The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. NMR Spectroscopy
2.3. Statistics
3. Results
3.1. Lipid and Lipoprotein Metabolism
3.2. Amino Acids, Glycolysis, and Fatty Acid-Related Metabolites
3.3. Unbiased Random Forest Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 11 April 2023).
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. The Eatwell Guide. Helping You Eat a Healthy Balance Diet; Public Health England: London, UK, 2016. [Google Scholar]
- World Health Organization. Healthy Diet; World Health Organization: Geneva, Switzerland, 2018; pp. 1–6. [Google Scholar]
- Mansoor, N.; Vinknes, K.J.; Veierod, M.B.; Retterstol, K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors a meta-analysis of randomised controlled trials. Br. J. Nutr. 2016, 115, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Bueno, N.B.; De Melo, I.S.V.; De Oliveira, S.L.; Da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of Randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef] [Green Version]
- Gjuladin-Hellon, T.; Davies, I.G.; Penson, P.; Baghbadorani, R.A. Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Diffenderfer, M.R.; Schaefer, E.J. The composition and metabolism of large and small LDL. Curr. Opin. Lipidol. 2014, 25, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sniderman, A.D.; Toth, P.P.; Thanassoulis, G.; Furberg, C.D. An evidence-based analysis of the National Lipid Association recommendations concerning non-HDL-C and apoB. J. Clin. Lipidol. 2016, 10, 1248–1258. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Liu, Y.; Yin, S.; Chen, N.; Bai, X.; Ke, Q.; Shen, J.; Xia, M. Small dense LDL cholesterol is associated with metabolic syndrome traits independently of obesity and inflammation. Nutr. Metab. 2019, 16, 7. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, K.; Liu, F.; Lu, X.; Huang, J.; Gu, D. Association of circulating branched-chain amino acids with risk of cardiovascular disease: A systematic review and meta-analysis. Atherosclerosis 2022, 350, 90–96. [Google Scholar] [CrossRef]
- Mangge, H.; Zelzer, S.; Pruller, F.; Schnedl, W.J.; Weghuber, D.; Enko, D.; Bergsten, P.; Haybaeck, J.; Meinitzer, A. Branched-chain amino acids are associated with cardiometabolic risk profiles found already in lean, overweight and obese young. J. Nutr. Biochem. 2016, 32, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Aru, V.; Lam, C.; Khakimov, B.; Hoefsloot, H.C.J.; Zwanenburg, G.; Lind, M.V.; Schäfer, H.; van Duynhoven, J.; Jacobs, D.M.; Smilde, A.K.; et al. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. TrAC-Trends Anal. Chem. 2017, 94, 210–219. [Google Scholar] [CrossRef]
- Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, S.; Otvos, J.D.; Rifai, N.; Rosenson, R.S.; Buring, J.E.; Ridker, P.M. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 2009, 119, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Akbaraly, T.; Würtz, P.; Singh-Manoux, A.; Shipley, M.J.; Haapakoski, R.; Lehto, M.; Desrumaux, C.; Kähönen, M.; Lehtimäki, T.; Mikkilä, V.; et al. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: Analysis of two cohort studies. Sci. Rep. 2018, 8, 8620. [Google Scholar] [CrossRef] [Green Version]
- Ulven, S.M.; Christensen, J.J.; Nygård, O.; Svardal, A.; Leder, L.; Ottestad, I.; Lysne, V.; Laupsa-Borge, J.; Ueland, P.M.; Midttun, Ø.; et al. Using metabolic profiling and gene expression analyses to explore molecular effects of replacing saturated fat with polyunsaturated fat-a randomized controlled dietary intervention study. Am. J. Clin. Nutr. 2019, 109, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.W.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia-a randomized controlled feeding trial. Am. J. Clin. Nutr. 2022, 115, 154–162. [Google Scholar] [CrossRef]
- Hustad, K.S.; Rundblad, A.; Ottestad, I.; Christensen, J.J.; Holven, K.B.; Ulven, S.M. Comprehensive lipid and metabolite profiling in healthy adults with low and high consumption of fatty fish: A cross-sectional study. Br. J. Nutr. 2021, 125, 1034–1042. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMJ (Online) 2010, 340, 698–702. [Google Scholar] [CrossRef]
- McCullough, D.; Harrison, T.; Boddy, L.M.; Enright, K.J.; Amirabdollahian, F.; Schmidt, M.A.; Doenges, K.; Quinn, K.; Reisdorph, N.; Mazidi, M.; et al. The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial. Nutrients 2022, 14, 3691. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.C.; Feinman, R.D.; Mavropoulos, J.C.; Vernon, M.C.; Volek, J.S.; Wortman, J.A.; Yancy, W.S.; Phinney, S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007, 86, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julkunen, H.; Cichonska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Makela, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.; Salomaa, V.; et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023, 14, 604. [Google Scholar] [CrossRef]
- Wurtz, P.; Wang, Q.; Soininen, P.; Kangas, A.J.; Fatemifar, G.; Tynkkynen, T.; Tiainen, M.; Perola, M.; Tillin, T.; Hughes, A.D.; et al. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase. J. Am. Coll. Cardiol. 2016, 67, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Wurtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Davey Smith, G.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Shan, Z.; Li, Y.; Baden, M.Y.; Bhupathiraju, S.N.; Wang, D.D.; Sun, Q.; Rexrode, K.M.; Rimm, E.B.; Qi, L.; Willett, W.C.; et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA Intern. Med. 2020, 180, 1090–1100. [Google Scholar] [CrossRef]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4, e128308. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.F.; Joshi, R.; Gordillo-Maranon, M.; Drenos, F.; Charoen, P.; Giambartolomei, C.; Bis, J.C.; Gaunt, T.R.; Hughes, A.D.; Lawlor, D.A.; et al. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes. Commun. Med. 2023, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Holm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, S.; Hou, L.; Chen, X.; Li, W.; Liu, X.; Liu, C.; Li, Y.; Yuan, T.; Li, J.; Wang, B.; et al. Exploring the Causal Roles of Circulating Remnant Lipid Profile on Cardiovascular and Cerebrovascular Diseases: Mendelian Randomization Study. J. Epidemiol. 2022, 32, 205–214. [Google Scholar] [CrossRef]
- Duran, E.K.; Aday, A.W.; Cook, N.R.; Buring, J.E.; Ridker, P.M.; Pradhan, A.D. Triglyceride-Rich Lipoprotein Cholesterol, Small Dense LDL Cholesterol, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 75, 2122–2135. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef]
- Girona, J.; Amigo, N.; Ibarretxe, D.; Plana, N.; Rodriguez-Borjabad, C.; Heras, M.; Ferre, R.; Gil, M.; Correig, X.; Masana, L. HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk. Int. J. Mol. Sci. 2019, 20, 3151. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.V.; Millwood, I.Y.; Kartsonaki, C.; Hill, M.R.; Bennett, D.A.; Boxall, R.; Guo, Y.; Xu, X.; Bian, Z.; Hu, R.; et al. Lipids, Lipoproteins, and Metabolites and Risk of Myocardial Infarction and Stroke. J. Am. Coll. Cardiol. 2018, 71, 620–632. [Google Scholar] [CrossRef]
- Jensen, P.N.; Fretts, A.M.; Hoofnagle, A.N.; McKnight, B.; Howard, B.V.; Umans, J.G.; Sitlani, C.M.; Siscovick, D.S.; King, I.B.; Sotoodehnia, N.; et al. Circulating ceramides and sphingomyelins and the risk of incident cardiovascular disease among people with diabetes: The strong heart study. Cardiovasc. Diabetol. 2022, 21, 167. [Google Scholar] [CrossRef]
- Ding, M.; Rexrode, K.M. A review of lipidomics of cardiovascular disease highlights the importance of isolating lipoproteins. Metabolites 2020, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Yancey, P.G.; de la Llera-Moya, M.; Swarnakar, S.; Monzo, P.; Klein, S.M.; Connelly, M.A.; Johnson, W.J.; Williams, D.L.; Rothblat, G.H. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J. Biol. Chem. 2000, 275, 36596–36604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Zhao, X.; Zhou, Q.; Zhang, Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: A systematic review and meta-analysis. Lipids Health Dis. 2017, 16, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, V.; Temple, N.J.; La, C.; Giorgio, V.; Alessandra, C.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Michielsen, C.; Hangelbroek, R.W.J.; Feskens, E.J.M.; Afman, L.A. Disentangling the Effects of Monounsaturated Fatty Acids from Other Components of a Mediterranean Diet on Serum Metabolite Profiles: A Randomized Fully Controlled Dietary Intervention in Healthy Subjects at Risk of the Metabolic Syndrome. Mol. Nutr. Food Res. 2019, 63, e1801095. [Google Scholar] [CrossRef] [Green Version]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenhain, K.; Roach, L.A.; McCreary, S.; McArthur, E.; Weiss, E.J.; Francois, M.E.; Little, J.P. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the context of weight loss or weight maintenance: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2021, 114, 1455–1466. [Google Scholar] [CrossRef]
- Westman, E.C.; Yancy, W.S.; Olsen, M.K.; Dudley, T.; Guyton, J.R. Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Int. J. Cardiol. 2006, 110, 212–216. [Google Scholar] [CrossRef]
- Jauhiainen, R.; Vangipurapu, J.; Laakso, A.; Kuulasmaa, T.; Kuusisto, J.; Laakso, M. The Association of 9 Amino Acids With Cardiovascular Events in Finnish Men in a 12-Year Follow-up Study. J. Clin. Endocrinol. Metab. 2021, 106, 3448–3454. [Google Scholar] [CrossRef]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis Med. 2018, 11, e002157. [Google Scholar] [CrossRef] [Green Version]
LCHF | HCLF | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Week 0 | Week 4 | Week 8 | 95% CI Difference 0–8 Weeks | Week 0 | Week 4 | Week 8 | 95% CI Difference 0–8 Weeks | Group | Time | Time × Diet | |
Total Lipids | |||||||||||
Total cholesterol (mmol/L) | 5.09 ± 0.76 | 5.44 ± 0.86 | 5.50 ± 0.57 a | 0.08, 0.73 | 4.55 ± 1.00 | 5.03 ± 0.95 a | 4.97 ± 1.17 a | 0.05, 0.79 | 0.393 | 0.010 | 0.967 |
Non-HDL-C (mmol/L) | 3.84 ± 0.85 | 4.11 ± 1.06 | 4.15 ± 0.76 | −0.01, 0.64 | 3.30 ± 0.94 | 3.72 ± 0.82 a | 3.58 ± 0.97 | −0.01, 0.58 | 0.364 | 0.013 | 0.951 |
Remnant cholesterol (mmol/L) | 1.75 ± 0.44 | 1.86 ± 0.55 | 1.95 ± 0.39 | −0.03, 0.37 | 1.52 ± 0.44 | 1.69 ± 0.36 | 1.59 ± 0.42 | −0.12, 0.26 | 0.342 | 0.062 | 0.605 |
Total esterified cholesterol (mmol/L) | 3.71 ± 0.53 | 3.96 ± 0.59 | 3.99 ± 0.39 a | 0.05, 0.52 | 3.31 ± 0.72 | 3.67 ± 0.69 a | 3.63 ± 0.86 a | 0.06, 0.59 | 0.399 | 0.009 | 0.978 |
Total free cholesterol (mmol/L) | 1.39 ± 0.23 | 1.48 ± 0.28 | 1.51 ± 0.18 | 0.03, 0.22 | 1.24 ± 0.28 | 1.36 ± 0.26 | 1.34 ± 0.31 | −0.02, 0.20 | 0.383 | 0.017 | 0.855 |
Total triglycerides (mmol/L) | 1.19 ± 0.59 | 0.99 ± 0.43 | 1.06 ± 0.34 | −0.42, 0.15 | 1.15 ± 0.38 | 1.15 ± 0.31 | 1.13 ± 0.41 | −0.14, 0.11 | 0.695 | 0.171 | 0.095 |
Total lipids in lipoprotein particles (mmol/L) | 9.23 ± 1.53 | 9.45 ± 1.51 | 9.66 ± 1.04 | −0.15, 1.01 | 8.47 ± 1.47 | 9.1 ± 1.59 | 9.05 ± 1.87 | −0.06, 1.23 | 0.607 | 0.189 | 0.855 |
VLDL lipids | |||||||||||
VLDL cholesterol (mmol/L) | 0.79 (0.42) | 0.86 (0.59) | 0.84 (0.41) | −0.05, 0.19 | 0.72 (0.18) | 0.83 (0.14) | 0.74 (0.23) | −0.12, 0.11 | 0.381 | 0.278 | 0.400 |
Cholesteryl esters in VLDL (mmol/L) | 0.48 (0.25) | 0.54 (0.34) | 0.51 (0.24) | −0.02, 0.13 | 0.43 (0.11) | 0.51 (0.08) | 0.46 (0.12) | −0.07, 0.07 | 0.616 | 0.364 | 0.281 |
Free cholesterol in VLDL (mmol/L) | 0.31 ± 0.13 | 0.31 ± 0.14 | 0.33 ± 0.11 | −0.03, 0.07 | 0.28 ± 0.10 | 0.30 ± 0.09 | 0.28 ± 0.10 | −0.05, 0.04 | 0.726 | 0.584 | 0.494 |
Triglycerides in VLDL (mmol/L) | 0.82 ± 0.48 | 0.65 ± 0.37 | 0.69 ± 0.33 | −0.36, 0.09 | 0.79 ± 0.29 | 0.80 ± 0.27 | 0.78 ± 0.35 | −0.13, 0.11 | 0.637 | 0.207 | 0.060 |
Phospholipids in chylomicrons and extremely large VLDL (mmol/L) | 0.03 ± 0.04 | 0.02 ± 0.02 | 0.03 ± 0.03 | −0.02, 0.01 | 0.03 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.02 | −0.02, 0.00 | 0.962 | 0.043 | 0.443 |
Triglycerides in chylomicrons and extremely large VLDL (mmol/L) | 0.07 (0.20) | 0.04 (0.12) | 0.08 (0.12) | −0.03, 0.00 | 0.12 (0.05) | 0.07 (0.10) | 0.07 (0.09) | 0.00, 0.03 | 0.280 | 0.828 | 0.014 |
Phospholipids in very large VLDL (mmol/L) | 0.04 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.02 | −0.01, 0.01 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.03 ± 0.02 | −0.01, 0.00 | 0.973 | 0.248 | 0.126 |
Triglycerides in very large VLDL (mmol/L) | 0.10 ± 0.08 | 0.06 ± 0.06 | 0.07 ± 0.05 | −0.07. 0.01 | 0.09 ± 0.05 | 0.09 ± 0.04 | 0.09 ± 0.06 | −0.02, 0.01 | 0.647 | 0.126 | 0.040 |
Phospholipids in large VLDL (mmol/L) | 0.07 ± 0.04 | 0.05 ± 0.04 | 0.06 ± 0.04 | −0.03, 0.01 | 0.06 ± 0.03 | 0.06 ± 0.03 | 0.06 ± 0.03 | −0.01, 0.01 | 0.778 | 0.294 | 0.053 |
Triglycerides in large VLDL (mmol/L) | 0.15 ± 0.08 | 0.12 ± 0.08 | 0.12 ± 0.06 | −0.07, 0.02 | 0.14 ± 0.05 | 0.15 ± 0.06 | 0.15 ± 0.07 | −0.02, 0.04 | 0.511 | 0.438 | 0.029 |
Phospholipids in medium VLDL (mmol/L) | 0.14 (0.08) | 0.16 (0.12) | 0.15 (0.07) | 0.00, 0.01 | 0.13 (0.04) | 0.16 (0.02) | 0.14 (0.05) | −0.01, 0.00 | 0.514 | 0.709 | 0.063 |
Triglycerides in medium VLDL (mmol/L) | 0.26 ± 0.11 | 0.23 ± 0.11 | 0.22 ± 0.09 | −0.10, 0.03 | 0.25 ± 0.08 | 0.27 ± 0.08 | 0.27 ± 0.10 | −0.02, 0.05 | 0.474 | 0.465 | 0.027 |
Phospholipids in small VLDL (mmol/L) | 0.11 (0.05) | 0.12 (0.08) | 0.11 (0.05) | −0.01, 0.02 | 0.10 (0.03) | 0.12 (0.02) | 0.11 (0.03) | −0.01, 0.02 | 0.489 | 0.914 | 0.529 |
Triglycerides in small VLDL (mmol/L) | 0.14 ± 0.07 | 0.12 ± 0.05 | 0.12 ± 0.04 | −0.05, 0.02 | 0.15 ± 0.05 | 0.14 ± 0.03 | 0.14 ± 0.05 | −0.02, 0.01 | 0.418 | 0.198 | 0.166 |
Phospholipids in very small VLDL (mmol/L) | 0.11 ± 0.03 | 0.11 ± 0.03 | 0.12 ± 0.02 | 0.00, 0.03 | 0.10 ± 0.02 | 0.10 ± 0.02 | 0.10 ± 0.02 | −0.02, 0.01 | 0.345 | 0.482 | 0.132 |
Triglycerides in very small VLDL (mmol/L) | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.06 ± 0.01 | −0.05, 0.02 | 0.06 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.02 | −0.02, 0.01 | 0.914 | 0.266 | 0.917 |
IDL lipids | |||||||||||
Phospholipids in IDL (mmol/L) | 0.33 ± 0.06 | 0.36 ± 0.08 a | 0.37 ± 0.05 a | 0.01, 0.07 | 0.28 ± 0.07 | 0.31 ± 0.06 | 0.30 ± 0.07 | −0.01, 0.05 | 0.188 | 0.020 | 0.400 |
Triglycerides in IDL (mmol/L) | 0.10 ± 0.03 | 0.09 ± 0.02 | 0.10 ± 0.01 | −0.02, 0.03 | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.09 ± 0.02 | −0.01, 0.01 | 0.570 | 0.664 | 0.973 |
LDL lipids | |||||||||||
Clinical LDL cholesterol (mmol/L) | 3.16 ± 0.72 | 3.45 ± 0.88 | 3.43 ± 0.66 | −0.03, 0.58 | 2.63 ± 0.85 | 3.05 ± 0.72 a | 2.94 ± 0.88 a | 0.06, 0.56 | 0.308 | 0.005 | 0.957 |
LDL cholesterol (mmol/L) | 2.09 ± 0.44 | 2.24 ± 0.52 | 2.2 ± 0.37 | −0.05, 0.29 | 1.78 ± 0.51 | 2.03 ± 0.46 a | 1.99 ± 0.56 a | 0.08, 0.35 | 0.393 | 0.009 | 0.662 |
Cholesteryl esters in LDL (mmol/L) | 1.52 ± 0.33 | 1.61 ± 0.38 | 1.59 ± 0.28 | −0.06, 0.20 | 1.30 ± 0.37 | 1.48 ± 0.34 a | 1.45 ± 0.41 a | 0.06, 0.25 | 0.455 | 0.016 | 0.519 |
Free cholesterol in LDL (mmol/L) | 0.57 ± 0.11 | 0.63 ± 0.13 | 0.62 ± 0.10 | 0.00, 0.01 | 0.48 ± 0.14 | 0.56 ± 0.12 a | 0.54 ± 0.15 a | 0.02, 0.10 | 0.256 | 0.003 | 0.932 |
Triglycerides in LDL (mmol/L) | 0.15 ± 0.04 | 0.14 ± 0.03 | 0.15 ± 0.02 | −0.04, 0.04 | 0.14 ± 0.04 | 0.14 ± 0.02 | 0.14 ± 0.03 | −0.01, 0.02 | 0.543 | 0.731 | 0.917 |
Phospholipids in large LDL (mmol/L) | 0.42 ± 0.08 | 0.45 ± 0.10 | 0.45 ± 0.07 | 0.00, 0.06 | 0.36 ± 0.10 | 0.41 ± 0.08 a | 0.40 ± 0.10 a | 0.01, 0.06 | 0.312 | 0.007 | 0.980 |
Triglycerides in large LDL (mmol/L) | 0.10 ± 0.03 | 0.10 ± 0.02 | 0.10 ± 0.01 | −0.02, 0.03 | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.09 ± 0.02 | −0.01, 0.01 | 0.407 | 0.888 | 0.973 |
Phospholipids in medium LDL (mmol/L) | 0.19 (0.07) | 0.21 (0.08) | 0.19 (0.05) | −0.01, 0.02 | 0.17 (0.04) | 0.20 (0.03) | 0.19 (0.04) | 0.01, 0.03 | 0.833 | 0.076 | 0.496 |
Triglycerides in medium LDL (mmol/L) | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.04 | −0.01, 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.00, 0.00 | 0.699 | 0.568 | 0.739 |
Phospholipids in small LDL (mmol/L) | 0.10 ± 0.02 | 0.11 ± 0.02 a | 0.11 ± 0.01 | 0.00, 0.01 | 0.09 ± 0.02 | 0.10 ± 0.01 a | 0.10 ± 0.02 a | 0.00, 0.00 | 0.174 | 0.003 | 0.318 |
Triglycerides in small LDL (mmol/L) | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | −0.01, 0.00 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.00, 0.00 | 0.985 | 0.199 | 0.547 |
HDL lipids | |||||||||||
HDL cholesterol (mmol/L) | 1.22 (0.28) | 1.14 (0.52) | 1.19 (0.24) | −0.13, 0.31 | 1.29 (0.53) | 1.27 (0.35) | 1.37 (0.52) | −0.03, 0.30 | 0.936 | 0.208 | 0.653 |
Cholesteryl esters in HDL (mmol/L) | 0.95 (0.22) | 0.89 (0.40) | 0.93 (0.18) | −0.10, 0.23 | 1.03 (0.41) | 1.01 (0.27) | 1.09 (0.40) | −0.02, 0.23 | 0.888 | 0.196 | 0.703 |
Free cholesterol in HDL (mmol/L) | 0.27 (0.06) | 0.25 (0.11) | 0.27 (0.06) | −0.03, 0.09 | 0.26 (0.10) | 0.26 (0.08) | 0.28 (0.11) | −0.01, 0.07 | 0.880 | 0.266 | 0.524 |
Triglycerides in HDL (mmol/L) | 0.13 ± 0.05 | 0.10 ± 0.03 | 0.12 ± 0.03 b | −0.03, 0.02 | 0.13 ± 0.04 | 0.12 ± 0.02 | 0.12 ± 0.03 | −0.03, 0.01 | 0.470 | 0.041 | 0.335 |
Phospholipids in very large HDL (mmol/L) | 0.04 (0.06) | 0.06 (0.07) | 0.05 (0.06) | −0.02, 0.06 | 0.05 (0.03) | 0.04 (0.06) | 0.05 (0.06) | −0.02, 0.03 | 0.579 | 0.208 | 0.005 |
Triglycerides in very large HDL (mmol/L) | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.00, 0.00 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.00, 0.00 | 0.957 | 0.325 | 0.881 |
Phospholipids in large HDL (mmol/L) | 0.20 (0.20) | 0.20 (0.28) | 0.20 (0.18) | −0.07, 0.19 | 0.23 (0.17) | 0.21 (0.23) | 0.24 (0.27) | −0.04, 0.12 | 0.933 | 0.181 | 0.148 |
Triglycerides in large HDL (mmol/L) | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | −0.01, 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | −0.01, 0.01 | 0.648 | 0.147 | 0.556 |
Phospholipids in medium HDL (mmol/L) | 0.42 (0.06) | 0.38 (0.13) | 0.42 (0.06) | −0.07, 0.07 | 0.45 (0.08) | 0.43 (0.08) | 0.47 (0.14) | −0.02, 0.09 | 0.465 | 0.369 | 0.865 |
Triglycerides in medium HDL (mmol/L) | 0.05 ± 0.02 | 0.03 ± 0.01 a | 0.04 ± 0.01 bb | −0.01, 0.01 | 0.05 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.01 | −0.01, 0.01 | 0.378 | 0.026 | 0.215 |
Phospholipids in small HDL (mmol/L) | 0.65 ± 0.06 | 0.61 ± 0.07 | 0.63 ± 0.06 | −0.06, 0.02 | 0.64 ± 0.08 | 0.66 ± 0.09 | 0.67 ± 0.10 | −0.01, 0.07 | 0.353 | 0.647 | 0.133 |
Triglycerides in small HDL (mmol/L) | 0.05 ± 0.02 | 0.04 ± 0.01 a | 0.04 ± 0.01 | −0.02, 0.01 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.05 ± 0.01 | −0.01, 0.00 | 0.554 | 0.024 | 0.071 |
Fold Change (%) | ||
---|---|---|
Metabolite | LCHF | HCLF |
Triglycerides to total lipids ratio in very large HDL | −20.23 | −2.07 |
Isoleucine | 16.06 | −1.97 |
Histidine | −10.5 | 7.25 |
Leucine | 12.7 | 0.11 |
Total lipids in large HDL | 24.55 | 14.92 |
Tyrosine | −13.67 | −7.1 |
The ratio of omega-6 fatty acids to omega-3 fatty acids | −7.73 | −1.21 |
Triglycerides to total lipids ratio in medium LDL | −1.92 | −8.08 |
Cholesterol in small VLDL | 10.26 | 5.01 |
Total lipids in chylomicrons and extremely large VLDL | −21.01 | −25.54 |
Apolipoprotein B | 7.58 | 5.63 |
Cholesteryl esters in very large VLDL | −0.53 | −2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCullough, D.; Harrison, T.; Enright, K.J.; Amirabdollahian, F.; Mazidi, M.; Lane, K.E.; Stewart, C.E.; Davies, I.G. The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial. Nutrients 2023, 15, 3002. https://doi.org/10.3390/nu15133002
McCullough D, Harrison T, Enright KJ, Amirabdollahian F, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial. Nutrients. 2023; 15(13):3002. https://doi.org/10.3390/nu15133002
Chicago/Turabian StyleMcCullough, D., T. Harrison, K. J. Enright, F. Amirabdollahian, M. Mazidi, K. E. Lane, C. E. Stewart, and I. G. Davies. 2023. "The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial" Nutrients 15, no. 13: 3002. https://doi.org/10.3390/nu15133002
APA StyleMcCullough, D., Harrison, T., Enright, K. J., Amirabdollahian, F., Mazidi, M., Lane, K. E., Stewart, C. E., & Davies, I. G. (2023). The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial. Nutrients, 15(13), 3002. https://doi.org/10.3390/nu15133002