Soy-Based Tempeh Rich in Paraprobiotics Properties as Functional Sports Food: More Than a Protein Source
Abstract
:1. Introduction
2. Soy-Based Tempeh in General
3. Tempeh as Nutrient Source for Athletes
4. The Paraprobiotic Properties of Tempeh for Athletes
5. Discussion, Future Direction, and Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Pramuková, B.; Szabadosová, V.; Soltésová, A. Current Knowledge about Sports Nutrition. Australas. Med. J. 2011, 4, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. American Dietetic Association. Dietitians of Canada. American College of Sports Medicine. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Moore, D.R. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med. 2021, 51, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D. Efficacy and consequences of very-high-protein diets for athletes and exercisers. Proc. Nutr. Soc. 2011, 70, 205–214. [Google Scholar] [CrossRef]
- Turnagöl, H.H.; Koşar, Ş.N.; Güzel, Y.; Aktitiz, S.; Atakan, M.M. Nutritional considerations for injury prevention and recovery in combat sports. Nutrients 2021, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wen, N.; Su, H. Influence of High-Protein Food on Physical Function of Athletes. J. Food Qual. 2022, 2022, 4447061. [Google Scholar] [CrossRef]
- Schmidt, W.; Prommer, N. Impact of alterations in total hemoglobin mass on V˙O2max. Exerc. Sport. Sci. Rev. 2010, 38, 68–75. [Google Scholar] [CrossRef]
- Mancera-Soto, E.M.; Ramos-Caballero, D.M.; Rojas, J.J.A.; Duque, L.; Chaves-Gomez, S.; Cristancho-Mejía, E.; Schmidt, W.F. Hemoglobin mass, blood volume and VO2max of trained and untrained children and adolescents living at different altitudes. Front. Physiol. 2022, 13, 882. [Google Scholar] [CrossRef]
- Shepon, A.; Eshel, G.; Noor, E.; Milo, R. The Opportunity Cost of Animal Based Diets Exceeds All Food Losses. Proc. Natl. Acad. Sci. USA 2018, 115, 3804–3809. [Google Scholar] [CrossRef]
- Barthelmie, R.J. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate 2022, 10, 43. [Google Scholar] [CrossRef]
- Heine, R.G.; AlRefaee, F.; Bachina, P.; De Leon, J.C.; Geng, L.; Gong, S.; Madrazo, J.A.; Ngamphaiboon, J.; Ong, C.; Rogacion, J.M. Lactose Intolerance and Gastrointestinal Cow’s Milk Allergy in Infants and Children—Common Misconceptions Revisited. World Allergy Organ. J. 2017, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.A.; Hafekost, K.; Mitrou, F.; Lawrence, D. Food Sources of Saturated Fat and the Association with Mortality: A Meta-Analysis. Am. J. Public Health 2013, 103, e31–e42. [Google Scholar] [CrossRef]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Wang, X.; et al. Soybean genetic resources contributing to sustainable protein product. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar] [CrossRef] [PubMed]
- Vital, R.J.; Bassinello, P.Z.; Cruz, Q.A.; Carvalho, R.N.; Paiva, J.C.M.; Colombo, A.O. Production, quality, and acceptance of tempeh and white bean tempeh burgers. Foods 2018, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Braun-Trocchio, R.; Graybeal, A.J.; Kreutzer, A.; Warfield, E.; Renteria, J.; Harrison, K.; Williams, A.; Moss, K.; Shah, M. Recovery Strategies in Endurance Athletes. J. Funct. Morphol. Kinesiol. 2022, 7, 22. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Winara; Handayani, O.W.K.; Sulaiman; Rumini. Effect of Tempe Drinks on Muscle Recovery (Malondialdehyde) and Sub-Maximum Activity on Sparta DK Percut Sei Tuan Football Players in Deli Serdang Regency, North Sumatra Province. Int. J. Hum. Mov. 2021, 9, 130–134. [Google Scholar] [CrossRef]
- Prativi, M.B.N.; Astuti, D.I.; Putri, S.P.; Laviña, W.A.; Fukusaki, E.; Aditiawati, P. Metabolite Changes in Indonesian Tempe Production from Raw Soybeans to Over Fermented Tempe. Metabolites 2023, 13, 300. [Google Scholar] [CrossRef]
- Jauhari, M.; Sulaeman, A.; Riyadi, H.; Ekayanti, I. Effect of Administering Tempeh Drink on Muscle Damage Recoveries after Resistance Exercise in Student Athletes. Pak. J. Nutr. 2013, 12, 924–928. [Google Scholar] [CrossRef]
- Danladi, Y.; Loh, T.C.; Foo, H.L.; Akit, H.; Md Tamrin, N.A.; Naeem Azizi, M. Effects of Postbiotics and Paraprobiotics as Replacements for Antibiotics on Growth Performance, Carcass Characteristics, Small Intestine Histomorphology, Immune Status and Hepatic Growth Gene Expression in Broiler Chickens. Animals 2022, 12, 917. [Google Scholar] [CrossRef]
- Romulo, A.; Surya, R. Tempe: A traditional fermented food in Indonesia and its health benefits. Int. J. Gastron. Food Sci. 2021, 26, 100413. [Google Scholar] [CrossRef]
- Hariyanto, I.; Hsieh, C.W.; Hsu, Y.H.; Chen, G.; Chu, C.; Weng, B.B. In vitro and in vivo assessments of anti-hyperglycemic properties of soybean residue fermented with Rhizopus oligosporus and Lactiplantibacillus plantarum. Life 2022, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
- Prameswari, F.; Oetari, A.; Santoso, I. Growth of Rhizopus Microsporus UICC 500, UICC 531, and UICC 539 on the Palm Oil Processing Waste. AIP Conf. Proc. 2018, 2023, 20147. [Google Scholar] [CrossRef]
- Rizal, S.; Kustyawati, M.E.; Suharyono, A.S.; Suyarto, V.A. Changes of Nutritional Composition of Tempeh during Fermentation with the Addition of Saccharomyces Cerevisiae. Biodiversitas 2022, 23, 1553–1559. [Google Scholar] [CrossRef]
- Magdalena, S.; Hogaputri, J.E.; Yulandi, A.; Yogiara, Y. The Addition of Lactic Acid Bacteria in the Soybean Soaking Process of Tempeh. Food Res. 2022, 6, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Radita, R.; Suwanto, A.; Kurosawa, N.; Wahyudi, A.T.; Rusmana, I. Dynamics of microbial community during tempeh fermentation. BIOTROPIA 2021, 28, 11–20. [Google Scholar] [CrossRef]
- Purwadaria, H.K.; Fardiaz, D.; Kardono, L.B.; McElhatton, A. Tempe from traditional to modern practices. In Modernization of Traditional Food Processes and Products; Springer: Berlin/Heidelberg, Germany, 2016; pp. 145–160. [Google Scholar]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Witono, Y.; Widjanarko, S.B.; Mujianto; Rachmawati, D.T. Amino Acids Identification of over Fermented Tempeh, the Hydrolysate and the Seasoning Product Hydrolyzed by Calotropin from Crown Flower (Calotropis Gigantea). Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 103–106. [Google Scholar] [CrossRef]
- Yoshari, R.M.; Astawan, M.; Prangdimurti, E.; Wresdiyati, T. The production process of tempe protein isolate from germinated soybeans and its potential as an antidiabetic. Food Res. 2023, 7, 71–79. [Google Scholar] [CrossRef]
- Astawan, M.; Rahmawati, I.S.; Cahyani, A.P.; Wresdiyati, T.; Putri, S.P.; Fukusaki, E. Comparison between the potential of tempe flour made from germinated and nongerminated soybeans in preventing diabetes mellitus. HAYATI J. Biosci. 2020, 27, 16. [Google Scholar] [CrossRef]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of arginine supplementation on athletic performance based on energy metabolism: A systematic review and meta-analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef] [PubMed]
- Ahnan-Winarno, A.D.; Cordeiro, L.; Winarno, F.G.; Gibbons, J.; Xiao, H. Tempeh: A Semicentennial Review on Its Health Benefits, Fermentation, Safety, Processing, Sustainability, and Affordability. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1717–1767. [Google Scholar] [CrossRef]
- Krzywański, J.; Mikulski, T.; Pokrywka, A.; Mlyńczak, M.; Krysztofiak, H.; Fraczek, B.; Ziemba, A. Vitamin B Status and Optimal Range for Hemoglobin Formation in Elite Athletes. Nutrients 2020, 12, 1038. [Google Scholar] [CrossRef]
- Astawan, M.; Mardhiyyah, Y.S.; Wijaya, C.H. Potential of Bioactive Components in Tempe for the Treatment of Obesity. J. Gizi Dan Pangan 2018, 13, 79–86. [Google Scholar] [CrossRef]
- Lee, M.C.; Tu, Y.T.; Tsai, S.C.; Hsu, H.Y.; Tsai, T.Y.; Liu, T.H.; Young, S.L.; Lin, J.S.; Huang, C.C. Lactobacillus plantarum TWK10 improves muscle mass and functional performance in frail older adults: A randomized, double-blind clinical trial. Microorganisms 2021, 9, 1466. [Google Scholar] [CrossRef]
- Sawada, Y.; Ichikawa, H.; Ebine, N.; Minamiyama, Y.; Alharbi, A.A.D.; Iwamoto, N.; Fukuoka, Y. Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes. Nutrients 2023, 15, 222. [Google Scholar] [CrossRef]
- Surya, R.; Romulo, A.; Suryani, Y. Tempeh Extract Reduces Cellular ROS Levels and Upregulates the Expression of Antioxidant Enzymes. Food Res. 2021, 5, 121–128. [Google Scholar] [CrossRef]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef]
- Kumar, H.; Schütz, F.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Dhanjal, D.S.; Verma, R.; Kumar, D.; Kuča, K.; Cruz-Martins, N. Recent Advances in the Concept of Paraprobiotics: Nutraceutical/Functional Properties for Promoting Children Health. Crit. Rev. Food Sci. Nutr. 2021, 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on Their Ability to Modify Biological Responses, Inactivation Methods and Perspectives on Their Application in Foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Musa, N.H.; Mani, V.; Lim, S.M.; Vidyadaran, S.; Majeed, A.B.A.; Ramasamy, K. Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J. Dly. Res. 2017, 84, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Taverniti, V.; Guglielmetti, S. The Immunomodulatory Properties of Probiotic Microorganisms beyond Their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The Compelling Link between Physical Activity and the Body’s Defense System. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Komano, Y.; Shimada, K.; Naito, H.; Fukao, K.; Ishihara, Y.; Fujii, T.; Kokubo, T.; Daida, H. Efficacy of Heat-Killed Lactococcus lactis JCM 5805 on Immunity and Fatigue during Consecutive High Intensity Exercise in Male Athletes: A Randomized, Placebo-Controlled, Double-Blinded Trial. J. Int. Soc. Sports Nutr. 2018, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Sawada, D.; Kuwano, Y.; Tanaka, H.; Hara, S.; Uchiyama, Y.; Sugawara, T.; Fujiwara, S.; Rokutan, K.; Nishida, K. Daily Intake 3of Lactobacillus Gasseri CP2305 Relieves Fatigue and Stress-Related Symptoms in Male University Ekiden Runners: A Double-Blind, Randomized, and Placebo-Controlled Clinical Trial. J. Funct. Foods 2019, 57, 465–476. [Google Scholar] [CrossRef]
- Irwin, C.; McCartney, D.; Desbrow, B.; Khalesi, S. Effects of Probiotics and Paraprobiotics on Subjective and Objective Sleep Metrics: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2020, 74, 1536–1549. [Google Scholar] [CrossRef]
- Toda, K.; Yamauchi, Y.; Tanaka, A.; Kuhara, T.; Odamaki, T.; Yoshimoto, S.; Xiao, J.-Z. Heat-Killed Bifidobacterium Breve B-3 Enhances Muscle Functions: Possible Involvement of Increases in Muscle Mass and Mitochondrial Biogenesis. Nutrients 2020, 12, 219. [Google Scholar] [CrossRef]
- Stephanie; Kartawidjajaputra, F.; Silo, W.; Yogiara, Y.; Suwanto, A. Tempeh Consumption Enhanced Beneficial Bacteria in the Human Gut. Food Res. 2019, 3, 57–63. [Google Scholar] [CrossRef]
- Li, L.; Hong, K.; Sun, Q.; Xiao, H.; Lai, L.; Ming, M.; Li, C. Probiotics for Preventing Upper Respiratory Tract Infections in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid.-Based Complement Altern. Med. 2020, 2020, 8734140. [Google Scholar] [CrossRef] [PubMed]
- Aini, N.; Prihananto, V.; Wijonarko, G.; Sustriawan, B.; Dinayati, M.; Aprianti, F. Formulation and Characterization of Emergency Food Based on Instant Corn Flour Supplemented by Instant Tempeh (or Soybean) Flour. Int. Food Res. J. 2018, 25, 287–292. [Google Scholar]
- Ngadiarti, I.; Nurkolis, F.; Handoko, M.N.; Perdana, F.; Muntikah, M.; Sabrina, N.; Kristian, H.; Roring, J.E.; Samtiya, M.; Radu, S. Physicochemical properties and nutrient content of tempe flour enriched eel flour. Maced. J. Med. Sci. 2022, 10, 552–556. [Google Scholar] [CrossRef]
- Dewayani, W.; Septianti, E.; Syamsuri, R.; Halil, W. The Effect of Soybean Varieties and Flavors on Tempeh Milk Powder. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 12071. [Google Scholar] [CrossRef]
Phylum | Species | Role | Sources |
---|---|---|---|
Firmicutes | Clostridium beijerinckii | Contaminant from raw soybean; inactivated during the tempeh production process | [27] |
Firmicutes | Lactococus taiwanensis | ||
Proteobacteria | Acetobacter indonesiensis | Produce acetic acid to prevent spoilage and pathogen bacteria growth | [26,27] |
Proteobacteria | Acetobacter aceti | ||
Firmicutes | Lactobacillus fermentum | Produce lactic acid to prevent spoilage and pathogen bacteria growth; paraprobiotic | |
Firmicutes | Lactobacillus delbrueckii | ||
Firmicutes | Lactobacillus mucosae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subali, D.; Christos, R.E.; Givianty, V.T.; Ranti, A.V.; Kartawidjajaputra, F.; Antono, L.; Dijaya, R.; Taslim, N.A.; Rizzo, G.; Nurkolis, F. Soy-Based Tempeh Rich in Paraprobiotics Properties as Functional Sports Food: More Than a Protein Source. Nutrients 2023, 15, 2599. https://doi.org/10.3390/nu15112599
Subali D, Christos RE, Givianty VT, Ranti AV, Kartawidjajaputra F, Antono L, Dijaya R, Taslim NA, Rizzo G, Nurkolis F. Soy-Based Tempeh Rich in Paraprobiotics Properties as Functional Sports Food: More Than a Protein Source. Nutrients. 2023; 15(11):2599. https://doi.org/10.3390/nu15112599
Chicago/Turabian StyleSubali, Dionysius, Revelo Eved Christos, Vasya Theodora Givianty, Alberta Valencia Ranti, Felicia Kartawidjajaputra, Lina Antono, Rendy Dijaya, Nurpudji Astuti Taslim, Gianluca Rizzo, and Fahrul Nurkolis. 2023. "Soy-Based Tempeh Rich in Paraprobiotics Properties as Functional Sports Food: More Than a Protein Source" Nutrients 15, no. 11: 2599. https://doi.org/10.3390/nu15112599
APA StyleSubali, D., Christos, R. E., Givianty, V. T., Ranti, A. V., Kartawidjajaputra, F., Antono, L., Dijaya, R., Taslim, N. A., Rizzo, G., & Nurkolis, F. (2023). Soy-Based Tempeh Rich in Paraprobiotics Properties as Functional Sports Food: More Than a Protein Source. Nutrients, 15(11), 2599. https://doi.org/10.3390/nu15112599