Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Blood Samples and Omega-3 Index
2.3. Genotyping
2.4. Psychological Assessments
2.5. Statistical Analysis
3. Results
3.1. Description and Relation between the Tested Genetic Polymorphisms
3.2. Omega-3 Index, Dopaminergic Variants and Neuropsychological Testing
DRD2 (rs4274224) | AA (n = 41) | AG (n = 31) | GG (n = 30) | p |
---|---|---|---|---|
Omega-3 Index | 5.2 (4.0, 6.0) | 5.1 (4.0, 6.0) | 5.6 (4.2, 7.2) | 0.591 |
PhysAgg | 22.7 (17.0, 28.0) | 20.6 (13.0, 27.5) | 22.0 (13.7, 29.2) | 0.513 |
VerbAgg | 12.7 (9.0, 15.0) | 13.5 (11.0, 17.5) | 12.8 (9.5, 16.0) | 0.635 |
Anger | 18.0 (14.0, 20.0) | 16.7 (11.0, 22.5) | 15.2 (10.7, 20.0) | 0.256 |
Hostility | 20.1 (14.0; 26.0) | 19.8 (13.5, 26.0) | 17.0 (12.5, 19.0) | 0.220 |
IndirAgg | 14.5 (11.0, 18.0) | 14.3 (11.0, 18.5) | 12.0 (8.7, 14.0) | 0.113 |
Total ADD | 48.9 (32.0, 71.0) | 48.0 (23.0, 70.0) | 28.9 (13.0, 38.5) | 0.004 |
Activation | 11.4 (7.0, 17.0) | 10.5 (5.0, 16.5) | 7.0 (3.0, 10.0) | 0.008 |
Attention | 12.9 (7.0, 18.0) | 12.2 (6.0, 19.0) | 8.0 (3.0, 12.7) | 0.022 |
Effort | 9.0 (4.0, 15.0) | 8.8 (4.0, 12.5) | 4.5 (1.7, 6.0) | 0.002 |
Affect | 7.9 (4.0, 12.0) | 8.2 (3.0, 13.0) | 5.0 (1.0, 6.0) | 0.026 |
Memory | 7.5 (5.0, 11.0) | 7.7 (4.0, 12.0) | 4.3 (0.7, 6.0) | 0.009 |
DBH (rs1611115) | CC (n = 79) | CT (n = 47) | TT (n = 6) | p |
---|---|---|---|---|
Omega-3 Index | 5.1 (3.9, 6.0) | 5.6 (4.3, 7.4) | 5.0 (4.3, 5.5) | 0.275 |
PhysAgg | 20.6 (13.0, 27.0) | 23.8 (17.0, 29.0) | 17.5 (8.0, 8.0) | 0.120 |
VerbAgg | 13.0 (9.0, 16.0) | 14.0 (11.0, 17.7) | 8.3 (5.0, 7.0) | 0.022 |
Anger | 16.5 (11.0, 20.0) | 17.5 (13.0, 22.0) | 14.6 (7.0, 12.0) | 0.521 |
Hostility | 19.5 (14.0, 24.0) | 19.4 (13.0, 24.7) | 15.5 (8, 18.0) | 0.453 |
IndirAgg | 13.9 (10.0, 18.0) | 14.0 (12.0, 17.5) | 12.0 (10.0, 10.0) | 0.589 |
Total ADD | 42.8 (23.0, 65.0) | 43.9 (21.2, 62) | 65.0 (10.0, 87.0) | 0.576 |
Activation | 9.5 (5.0, 14.0) | 10.5 (6.0, 15.0) | 10.0 (5.0, 22.0) | 0.615 |
Attention | 10.9 (6.0, 18.0) | 11.9 (5.51, 17.0) | 18.3 (3.0, 25.0) | 0.427 |
Effort | 7.8 (3.0, 11.0) | 7.6 (4.0, 11.0) | 12.0 (2.0, 11.0) | 0.749 |
Affect | 7.4 (4.0, 12.0) | 7.1 (2.2, 11.7) | 10.7 (0.0, 15.0) | 0.489 |
Memory | 6.9 (3.0, 11.0) | 6.7 (2.2, 11.0) | 6.7 (0.0, 7.0) | 0.983 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellisle, F. Effects of diet on behaviour and cognition in children. Br. J. Nutr. 2004, 92 (Suppl. 2), S227–S232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, S.; Williams, C.; Reynolds, S.A. Is there an association between diet and depression in children and adolescents? A systematic review. Br. J. Nutr. 2016, 116, 2097–2108. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Dingemanse, N. You are what you eat: Diet shapes body composition, personality and behavioural stability. BMC Evol. Biol. 2017, 17, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, P.M. Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev. 2007, 12, 207. [Google Scholar] [PubMed]
- Seo, D.; Patrick, C.J.; Kennealy, P.J. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress. Violent Behav. 2008, 13, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Belfry, K.D.; Kolla, N.J. Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression. Brain Sci. 2021, 11, 1412. [Google Scholar] [CrossRef]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef]
- Berridge, K.C.; Kringelbach, M. Pleasure Systems in the Brain. Neuron 2015, 86, 646–664. [Google Scholar] [CrossRef] [Green Version]
- Plavén-Sigray, P.; Matheson, G.J.; Gustavsson, P.; Stenkrona, P.; Halldin, C.; Farde, L.; Cervenka, S. Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study. PLoS ONE 2018, 13, e0193770. [Google Scholar] [CrossRef] [Green Version]
- Felippe, R.M.; Oliveira, G.M.; Barbosa, R.S.; Esteves, B.D.; Gonzaga, B.M.S.; Horita, S.I.M.; Garzoni, L.R.; Beghini, D.G.; Araújo-Jorge, T.C.; Fragoso, V.M.S. Experimental Social Stress: Dopaminergic Receptors, Oxidative Stress, and c-Fos Protein Are Involved in Highly Aggressive Behavior. Front. Cell. Neurosci. 2021, 15, 696834. [Google Scholar] [CrossRef]
- El-Mallakh, R.S.; McKenzie, C. The dopamine D4/D2 receptor antagonist affinity ratio as a predictor of anti-aggression medi-cation efficacy. Med. Hypotheses 2013, 80, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Nikulina, E.M.; Kapralova, N.S. Role of dopamine receptors in the regulation of aggression in mice; relationship to genotype. Neurosci. Behav. Physiol. 1992, 22, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Forbes, E.; Brown, S.M.; Kimak, M.; Ferrell, R.E.; Manuck, S.B.; Hariri, A.R. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol. Psychiatry 2009, 14, 60–70. [Google Scholar] [CrossRef]
- Colzato, L.; Wildenberg, W.V.D.; Van der Does, W.; Hommel, B. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience 2010, 170, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Congdon, E.; Canli, T. A Neurogenetic Approach to Impulsivity. J. Personal. 2008, 76, 1447–1484. [Google Scholar] [CrossRef]
- Grimm, O.; Weber, H.; Kittel-Schneider, S.; Kranz, T.M.; Jacob, C.P.; Lesch, K.-P.; Reif, A. Impulsivity and Venturesomeness in an Adult ADHD Sample: Relation to Personality, Comorbidity, and Polygenic Risk. Front. Psychiatry 2020, 11, 557160. [Google Scholar] [CrossRef]
- Rhee, S.H.; Waldman, I.D. Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychol. Bull. 2002, 128, 490–529. [Google Scholar] [CrossRef]
- Miles, D.R.; Carey, G. Genetic and environmental architecture on human aggression. J. Personal. Soc. Psychol. 1997, 72, 207–217. [Google Scholar] [CrossRef]
- Hamidovic, A.; Dlugos, A.; Skol, A.; Palmer, A.A.; de Wit, H. Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: An exploratory study with d-amphetamine in healthy par-ticipants. Exp. Clin. Psychopharmacol. 2009, 17, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Moses, T.E.; Burmeister, M.; Greenwald, M.K. Heroin delay discounting and impulsivity: Modulation by DRD1 genetic var-iation. Addict. Biol. 2020, 25, e12777. [Google Scholar] [CrossRef]
- Halleland, H.; Lundervold, A.; Halmøy, A.; Haavik, J.; Johansson, S. Association between Catechol O-methyltransferase (COMT) haplotypes and severity of hyperactivity symptoms in Adults. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150B, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, T.; Mo, Y.; Gong, J. The COMT gene rs4680 polymorphism moderates the relationship between adult ADHD symptoms and executive dysfunction. Asian J. Psychiatry 2021, 56, 102546. [Google Scholar] [CrossRef] [PubMed]
- Lotta, T.; Vidgren, J.; Tilgmann, C.; Ulmanen, I.; Melen, K.; Julkunen, I.; Taskinen, J. Kinetics of human soluble and mem-brane-bound catechol O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995, 34, 4202–4210. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volavka, J.; Bilder, R.; Nolan, K. Catecholamines and Aggression: The Role of COMT and MAO Polymorphisms. Ann. N. Y. Acad. Sci. 2004, 1036, 393–398. [Google Scholar] [CrossRef]
- Hirata, Y.; Zai, C.C.; Nowrouzi, B.; Beitchman, J.H.; Kennedy, J.L. Study of the Catechol-O-Methyltransferase (COMT) Gene with High Aggression in Children. Aggress. Behav. 2013, 39, 45–51. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Hu, S.; Zhou, R.; Yu, X.; Wang, B.; Guan, L.; Yang, L.; Zhang, F.; Faraone, S. The monoamine oxidase B gene exhibits significant association to ADHD. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 370–374. [Google Scholar] [CrossRef]
- Antypa, N.; Giegling, I.; Calati, R.; Schneider, B.; Hartmann, A.M.; Friedl, M.; Konte, B.; Lia, L.; De Ronchi, D.; Serretti, A.; et al. MAOA and MAOB polymorphisms and anger-related traits in suicidal participants and controls. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 393–403. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Cate, S.P.; Battistuzzi, C.; Oquendo, M.A.; Brent, D.; Mann, J.J. An Association between a Functional Polymorphism in the Monoamine Oxidase A Gene Promoter, Impulsive Traits and Early Abuse Experiences. Neuropsychopharmacology 2004, 29, 1498–1505. [Google Scholar] [CrossRef] [Green Version]
- McDermott, R.; Tingley, D.; Cowden, J.; Frazzetto, G.; Johnson, D.D.P. Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc. Natl. Acad. Sci. USA 2009, 106, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Cubells, J.F.; van Kammen, D.P.; Kelley, M.E.; Anderson, G.M.; O’Connor, D.T.; Price, L.H.; Malison, R.; Rao, P.A.; Kobayashi, K.; Nagatsu, T.; et al. Dopamine beta-hydroxylase: Two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Hum. Genet. 1998, 102, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Reif, A.; Strobel, A.; Boreatti-Hümmer, A.; Heine, M.; Lesch, K.P.; Jacob, C.P. A functional dopamine-beta-hydroxylase gene promoter polymorphism is associated with impulsive personality styles, but not with affective disorders. J. Neural. Transm. 2009, 116, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J.; Onyiaodike, C.C.; Brown, E.A.; Jordan, F.; Murray, H.; Nibbs, R.J.; Sattar, N.; Lyall, H.; Nelson, S.M.; Freeman, D.J. Maternal Plasma DHA Levels Increase Prior to 29 Days Post-LH Surge in Women Undergoing Frozen Embryo Transfer: A Prospective, Observational Study of Human Pregnancy. J. Clin. Endocrinol. Metab. 2016, 101, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Zamai, N.; Cortie, C.H.; Jarvie, E.M.; Onyiaodike, C.C.; Alrehaili, A.; Francois, M.; Freeman, D.J.; Meyer, B.J. In pregnancy, ma-ternal HDL is specifically enriched in, and carries the highest proportion of, DHA in plasma. Prostaglandins Leukot. Essent. Fat. Acids 2020, 163, 102209. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.J.; Butt, C.M.; Mohajeri, M.H. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients 2016, 8, 99. [Google Scholar] [CrossRef]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Harris, W.S.; Sands, S.A.; Windsor, S.L.; Ali, H.A.; Stevens, T.L.; Magalski, A.; Porter, C.B.; Borkon, A.M. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: Correlation with erythrocytes and response to supplementation. Circulation 2004, 110, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Bozzatello, P.; De Rosa, M.; Rocca, P.; Bellino, S. Effects of Omega 3 Fatty Acids on Main Dimensions of Psychopathology. Int. J. Mol. Sci. 2020, 21, 6042. [Google Scholar] [CrossRef]
- Goustard-Langelier, B.; Guesnet, P.; Durand, G.; Antoine, J.-M.; Alessandri, J.-M. n−3 and n−6 fatty acid enrichment by dietary fish oil and phospholipid sources in brain cortical areas and nonneural tissues of formula-fed piglets. Lipids 1999, 34, 5–16. [Google Scholar] [CrossRef]
- Healy-Stoffel, M.; Levant, B. N-3 (Omega-3) Fatty Acids: Effects on Brain Dopamine Systems and Potential Role in the Etiology and Treatment of Neuropsychiatric Disorders. CNS Neurol. Disord. Drug Targets 2018, 17, 216–232. [Google Scholar] [CrossRef]
- Meyer, B.J.; Byrne, M.K.; Collier, C.; Parletta, N.; Crawford, D.; Winberg, P.C.; Webster, D.; Chapman, K.; Thomas, G.; Dally, J.; et al. Baseline omega-3 index correlates with aggressive and attention deficit disorder behaviours in adult prisoners. PLoS ONE 2015, 10, e0120220. [Google Scholar]
- Buss, A.H.; Perry, M. The aggression questionnaire. J. Personal. Soc. Psychol. 1992, 63, 452–459. [Google Scholar] [CrossRef]
- Byrne, M.K.; Parletta, N.; Webster, D.G.; Batterham, M.; Meyer, B.J. Adult Attention Deficit Disorder and Aggressive Behaviour: An Exploration of Relationships between Brown Attention-Deficit Disorder Scales and the Aggression Questionnaire. Psychiatry Psychol. Law 2015, 22, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.E. Brown Attention Deficit Disorder Scales for Adolescents and Adults. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=285903 (accessed on 27 February 2022).
- Abecasis, G.R.; Cookson, W.O.C. GOLD—Graphical Overview of Linkage Disequilibrium. Bioinformatics 2000, 16, 182–183. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ma, J.Z.; Payne, T.; Beuten, J.; Dupont, R.T.; Li, M.D. Significant association of DRD1 with nicotine dependence. Qual. Life Res. 2008, 123, 133–140. [Google Scholar] [CrossRef]
- Qadeer, M.I.; Amar, A.; Mann, J.J.; Hasnain, S. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan. PLoS ONE 2017, 12, e0173571. [Google Scholar] [CrossRef]
- Peciña, M.; Mickey, B.J.; Love, T.; Wang, H.; Langenecker, S.; Hodgkinson, C.; Shen, P.-H.; Villafuerte, S.; Hsu, D.; Weisenbach, S.L.; et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex 2013, 49, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Goldman-Rakic, P.S. The Cortical Dopamine System: Role in Memory and Cognition. Adv. Pharmacol. 1998, 42, 707–711. [Google Scholar] [CrossRef]
- Fuster, J.M. The Prefrontal Cortex—An Update: Time Is of the Essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.; Clarke, H.F.; Roberts, A.C. A Focus on the Functions of Area 25. Brain Sci. 2019, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.U.S.; Meli, N.; Blaess, S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front. Neural Circuits 2021, 15, 746582. [Google Scholar] [CrossRef] [PubMed]
- Ariza, M.; Garolera, M.; Jurado, M.A.; Garcia-Garcia, I.; Hernan, I.; Sanchez-Garre, C.; Vernet-Vernet, M.; Sender-Palacios, M.J.; Marques-Iturria, I.; Pueyo, R.; et al. Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: Their interaction with obesity. PLoS ONE 2012, 7, e41482. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Xiao, H.; Sun, H.; Zou, L.; Zhu, L.-Q. Role of Dopamine Receptors in ADHD: A Systematic Meta-analysis. Mol. Neurobiol. 2012, 45, 605–620. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Daly, M.J.; O’Donovan, M. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 2012, 13, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-Q.; Qiao, L.; Xue, X.-D.; Fu, J.-H. Association between ANKK1 (rs1800497) polymorphism of DRD2 gene and attention deficit hyperactivity disorder: A meta-analysis. Neurosci. Lett. 2015, 590, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, M. P-Impulsive Sensation Seeking and Its Behavioral, Psychophysiological and Biochemical Correlates. Neuropsychobiology 1993, 28, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Rogeness, G.A.; Hernandez, J.M.; Macedo, C.A.; Mitchell, E.L. Biochemical differences in children with conduct disorder so-cialized and undersocialized. Am. J. Psychiatry 1982, 139, 307–311. [Google Scholar]
- Progovac, L.; Benítez-Burraco, A. From Physical Aggression to Verbal Behavior: Language Evolution and Self-Domestication Feedback Loop. Front. Psychol. 2019, 10, 2807. [Google Scholar] [CrossRef] [Green Version]
- Zmigrod, L.; Robbins, T.W. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J. Cogn. Neurosci. 2021, 34, 153–179. [Google Scholar] [CrossRef]
- Colelli, V.; Fiorenza, M.T.; Conversi, D.; Orsini, C.; Cabib, S. Strain-specific proportion of the two isoforms of the dopamine D2 receptor in the mouse striatum: Associated neural and behavioral phenotypes. Genes Brain Behav. 2010, 9, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Giros, B.; Sokoloff, P.; Martres, M.P.; Riou, J.-F.; Emorine, L.J.; Schwartz, J.-C. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 1989, 342, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, A.; Fazio, L.; Caforio, G.; Blasi, G.; Rampino, A.; Romano, R.; Di Giorgio, A.; Taurisano, P.; Papp, A.; Pinsonneault, J.; et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 2009, 132 Pt 2, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Kuriu, T.; Matsumura, K.; Nagayasu, K.; Tsurusaki, Y.; Miyake, N.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Fujiwara, M.; et al. Multiple alterations in glu-tamatergic transmission and dopamine D2 receptor splicing in induced pluripotent stem cell-derived neurons from patients with familial schizophrenia. Transl. Psychiatry 2021, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Kitajka, K.; Sinclair, A.J.; Weisinger, R.S.; Weisinger, H.S.; Mathai, M.; Jayasooriya, A.P.; Halver, J.E.; Puskás, L.G. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 10931–10936. [Google Scholar] [CrossRef] [Green Version]
- Szántó, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.A.; Nagy, L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ. 2004, 11 (Suppl. 2), S126–S143. [Google Scholar] [CrossRef] [Green Version]
- Yurko-Mauro, K.; Alexander, D.D.; Van Elswyk, M.E. Docosahexaenoic Acid and Adult Memory: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0120391. [Google Scholar] [CrossRef] [Green Version]
- Djuricic, I.; Calder, P. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Francis, M.; Li, C.; Sun, Y.; Zhou, J.; Li, X.; Brenna, J.T.; Ye, K. Genome-wide association study of fish oil supplementation on lipid traits in 81,246 individuals reveals new gene-diet interaction loci. PLoS Genet. 2021, 17, e1009431. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Minihane, A.-M. The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults. Proc. Nutr. Soc. 2017, 76, 64–75. [Google Scholar] [CrossRef]
- Minihane, A.M. Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes. Nutrients 2016, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serini, S.; Calviello, G. Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020, 12, 1363. [Google Scholar] [CrossRef] [PubMed]
Genes | Chromosomic Location | SNPs | Alleles | MAF 1, (%) | HWE, p |
---|---|---|---|---|---|
DRD1 | 5 (3′UTR Variant) | rs686 * | G > A | 29.3 | 0.66 |
DRD2 | 11 (Intron Variant) | rs4648317 | G > A | 89.6 | 0.02 |
DRD2 | 11 (Intron Variant) | rs4274224 | G > A | 54.1 | 0.42 |
DRD2 | 11 (Intron Variant) | rs4581480 | C > T | 87 | 0.03 |
DBH | 9 (3′UTR Variant) | rs1611115 * | C > T | 77.7 | 0.76 |
MAO B | X (Intron Variant) | rs1799836 | T > C | 53.4 | <0.001 |
MAO A | X (Downstream variant 3′) | rs660925 | T > C | 60.4 | <0.001 |
COMT | 22 (Missense Variant in exon 4 Val158Met) | rs4680 * | G > A | 86.2 | <0.001 |
DRD1 (rs686) | AA (n = 65) | AG (n = 51) | GG (n = 12) | p |
---|---|---|---|---|
Omega-3 Index | 5.2 (4.3, 6.0) | 5.4 (4.1, 6.7) | 5.3 (3.9, 7.0) | 0.970 |
PhysAgg | 21.3 (13.0, 26.0) | 21.9 (15.0, 29.0) | 24.1 (18.2, 27.5) | 0.572 |
VerbAgg | 12.9 (9.0, 15.0) | 13.3 (11.0, 17.0) | 13.6 (11.0, 16.7) | 0.875 |
Anger | 16.6 (11.0, 20.0) | 17.2 (13.0, 23.0) | 17.6 (12.2, 20.5) | 0.866 |
Hostility | 19.5 (14.0, 24.0) | 18.5 (13.0, 23.0) | 21.0 (12.5, 26.5) | 0.620 |
IndirAgg | 13.7 (9.0, 17.0) | 13.6 (10.0, 17.0) | 15.7 (13.2, 18.7) | 0.303 |
Total ADD | 47.5 (23.0, 59.0) | 42.6 (18.0, 65.0) | 52.5 (24.0, 66.2) | 0.631 |
Activation | 10.9 (6.0, 16.0) | 9.2 (3.0, 14.0) | 13.0 (6.2, 16.0) | 0.212 |
Attention | 12.2 (4.0, 17.0) | 11.6 (5.0, 18.0) | 13.1 (7.0, 15.7) | 0.873 |
Effort | 8.9 (4.0, 11.0) | 7.3 (3.0, 11.0) | 10.1 (4.0, 13.0) | 0.432 |
Affect | 7.9 (4.0, 11.0) | 7.5 (3.0, 12.0) | 8.2 (2.0, 12.0) | 0.904 |
Memory | 7.3 (3.0, 11.0) | 6.6 (2.0, 11.0) | 8.1 (4.0, 11.5) | 0.731 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, F.; Byrne, M.K.; Batterham, M.; Grant, L.; Meyer, B.J. Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners. Nutrients 2022, 14, 1379. https://doi.org/10.3390/nu14071379
Fernandez F, Byrne MK, Batterham M, Grant L, Meyer BJ. Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners. Nutrients. 2022; 14(7):1379. https://doi.org/10.3390/nu14071379
Chicago/Turabian StyleFernandez, Francesca, Mitchell K. Byrne, Marijka Batterham, Luke Grant, and Barbara J. Meyer. 2022. "Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners" Nutrients 14, no. 7: 1379. https://doi.org/10.3390/nu14071379
APA StyleFernandez, F., Byrne, M. K., Batterham, M., Grant, L., & Meyer, B. J. (2022). Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners. Nutrients, 14(7), 1379. https://doi.org/10.3390/nu14071379