Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care
Abstract
:1. Introduction
2. Methods
2.1. Design and Sample
2.2. Data Collection
2.3. Measures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Fouad, Y.; Elwakil, R.; Elsahhar, M.; Said, E.; Bazeed, S.; Ali Gomaa, A.; Hashim, A.; Kamal, E.; Mehrez, M.; Attia, D. The NAFLD-MAFLD debate: Eminence vs evidence. Liver Int. 2021, 41, 255–260. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Rinella, M.E.; Sanyal, A.J.; Harrison, S.A.; Brunt, E.M.; Goodman, Z.; Cohen, D.E.; Loomba, R. From NAFLD to MAFLD: Implications of a premature change in terminology. Hepatology 2021, 73, 1194–1198. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Perseghin, G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int. 2021, 41, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int. 2020, 40, 2082–2089. [Google Scholar] [CrossRef]
- Thrift, A.P.; Nguyen, T.H.; Pham, C.; Balakrishnan, M.; Kanwal, F.; Loomba, R.; Duong, H.T.; Ramsey, D.; El-Serag, H.B. The prevalence and determinants of NAFLD and MAFLD and their severity in the VA primary care setting. Clin. Gastroenterol. Hepatol. 2022, 21, 1252–1260.e5. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Eslam, M.; Sarin, S.K.; Wong, V.W.-S.; Fan, J.-G.; Kawaguchi, T.; Ahn, S.H.; Zheng, M.-H.; Shiha, G.; Yilmaz, Y.; Gani, R. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int. 2020, 14, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- DeSalvo, K.B.; Olson, R.; Casavale, K.O. Dietary guidelines for Americans. JAMA 2016, 315, 457–458. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 23 May 2023).
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Noureddin, M.; Boushey, C.; Wilkens, L.R.; Setiawan, V.W. Diet quality association with nonalcoholic fatty liver disease by cirrhosis status: The multiethnic cohort. Curr. Dev. Nutr. 2020, 4, nzaa024. [Google Scholar] [CrossRef]
- Ma, J.; Hennein, R.; Liu, C.; Long, M.T.; Hoffmann, U.; Jacques, P.F.; Lichtenstein, A.H.; Hu, F.B.; Levy, D. Improved diet quality associates with reduction in liver fat, particularly in individuals with high genetic risk scores for nonalcoholic fatty liver disease. Gastroenterology 2018, 155, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Heredia, N.I.; Zhang, X.; Balakrishnan, M.; Daniel, C.R.; Hwang, J.P.; McNeill, L.H.; Thrift, A.P. Physical activity and diet quality in relation to non-alcoholic fatty liver disease: A cross-sectional study in a representative sample of US adults using NHANES 2017–2018. Prev. Med. 2022, 154, 106903. [Google Scholar] [CrossRef]
- Yoo, E.R.; Kim, D.; Vazquez-Montesino, L.M.; Escober, J.A.; Li, A.A.; Tighe, S.P.; Fernandes, C.T.; Cholankeril, G.; Ahmed, A. Diet quality and its association with nonalcoholic fatty liver disease and all-cause and cause-specific mortality. Liver Int. 2020, 40, 815–824. [Google Scholar] [CrossRef]
- National Center for Veterans Analysis and Statistics. VA Utilization Profile. FY. 2017. Available online: https://www.va.gov/vetdata/docs/Quickfacts/VA_Utilization_Profile_2017.pdf (accessed on 23 May 2023).
- Breland, J.Y.; Phibbs, C.S.; Hoggatt, K.J.; Washington, D.L.; Lee, J.; Haskell, S.; Uchendu, U.S.; Saechao, F.S.; Zephyrin, L.C.; Frayne, S.M. The obesity epidemic in the Veterans Health Administration: Prevalence among key populations of women and men veterans. J. Gen. Intern. Med. 2017, 32, 11–17. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 2016, 315, 2284–2291. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Fryar, C.D.; Flegal, K.M. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 2015, 219, 1–8. [Google Scholar]
- Federal Practitioner. Federal Health Care Data Trends. 2017. Available online: https://www.fedprac-digital.com/federalpractitioner/data_trends_2017?pg=1#pg1 (accessed on 23 May 2023).
- Ge, X.; Zheng, L.; Wang, M.; Du, Y.; Jiang, J. Prevalence trends in non-alcoholic fatty liver disease at the global, regional and national levels, 1990–2017: A population-based observational study. BMJ Open 2020, 10, e036663. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, F.; Kramer, J.R.; Duan, Z.; Yu, X.; White, D.; El-Serag, H.B. Trends in the burden of nonalcoholic fatty liver disease in a United States cohort of veterans. Clin. Gastroenterol. Hepatol. 2016, 14, 301–308.e302. [Google Scholar] [CrossRef]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Diet History Questionnaire II: Calculating Healthy Eating Index (HEI) Scores Using Diet*Calc Output. Available online: https://epi.grants.cancer.gov/dhq2/dietcalc/output.html (accessed on 11 March 2022).
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the healthy eating index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Downer, M.K.; Kenfield, S.A.; Stampfer, M.J.; Wilson, K.M.; Dickerman, B.A.; Giovannucci, E.L.; Rimm, E.B.; Wang, M.; Mucci, L.A.; Willett, W.C.; et al. Alcohol Intake and Risk of Lethal Prostate Cancer in the Health Professionals Follow-Up Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Zarski, J.P.; de Ledinghen, V.; Rousselet, M.C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef]
- Fraquelli, M.; Rigamonti, C.; Casazza, G.; Conte, D.; Donato, M.F.; Ronchi, G.; Colombo, M. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007, 56, 968–973. [Google Scholar] [CrossRef]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef]
- Wong, V.W.S.; Vergniol, J.; Wong, G.L.H.; Foucher, J.; Chan, H.L.Y.; Le Bail, B.; Choi, P.C.L.; Kowo, M.; Chan, A.W.H.; Merrouche, W. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.E.; Bae, S.; Ramachandran, R.; Baldwin, N.; VanWagner, L.B.; Jacobs, D.R., Jr.; Terry, J.G.; Shikany, J.M. Dietary Patterns and Prevalent NAFLD at Year 25 from the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Nutrients 2022, 14, 854. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Herbison, C.E.; Jacoby, P.; Ambrosini, G.L.; O’sullivan, T.A.; Ayonrinde, O.T.; Olynyk, J.K.; Black, L.J.; Beilin, L.J.; Mori, T.A. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Off. J. Am. Coll. Gastroenterol. 2013, 108, 778–785. [Google Scholar] [CrossRef]
- Khalatbari-Soltani, S.; Imamura, F.; Brage, S.; De Lucia Rolfe, E.; Griffin, S.J.; Wareham, N.J.; Marques-Vidal, P.; Forouhi, N.G. The association between adherence to the Mediterranean diet and hepatic steatosis: Cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study. BMC Med. 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Chan, R.; Wong, V.W.-S.; Chu, W.C.-W.; Wong, G.L.-H.; Li, L.S.; Leung, J.; Chim, A.M.-L.; Yeung, D.K.-W.; Sea, M.M.-M.; Woo, J. Diet-quality scores and prevalence of nonalcoholic fatty liver disease: A population study using proton-magnetic resonance spectroscopy. PLoS ONE 2015, 10, e0139310. [Google Scholar] [CrossRef]
- Maskarinec, G.; Namatame, L.A.; Kang, M.; Buchthal, S.D.; Ernst, T.; Monroe, K.R.; Shepherd, J.A.; Wilkens, L.R.; Boushey, C.J.; Marchand, L.L. Differences in the association of diet quality with body fat distribution between men and women. Eur. J. Clin. Nutr. 2020, 74, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Heredia, N.I.; Zhang, X.; Balakrishnan, M.; Hwang, J.P.; Thrift, A.P. Association of lifestyle behaviors with non-alcoholic fatty liver disease and advanced fibrosis detected by transient elastography among Hispanic/Latinos adults in the US. Ethn. Health 2022, 28, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Troiano, R.P.; Barrett, B.; Cunningham, C.; Subar, A.F.; Park, Y.; Bowles, H.R.; Freedman, L.S.; Kipnis, V.; Rimm, E.B. Measurement error affecting web-and paper-based dietary assessment instruments: Insights from the Multi-Cohort Eating and Activity Study for Understanding Reporting Error. Am. J. Epidemiol. 2022, 191, 1125–1139. [Google Scholar] [CrossRef]
- Freedman, L.S.; Commins, J.M.; Willett, W.; Tinker, L.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; Moshfegh, A.J.; Kipnis, V. Evaluation of the 24-hour recall as a reference instrument for calibrating other self-report instruments in nutritional cohort studies: Evidence from the validation studies pooling project. Am. J. Epidemiol. 2017, 186, 73–82. [Google Scholar] [CrossRef]
- Schatzkin, A.; Kipnis, V.; Carroll, R.J.; Midthune, D.; Subar, A.F.; Bingham, S.; Schoeller, D.A.; Troiano, R.P.; Freedman, L.S. A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: Results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int. J. Epidemiol. 2003, 32, 1054–1062. [Google Scholar] [CrossRef]
Variable M (SD) or n (%) | Full Sample N = 187 | MAFLD | Moderate Fibrosis | ||||
---|---|---|---|---|---|---|---|
Yes n = 78 | No n = 109 | p-Value | Yes n = 12 | No n = 66 | p-Value | ||
Age in years, Mean (SD) | 50.2 (12.3) | 53.6 (11.2) | 47.8 (12.6) | 0.001 | 52.5 (10.7) | 53.8 (11.4) | 0.717 |
Sex | |||||||
Male | 87 (46.5%) | 43 (55.1%) | 44 (40.4%) | 0.046 | 8 (66.6%) | 35 (53.0%) | 0.532 § |
Female | 100 (53.5%) | 35 (44.9%) | 65 (59.6%) | 4 (33.3%) | 31 (47.0%) | ||
Race/Ethnicity | |||||||
Non-Hispanic White | 74 (39.5%) | 35 (44.9%) | 39 (35.8%) | 0.418 | 2 (16.7%) | 33 (50.0%) | 0.057 |
Non-Hispanic Black | 68 (36.4%) | 23 (29.5%) | 45 (41.3%) | 7 (58.3%) | 16 (24.2%) | ||
Hispanic | 34 (18.2%) | 15 (19.2%) | 19 (17.4%) | 3 (25.0%) | 12 (18.2%) | ||
Other | 11 (5.9%) | 5 (6.4%) | 6 (5.5%) | 0 (0.0%) | 5 (7.6%) | ||
BMI, kg/m2 | |||||||
Mean (SD) | 31.7 (6.5) | 35.1 (6.0) | 29.3 (5.8) | <0.001 | 37.8 (5.8) | 34.6 (6.0) | 0.093 |
<25 kg/m2 | 26 (13.9%) | 0 (0.0%) | 26 (23.9%) | <0.001 § | 0 (0.0%) | 0 (0.0%) | 0.109 § |
25–30 kg/m2 | 54 (28.9%) | 15 (19.2%) | 39 (35.7%) | 0 (0.0%) | 15 (22.7%) | ||
≥30 kg/m2 | 107 (57.2%) | 63 (80.8%) | 44 (40.4%) | 12 (100%) | 51 (77.3%) | ||
Alcohol use, average drinks/day | |||||||
Mean (SD) | 0.4 (1.0) | 0.3 (0.4) | 0.5 (1.3) | 0.155 | 0.2 (0.3) | 0.3 (0.5) | 0.568 |
Never/rarely | 79 (42.2%) | 37 (47.4%) | 42 (38.6%) | 0.644 § | 5 (41.7%) | 32 (48.5%) | 0.876 § |
<1 drink/day | 95 (50.8) | 37 (47.4%) | 58 (53.2%) | 7 (58.3%) | 30 (45.4%) | ||
1–2 drinks/day | 10 (5.4%) | 3 (3.9%) | 7 (6.4%) | 0 (0.0%) | 3 (4.6%) | ||
>2 drinks/day | 3 (1.6%) | 1 (1.3%) | 2 (1.8%) | 0 (0.0%) | 1 (1.5%) | ||
Total energy, kcal/day | 2158 (2120) | 1822 (1003) | 2399 (2624) | 0.066 | 1715 (447) | 1841 (1075) | 0.692 |
Healthy Eating Index 2015 | |||||||
Mean (SD) | 62.6 (9.6) | 61.9 (10.0) | 63.1 (9.2) | 0.410 | 60.2 (12.3) | 62.3 (9.6) | 0.512 |
Tertile 1 | 60 (32.1%) | 24 (30.8%) | 36 (33.0%) | 0.714 | 5 (41.7%) | 19 (28.8%) | 0.494 § |
Tertile 2 | 68 (36.4%) | 31 (39.7%) | 37 (34.0%) | 3 (25.0%) | 28 (42.4%) | ||
Tertile 3 | 59 (31.5%) | 23 (29.5%) | 36 (33.0%) | 4 (33.3%) | 19 (28.8%) | ||
Alternate Mediterranean Diet Score | |||||||
Mean (SD) | 4.2 (2.0) | 3.9 (1.9) | 4.5 (2.0) | 0.038 | 3.8 (2.3) | 4.0 (1.9) | 0.721 |
Tertile 1 | 67 (35.8%) | 33 (42.3%) | 34 (31.2%) | 0.119 | 7 (58.3%) | 26 (39.4%) | 0.306 |
Tertile 2 | 65 (34.8%) | 28 (35.9%) | 37 (33.9%) | 2 (16.7%) | 26 (39.4%) | ||
Tertile 3 | 55 (29.4%) | 17 (21.8%) | 38 (34.9%) | 3 (25.0%) | 14 (21.2%) |
Model 1 OR 95% CI | Model 2 OR 95% CI | Model 3 OR 95% CI | |
---|---|---|---|
Healthy Eating Index 2015 (continuous) | 0.99 (0.96–1.02) | 0.99 (0.96–1.02) | 0.99 (0.96–1.03) |
Healthy Eating Index 2015 | |||
Tertile 1 | Ref | Ref | Ref |
Tertile 2 | 1.26 (0.62–2.54) | 1.38 (0.66–2.89) | 1.66 (0.71–3.91) |
Tertile 3 | 0.96 (0.46–2.00) | 1.00 (0.46–2.20) | 1.28 (0.50–3.27) |
Alternate Mediterranean Diet Score (continuous) | 0.85 (0.73–0.99) * | 0.85 (0.72–1.00) * | 0.92 (0.74–1.15) |
Alternate Mediterranean Diet Score | |||
Tertile 1 | Ref | Ref | Ref |
Tertile 2 | 0.78 (0.39–1.55) | 0.79 (0.38–1.62) | 0.75 (0.32–1.80) |
Tertile 3 | 0.46 (0.22–0.97) * | 0.49 (0.23–1.07) | 0.77 (0.27–2.20) |
Model 1 OR 95% CI | Model 2 OR 95% CI | Model 3 OR 95% CI | |
---|---|---|---|
Healthy Eating Index-2015 (continuous) | 0.98 (0.93–1.03) | 0.99 (0.93–1.04) | 0.99 (0.94–1.05) |
Healthy Eating Index-2015 | |||
Tertile 1 | Ref | Ref | Ref |
Tertile 2 | 060 (0.18–2.00) | 0.61 (0.18–2.07) | 0.70 (0.20–2.43) |
Tertile 3 | 0.70 (0.21–2.35) | 0.80 (0.23–2.77) | 0.88 (0.24–3.28) |
Alternate Mediterranean Diet Score (continuous) | 0.86 (0.67–1.11) | 0.88 (0.68–1.14) | 0.93 (0.69–1.25) |
Alternate Mediterranean Diet Score | |||
Tertile 1 | Ref | Ref | Ref |
Tertile 2 | 0.54 (0.17–1.70) | 0.57 (0.18–1.82) | 0.54 (0.16–1.84) |
Tertile 3 | 0.37 (0.10–1.45) | 0.41 (0.10–1.63) | 0.48 (0.10–2.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredia, N.I.; Thrift, A.P.; Ramsey, D.J.; Loomba, R.; El-Serag, H.B. Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care. Nutrients 2023, 15, 2598. https://doi.org/10.3390/nu15112598
Heredia NI, Thrift AP, Ramsey DJ, Loomba R, El-Serag HB. Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care. Nutrients. 2023; 15(11):2598. https://doi.org/10.3390/nu15112598
Chicago/Turabian StyleHeredia, Natalia I., Aaron P. Thrift, David J. Ramsey, Rohit Loomba, and Hashem B. El-Serag. 2023. "Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care" Nutrients 15, no. 11: 2598. https://doi.org/10.3390/nu15112598
APA StyleHeredia, N. I., Thrift, A. P., Ramsey, D. J., Loomba, R., & El-Serag, H. B. (2023). Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care. Nutrients, 15(11), 2598. https://doi.org/10.3390/nu15112598