Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Participants of the Study
2.3. Trial Design
2.4. Dietary and Physical Assessment of the Volunteers
2.5. Anthropometric Measurements and Blood Sample Collection
2.6. Basic Biochemical Measurements
2.7. Protein Carbonyls
2.8. Thiobarbituric Acid Reactive Substances (TBARS)
2.9. DNA/RNA Oxidation
2.10. Superoxide Dismutase (SOD) Activity
2.11. Glutathione Peroxidase (GPx) Activity
2.12. Statistics
3. Results
3.1. Basic Biochemical Characteristics of the Participants at Baseline
3.2. Oxidative Stress Biomarkers’ Levels of the Participants at Baseline
3.3. Basic Biochemical Characteristics of the Participants during Intervention
3.4. DNA/RNA Oxidation
3.5. Protein Carbonyls
3.6. Lipid Oxidation
3.7. Antioxidant Enzymes’ Activities
3.8. Per-Protocol Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Ninio, E. Phospholipid Mediators in the Vessel Wall: Involvement in Atherosclerosis. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Demopoulos, C.A.; Karantonis, H.C.; Antonopoulou, S. Platelet Activating Factor–A Molecular Link between Atherosclerosis Theories. Eur. J. Lipid Sci. Technol. 2003, 105, 705–716. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Leger, A.S.; Cochrane, A.L.; Moore, F. Factors Associated with Cardiac Mortality in Developed Countries with Particular Reference to the Consumption of Wine. Lancet 1979, 1, 1017–1020. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Covas, M.I.; Gambert, P.; Fitó, M.; de la Torre, R. Wine and Oxidative Stress: Up-to-Date Evidence of the Effects of Moderate Wine Consumption on Oxidative Damage in Humans. Atherosclerosis 2010, 208, 297–304. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, Beer or Spirit Drinking in Relation to Fatal and Non-Fatal Cardiovascular Events: A Meta-Analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
- O’Keefe, E.L.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog. Cardiovasc. Dis. 2018, 61, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol Consumption and Mortality in Patients with Cardiovascular Disease: A Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.D.; Lee, J.H.; Buchanan, D.M.; Peterson, E.D.; Tang, F.; Reid, K.J.; Spertus, J.A.; Valtos, J.; O’Keefe, J.H. Comparison of Outcomes Among Moderate Alcohol Drinkers Before Acute Myocardial Infarction to Effect of Continued Versus Discontinuing Alcohol Intake After the Infarct. Am. J. Cardiol. 2010, 105, 1651–1654. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Demopoulos, C.A.; Antonopoulou, S. Lipid Minor Constituents in Wines. A Biochemical Approach in the French Paradox. Int. J. Wine Res. 2009, 1, 131–143. [Google Scholar]
- Fragopoulou, E.; Nomikos, T.; Antonopoulou, S.; Mitsopoulou, C.A.; Demopoulos, C.A. Separation of Biologically Active Lipids from Red Wine. J. Agric. Food Chem. 2000, 48, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Nomikos, T.; Tsantila, N.; Mitropoulou, A.; Zabetakis, I.; Demopoulos, C.A. Biological Activity of Total Lipids from Red and White Wine/Must. J. Agric. Food Chem. 2001, 49, 5186–5193. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Antonopoulou, S.; Demopoulos, C.A. Biologically Active Lipids with Antiatherogenic Properties from White Wine and Must. J. Agric. Food Chem. 2002, 50, 2684–2694. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Antonopoulou, S.; Nomikos, T.; Demopoulos, C.A. Structure Elucidation of Phenolic Compounds from Red/White Wine with Antiatherogenic Properties. Biochim. Biophys. Acta 2003, 1632, 90–99. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Asimakopoulos, D.; Antonopoulou, S.; Demopoulos, C.A.; Fragopoulou, E. Effect of Robola and Cabernet Sauvignon Extracts on Platelet Activating Factor Enzymes Activity on U937 Cells. Food Chem 2014, 165, 50–59. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Fragopoulou, E.; Kalathara, K.; Nomikos, T.; Karantonis, H.C.; Antonopoulou, S. Antioxidant and Anti-Inflammatory Activity of Red and White Wine Extracts. Food Chem. 2010, 120, 665–672. [Google Scholar] [CrossRef]
- Vlachogianni, I.C.; Fragopoulou, E.; Kostakis, I.K.; Antonopoulou, S. In Vitro Assessment of Antioxidant Activity of Tyrosol, Resveratrol and Their Acetylated Derivatives. Food Chem. 2015, 177, 165–173. [Google Scholar] [CrossRef]
- Vlachogianni, I.C.; Fragopoulou, E.; Stamatakis, G.M.; Kostakis, I.K.; Antonopoulou, S. Platelet Activating Factor (PAF) Biosynthesis Is Inhibited by Phenolic Compounds in U-937 Cells under Inflammatory Conditions. Prostaglandins Other Lipid Mediat. 2015, 121, 176–183. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Choleva, M.; Antonopoulou, S.; Demopoulos, C.A. Wine and Its Metabolic Effects. A Comprehensive Review of Clinical Trials. Metabolism. 2018, 83, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Konstantinidou, V.; Mysytaki, E.; Fitó, M.; Weinbrenner, T.; De La Torre, R.; Farré-Albadalejo, M.; Lamuela-Raventós, R. Postprandial Effects of Wine Consumption on Lipids and Oxidative Stress Biomarkers. Drugs Exp. Clin. Res. 2003, 29, 217–223. [Google Scholar] [PubMed]
- Micallef, M.; Lexis, L.; Lewandowski, P. Red Wine Consumption Increases Antioxidant Status and Decreases Oxidative Stress in the Circulation of Both Young and Old Humans. Nutr. J. 2007, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajdl, D.; Racek, J.; Trefil, L.; Siala, K. Effect of White Wine Consumption on Oxidative Stress Markers and Homocysteine Levels. Physiol. Res. 2007, 56, 203–212. [Google Scholar] [CrossRef]
- Schrieks, I.C.; van den Berg, R.; Sierksma, A.; Beulens, J.W.J.; Vaes, W.H.J.; Hendriks, H.F.J. Effect of Red Wine Consumption on Biomarkers of Oxidative Stress. Alcohol Alcohol. 2013, 48, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Sacanella, E.; Mota, F.; Chiva-Blanch, G.; Antúnez, E.; Casals, E.; Deulofeu, R.; Rotilio, D.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.; et al. Moderate Consumption of Red Wine, but Not Gin, Decreases Erythrocyte Superoxide Dismutase Activity: A Randomised Cross-over Trial. Nutr. Metab. Cardiovasc. Dis. NMCD 2011, 21, 46–53. [Google Scholar] [CrossRef]
- Tsang, C.; Higgins, S.; Duthie, G.G.; Duthie, S.J.; Howie, M.; Mullen, W.; Lean, M.E.J.; Crozier, A. The Influence of Moderate Red Wine Consumption on Antioxidant Status and Indices of Oxidative Stress Associated with CHD in Healthy Volunteers. Br. J. Nutr. 2005, 93, 233–240. [Google Scholar] [CrossRef]
- Guarda, E.; Godoy, I.; Foncea, R.; Pérez, D.D.; Romero, C.; Venegas, R.; Leighton, F. Red Wine Reduces Oxidative Stress in Patients with Acute Coronary Syndrome. Int. J. Cardiol. 2005, 104, 35–38. [Google Scholar] [CrossRef]
- Marfella, R.; Cacciapuoti, F.; Siniscalchi, M.; Sasso, F.C.; Marchese, F.; Cinone, F.; Musacchio, E.; Marfella, M.A.; Ruggiero, L.; Chiorazzo, G.; et al. Effect of Moderate Red Wine Intake on Cardiac Prognosis after Recent Acute Myocardial Infarction of Subjects with Type 2 Diabetes Mellitus. Diabet. Med. J. Br. Diabet. Assoc. 2006, 23, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Fragopoulou, E.; Argyrou, C.; Detopoulou, M.; Tsitsou, S.; Seremeti, S.; Yannakoulia, M.; Antonopoulou, S.; Kolovou, G.; Kalogeropoulos, P. The Effect of Moderate Wine Consumption on Cytokine Secretion by Peripheral Blood Mononuclear Cells: A Randomized Clinical Study in Coronary Heart Disease Patients. Cytokine 2021, 146, 155629. [Google Scholar] [CrossRef]
- Bountziouka, V.; Bathrellou, E.; Giotopoulou, A.; Katsagoni, C.; Bonou, M.; Vallianou, N.; Barbetseas, J.; Avgerinos, P.C.; Panagiotakos, D.B. Development, Repeatability and Validity Regarding Energy and Macronutrient Intake of a Semi-Quantitative Food Frequency Questionnaire: Methodological Considerations. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean Food Pattern Predicts the Prevalence of Hypertension, Hypercholesterolemia, Diabetes and Obesity, among Healthy Adults; the Accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, S.A.; Maraki, M.I.; Kollia, M.; Gioxari, A.; Jansen, L.T.; Sidossis, L.S. Development, Reliability and Validity of a Physical Activity Questionnaire for Estimating Energy Expenditure in Greek Adults. Sci. Sport. 2016, 31, e47–e53. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved Analysis of Malondialdehyde in Human Body Fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- McCord, J.M. Analysis of Superoxide Dismutase Activity. Curr. Protoc. Toxicol. 1999, 1, 7.3.1–7.3.9. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Little, R.J.; D’Agostino, R.; Cohen, M.L.; Dickersin, K.; Emerson, S.S.; Farrar, J.T.; Frangakis, C.; Hogan, J.W.; Molenberghs, G.; Murphy, S.A.; et al. The Prevention and Treatment of Missing Data in Clinical Trials. N. Engl. J. Med. 2012, 367, 1355–1360. [Google Scholar] [CrossRef] [Green Version]
- Menon, B.; Ramalingam, K.; Kumar, R. Evaluating the Role of Oxidative Stress in Acute Ischemic Stroke. J. Neurosci. Rural Pract. 2020, 11, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Ninić, A.; Bogavac-Stanojević, N.; Sopić, M.; Munjas, J.; Kotur-Stevuljević, J.; Miljković, M.; Gojković, T.; Kalimanovska-Oštrić, D.; Spasojević-Kalimanovska, V. Superoxide Dismutase Isoenzymes Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Coronary Artery Disease. J. Med. Biochem. 2019, 38, 284–291. [Google Scholar] [CrossRef]
- Gianazza, E.; Brioschi, M.; Martinez Fernandez, A.; Casalnuovo, F.; Altomare, A.; Aldini, G.; Banfi, C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid. Redox Signal. 2021, 34, 49–98. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, V. Enzymatic Antioxidant System in Vascular Inflammation and Coronary Artery Disease. World J. Exp. Med. 2015, 5, 218. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Y.; Çebi, A.; Söylemez, N.; Demir, H.; Alp, H.H.; Bakan, E. Correlations between Oxidative DNA Damage, Oxidative Stress and Coenzyme Q10 in Patients with Coronary Artery Disease. Int. J. Med. Sci. 2012, 9, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Jaruga, P.; Rozalski, R.; Jawien, A.; Migdalski, A.; Olinski, R.; Dizdaroglu, M. DNA Damage Products (5’R)- and (5’S)-8,5’-Cyclo-2’-Deoxyadenosines as Potential Biomarkers in Human Urine for Atherosclerosis. Biochemistry 2012, 51, 1822–1824. [Google Scholar] [CrossRef]
- Xiang, F.; Shuanglun, X.; Jingfeng, W.; Ruqiong, N.; Yuan, Z.; Yongqing, L.; Jun, Z. Association of Serum 8-Hydroxy-2’-Deoxyguanosine Levels with the Presence and Severity of Coronary Artery Disease. Coron. Artery Dis. 2011, 22, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Musthafa, Q.A.; Abdul Shukor, M.F.; Ismail, N.A.S.; Mohd Ghazi, A.; Mohd Ali, R.; Nor, I.F.M.; Dimon, M.Z.; Wan Ngah, W.Z. Oxidative Status and Reduced Glutathione Levels in Premature Coronary Artery Disease and Coronary Artery Disease. Free Radic. Res. 2017, 51, 787–798. [Google Scholar] [CrossRef]
- Schrieks, I.C.; Heil, A.L.J.; Hendriks, H.F.J.; Mukamal, K.J.; Beulens, J.W.J. The Effect of Alcohol Consumption on Insulin Sensitivity and Glycemic Status: A Systematic Review and Meta-Analysis of Intervention Studies. Diabetes Care 2015, 38, 723–732. [Google Scholar] [CrossRef]
- Kroese, L.J.; Scheffer, P.G. 8-Hydroxy-2′-Deoxyguanosine and Cardiovascular Disease: A Systematic Review. Curr. Atheroscler. Rep. 2014, 16, 452. [Google Scholar] [CrossRef]
- Greenrod, W.; Stockley, C.S.; Burcham, P.; Abbey, M.; Fenech, M. Moderate Acute Intake of De-Alcoholized Red Wine, but Not Alcohol, Is Protective against Radiation-Induced DNA Damage Ex Vivo—Results of a Comparative in Vivo Intervention Study in Younger Men. Mutat. Res. 2005, 591, 290–301. [Google Scholar] [CrossRef]
- Gryszczyńska, B.; Formanowicz, D.; Budzyń, M.; Wanic-Kossowska, M.; Pawliczak, E.; Formanowicz, P.; Majewski, W.; Strzyżewski, K.W.; Kasprzak, M.P.; Iskra, M. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases. BioMed Res. Int. 2017, 2017, 4975264. [Google Scholar] [CrossRef] [Green Version]
- Zavadskiy, S.; Sologova, S.; Moldogazieva, N. Oxidative Distress in Aging and Age-Related Diseases: Spatiotemporal Dysregulation of Protein Oxidation and Degradation. Biochimie 2021, 195, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, J.; Ramírez-Carracedo, R.; Martínez de Toda, I.; Vida, C.; Alique, M.; De la Fuente, M.; Ramírez-Chamond, R. Protein Carbamylation: A Marker Reflecting Increased Age-Related Cell Oxidation. Int. J. Mol. Sci. 2018, 19, 1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ventura, J.; Rodrigues-Diez, R.; Martinez-Lopez, D.; Salaices, M.; Blanco-Colio, L.; Briones, A. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 2315. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, Y.-M.; Wang, L.-F.; Li, Z.-Q.; Pan, W.; Cao, H.-Y. Comparison of Effects of Simvastatin Versus Atorvastatin on Oxidative Stress in Patients with Coronary Heart Disease. Clin. Cardiol. 2010, 33, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Kotur-Stevuljevic, J.; Memon, L.; Stefanovic, A.; Spasic, S.; Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Kalimanovska-Ostric, D.; Jelić-Ivanovic, Z.; Zunic, G. Correlation of Oxidative Stress Parameters and Inflammatory Markers in Coronary Artery Disease Patients. Clin. Biochem. 2007, 40, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; He, Y.; Yang, W.; Wang, Y.; Zhang, W.; Wang, Y. Effect of Dan Hong Injection on PON1, SOD Activity and MDA Levels in Elderly Patients with Coronary Heart Disease. Int. J. Clin. Exp. Med. 2014, 7, 5886–5889. [Google Scholar]
- Yavuzer, H.; Yavuzer, S.; Cengiz, M.; Erman, H.; Doventas, A.; Balci, H.; Erdincler, D.S.; Uzun, H. Biomarkers of Lipid Peroxidation Related to Hypertension in Aging. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2016, 39, 342–348. [Google Scholar] [CrossRef]
- Gupta, S.; Sodhi, S.; Mahajan, V. Correlation of Antioxidants with Lipid Peroxidation and Lipid Profile in Patients Suffering from Coronary Artery Disease. Expert Opin. Ther. Targets 2009, 13, 889–894. [Google Scholar] [CrossRef]
- Akkuş, I.; Sağlam, N.I.; Cağlayan, O.; Vural, H.; Kalak, S.; Sağlam, M. Investigation of Erythrocyte Membrane Lipid Peroxidation and Antioxidant Defense Systems of Patients with Coronary Artery Disease (CAD) Documented by Angiography. Clin. Chim. Acta Int. J. Clin. Chem. 1996, 244, 173–180. [Google Scholar] [CrossRef]
- Landmesser, U.; Merten, R.; Spiekermann, S.; Büttner, K.; Drexler, H.; Hornig, B. Vascular Extracellular Superoxide Dismutase Activity in Patients with Coronary Artery Disease: Relation to Endothelium-Dependent Vasodilation. Circulation 2000, 101, 2264–2270. [Google Scholar] [CrossRef] [Green Version]
- Bridges, A.B.; Scott, N.A.; Pringle, T.H.; McNeill, G.P.; Belch, J.J. Relationship between the Extent of Coronary Artery Disease and Indicators of Free Radical Activity. Clin. Cardiol. 1992, 15, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Sheen, J.-M.; Hu, W.L.; Hung, Y.-C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid. Med. Cell. Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group A Control | Group B Wine | Group C Ethanol | p† | |
---|---|---|---|---|
Age (years) | 63.1 ± 11.1 | 61.2 ± 11.6 | 61.7 ± 12.9 | 0.853 |
BMI (kg/m2) | 29.3 (27.5–36.8) | 28.8 (26.4–30.7) | 29.1 (25.0–32.4) | 0.412 |
Systolic blood pressure (mmHg) | 131.9 ± 17.0 | 136.0 ± 18.9 | 141.1 ± 10.4 | 0.260 |
Diastolic blood pressure (mmHg) | 72.2 ± 8.6 | 75.4 ± 14.0 | 78.6 ± 9.4 | 0.260 |
Glucose (mg/dL) | 107.0 (94.3–122.0) | 108.5 (97.0–151.3) | 109.5 (97.3–122.8) | 0.728 |
Triglycerides (mg/dL) | 112.0 (77.8–170.0) | 109.5 (93.5–159.5) | 105.5 (86.5–156.3) | 0.983 |
Total Cholesterol (mg/dL) | 158.5 ± 37.3 | 170.0 ± 31.7 | 166.1 ± 33.7 | 0.538 |
HDL-c (mg/dL) | 43.5 ± 9.8 | 48.1 ± 14.8 | 45.1 ± 11.5 | 0.454 |
LDL-c (mg/dL) | 89.8 (61.5–106.8) | 89.7 (74.4–109.8) | 84.1 (77.1–106.8) | 0.778 |
Uric acid (mg/dL) | 6.3 (4.9–7.6) | 5.9 (5.3–6.2) | 6.1 (5.4–7.5) | 0.450 |
Insulin (μΙU/mL) | 11.0 (7.3–18.6) | 9.7 (7.0–13.9) | 8.2 (6.5–11.4) | 0.458 |
HOMA IR | 2.7 (1.9–4.9) | 2.7 (2.4–3.7) | 2.2 (1.9–3.3) | 0.543 |
SGOT-AST (IU/L) | 19.0 (17.8–23.3) | 19.5 (16.8–22.0) | 19.5 (16.3–24.8) | 0.960 |
SGPT-ALT (IU/L) | 19.5 (14.0–29.8) | 19.0 (11.8–26.3) | 20.0 (13.5–23.5) | 0.628 |
γGT (IU/L) | 23.0 (16.0–34.3) | 23.0 (16.8–33.0) | 21.5 (18.3–40.8) | 0.719 |
Group A Control | Group B Wine | Group C Ethanol | p† | |
---|---|---|---|---|
Oxidized guanine species (μg/mmol creatinine) | 16.6 (12.6–22.8) | 22.4 (11.1–27.1) | 11.7 (8.7–19.8) | 0.153 |
TBARS (μM) | 1.44 ± 0.47 | 1.48 ± 0.43 | 1.51 ± 0.34 | 0.831 |
Protein carbonyls (nmol/mg protein) | 0.83 (0.69–0.97) | 0.89 (0.79–1.21) | 0.83 (0.73–0.97) | 0.088 |
Serum GPx activity (U/mL) | 0.096 (0.073–0.116) | 0.108 (0.094–0.116) | 0.089 (0.073–0.114) | 0.133 |
LRP GPx activity (U/mg) | 0.0029 (0.0021–0.0107) | 0.0066 (0.0025–0.0106) | 0.0030 (0.0022–0.0039) | 0.168 |
SOD activity (U/mg) | 2.3 (1.1–3.2) | 2.3 (1.3–3.2) | 2.5 (1.6–4.1) | 0.596 |
Group | % Change 4 Weeks | % Change 8 Weeks | Ptime † | Ptrial † 4 Weeks | Ptrial † 8 Weeks | |
---|---|---|---|---|---|---|
BMI (%) | Group A Control | 100.4 (99.6–101.0) | 100.0 (99.6–101.3) | 0.154 | 0.872 | 0.924 |
Group B Wine | 99.8 (99.2–101.3) | 100.0 (99.1–100.9) | 0.861 | |||
Group C Ethanol | 100.7 (99.2–100.9) | 100.4 (98.2–101.4) | 0.756 | |||
Glucose (%) | Group A Control | 99.7 (90.5–105.0) | 103.2 (92.3–105.9) | 0.722 | 0.566 | 0.363 |
Group B Wine | 101.1 (97–109.9) | 105.1 (96.2–108.8) | 0.422 | |||
Group C Ethanol | 97.6 (95.5–105.2) | 100.4 (96–101.5) | 0.392 | |||
Triglycerides (%) | Group A Control | 92.8 (76.7–117.0) | 101.3 (64.8–119.4) | 0.554 | 0.805 | 0.312 |
Group B Wine | 100.9 (85.3–120.4) | 103.6 (87.9–121.7) | 0.923 | |||
Group C Ethanol | 110.5 (77.9–114.7) | 105.9 (91.2–123.5) | 0.705 | |||
Total Cholesterol (%) | Group A Control | 94.4 (87.3–104.8) | 103.7 (87.0–105.3) | 0.241 | 0.461 | 0.969 |
Group B Wine | 100.5 (92.2–107.6) | 98.9 (95.5–111.0) | 0.955 | |||
Group C Ethanol | 96.8 (89.9–110.8) | 104.2 (94.4–105.8) | 0.099 | |||
HDL-c (%) | Group A Control | 99.0 (92.5–102.6) | 98.7 (96.4–105.4) | 0.798 | 0.400 | 0.976 |
Group B Wine | 101.0 (96.1–113.1) | 98.5 (94.9–114.7) | 0.499 | |||
Group C Ethanol | 102.0 (93.0–104.1) | 100.3 (96.4–100.3) | 0.477 | |||
LDL-c (%) | Group A Control | 91.9 (79.5–106.7) | 103.0 (87.1–110.5) | 0.165 | 0.468 | 0.979 |
Group B Wine | 101.2 (90.1–108.9) | 100.0 (91.8–116.3) | 0.654 | |||
Group C Ethanol | 92.1 (87.3–111.5) | 101.4 (94.9–109.5) | 0.127 | |||
Uric acid (%) | Group A Control | 100.7 (93.1–107.1) | 100.0 (86.4–107.2) | 0.920 | 0.734 | 0.520 |
Group B Wine | 101.4 (93.6–110.1) | 99.1 (95.0–115.1) | 0.988 | |||
Group C Ethanol | 100.3 (97.7–106.4) | 102.2 (92.1–105.8) | 0.112 | |||
Insulin (%) | Group A Control | 106.4 (98.7–125.2) | 114.9 (84.2–117.9) | 0.108 | 0.314 | 0.183 |
Group B Wine | 96.1 (88.7–110.2) | 107.9 (86.2–122.9) | 0.418 | |||
Group C Ethanol | 100.7 (72.2–113.2) | 93.4 (70.9–93.4) * | 0.030 | |||
HOMA IR (%) | Group A Control | 104.9 (91.9–118.9) | 100.8 (86.5–121.9) | 0.873 | 0.885 | 0.333 |
Group B Wine | 97.7 (89.3–121.6) | 104.8 (82.1–139.4) | 0.580 | |||
Group C Ethanol | 110.3 (66.8–118.7) | 93.1 (66.7–103.3) | 0.086 | |||
SGOT-AST (%) | Group A Control | 100.0 (84.0–105.8) | 101.2 (94.1–106.9) | 0.377 | 0.902 | 0.929 |
Group B Wine | 98.2 (82.7–110.0) | 100.0 (90.4–110.8) | 0.841 | |||
Group C Ethanol | 97.9 (93.5–105.5) | 102.0 (89.3–107.5) | 0.285 | |||
SGPT-ALT (%) | Group A Control | 100.0 (83.4–106.9) | 108.0 (88.2–110.5) | 0.343 | 0.521 | 0.697 |
Group B Wine | 91.6 (78.1–109.2) | 100.0 (84.1–114.9) | 0.208 | |||
Group C Ethanol | 101.6 (90.8–108.2) | 84.2 (72.3–114.2) | 0.890 | |||
γGT (%) | Group A Control | 100.0 (81.0–105.1) | 100.7 (84.3–102.3) | 1.000 | 0.520 | 0.696 |
Group B Wine | 100.0 (91.7–111.3) | 97.9 (91.4–112.7) | 0.764 | |||
Group C Ethanol | 102.5 (83.4–117.6) | 104.5 (81.9–131.1) | 0.962 |
Group | % Change 4 Weeks | % Change 8 Weeks | Ptime † | Ptrial † 4 Weeks | Ptrial † 8 Weeks | |
---|---|---|---|---|---|---|
Oxidized guanine species (%) | Group A Control | 92.6 (74.6–132.8) a | 90.6 (79.9–104.2) a | 0.142 | 0.004 | <0.000 |
Group B Wine | 75.6 (52.2–100.0) *,a | 85.0 (64.4–106.9) *,a | 0.012 | |||
Group C Ethanol | 108.6 (97.5–156.4) b | 131.1 (98.2–101.4) *,b | 0.002 | |||
Protein carbonyls (%) | Group A Control | 97.4 (94.6–107.2) a | 95.4 (88.5–103.7) a,b | 0.195 | <0.000 | 0.002 |
Group B Wine | 89.5 (72.6–94.0) *,b | 84.4 (75.8–97.2) *,a | 0.001 | |||
Group C Ethanol | 111.2 (91.5–126.0) a | 118.1 (88.8–203.7) *,b | 0.341 | |||
Serum GPx activity (%) | Group A Control | 98.6 (96.6–103.1) | 98.3 (94.1–104.9) | 0.125 | 0.290 | 0.893 |
Group B Wine | 97.6 (92.1–102.2) * | 100.6 (90.9–105.2) | 0.432 | |||
Group CEthanol | 100.4 (95.4–103.3) | 93.4 (93.1–108.4) | 0.705 | |||
LRP GPx activity (%) | Group A Control | 95.3 (85.9–99.9) | 95.6 (84.3–111.3) | 0.094 | 0.219 | 0.550 |
Group B Wine | 102.1 (84.4–144.6) # | 86.4 (58.2–110.2) | 0.142 | |||
Group C Ethanol | 93.1 (65.6–105.6) | 97.4 (91.5–102.7) | 0.387 | |||
SOD activity (%) | Group A Control | 106.4 (82.1–122.6) | 97.5 (85.3–125.0) | 0.850 | 0.339 | 0.356 |
Group B Wine | 130.2 (78.4–161.5) | 85.0 (56.7–137.6) | 0.385 | |||
Group C Ethanol | 103.0 (60.7–123.4) | 105.5 (75.6–125.4) | 0.705 | |||
4 weeks | 8 weeks | Ptime ^ | Ptrial ^ | Ptime*trial^ | ||
TBARS (%) | Group A Control | 98.9 ± 25.8 | 97.9 ± 24.7 | 0.197 | 0.775 | 0.898 |
Group B Wine | 96.9 ± 21.8 | 91.9 ± 17.2 | ||||
Group C Ethanol | 99.6 ± 31.4 | 92.3 ± 24.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choleva, M.; Argyrou, C.; Detopoulou, M.; Donta, M.-E.; Gerogianni, A.; Moustou, E.; Papaemmanouil, A.; Skitsa, C.; Kolovou, G.; Kalogeropoulos, P.; et al. Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients. Nutrients 2022, 14, 1377. https://doi.org/10.3390/nu14071377
Choleva M, Argyrou C, Detopoulou M, Donta M-E, Gerogianni A, Moustou E, Papaemmanouil A, Skitsa C, Kolovou G, Kalogeropoulos P, et al. Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients. Nutrients. 2022; 14(7):1377. https://doi.org/10.3390/nu14071377
Chicago/Turabian StyleCholeva, Maria, Chrysa Argyrou, Maria Detopoulou, Maria-Eleni Donta, Anastasia Gerogianni, Evanggelia Moustou, Androniki Papaemmanouil, Christina Skitsa, Genovefa Kolovou, Petros Kalogeropoulos, and et al. 2022. "Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients" Nutrients 14, no. 7: 1377. https://doi.org/10.3390/nu14071377
APA StyleCholeva, M., Argyrou, C., Detopoulou, M., Donta, M. -E., Gerogianni, A., Moustou, E., Papaemmanouil, A., Skitsa, C., Kolovou, G., Kalogeropoulos, P., & Fragopoulou, E. (2022). Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients. Nutrients, 14(7), 1377. https://doi.org/10.3390/nu14071377