 65 (18:194) | 71 (10:173) | N.S. |
Lag time (min) | 93 (75:115) | 92 (78:112) | 92 (79:102) | 92 (83:116) | N.S. |
ODmax. | 0.9418 ± 0.0281 | 0.9330 ± 0.0234 | 0.9357 ± 0.0275 | 0.9401 ± 0.0257 | N.S. |
Tmax (min) | 133 (120:155) | 133 (110:153) | 135 (110:143) | 135 (128:163) | N.S. |
Vmax (milli-units/min) | 11.49 (8.34:12.84) | 10.44 (7.89:12.47) | 10.94 (8.17:12.84) | 10.12 (6.58:12.77) | N.S. |
Time to Vmax (min) | 90 (83:115) | 89 (74:103) | 91 (76:103) | 90 (80:104) | N.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, P.G.S.; Freitas, F.R.; Bachi, A.L.L.; Amirato, G.R.; Baroni, R.V.; Alves, M.J.N.N.; Vieira, R.P.; Vaisberg, M.W.; Aldin, M.N.; Kalil Filho, R.; et al. Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults. Nutrients 2023, 15, 4871. https://doi.org/10.3390/nu15234871
Braga PGS, Freitas FR, Bachi ALL, Amirato GR, Baroni RV, Alves MJNN, Vieira RP, Vaisberg MW, Aldin MN, Kalil Filho R, et al. Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults. Nutrients. 2023; 15(23):4871. https://doi.org/10.3390/nu15234871
Chicago/Turabian StyleBraga, Pedro G. S., Fatima R. Freitas, André L. L. Bachi, Gislene R. Amirato, Roberta V. Baroni, Maria Janieire N. N. Alves, Rodolfo P. Vieira, Mauro W. Vaisberg, Marlene N. Aldin, Roberto Kalil Filho, and et al. 2023. "Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults" Nutrients 15, no. 23: 4871. https://doi.org/10.3390/nu15234871
APA StyleBraga, P. G. S., Freitas, F. R., Bachi, A. L. L., Amirato, G. R., Baroni, R. V., Alves, M. J. N. N., Vieira, R. P., Vaisberg, M. W., Aldin, M. N., Kalil Filho, R., Figueiredo Neto, A. M., Damasceno, N. R. T., Tavoni, T. M., & Maranhão, R. C. (2023). Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults. Nutrients, 15(23), 4871. https://doi.org/10.3390/nu15234871