MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study
Abstract
:1. Introduction
2. Data Source and Survey Population
2.1. General Information Collection and Dietary Nutrients Assessment
2.2. Dietary Pattern Assessment
2.3. Anthropometric Measurement and Biomarkers Test
2.4. Metabolic Syndrome Diagnosis
2.5. Covariant Index
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcotte-Chenard, A.; Deshayes, T.A.; Ghachem, A.; Brochu, M. Prevalence of the metabolic syndrome between 1999 and 2014 in the United States adult population and the impact of the 2007–2008 recession: An NHANES study. Appl. Physiol. Nutr. Metab. 2019, 44, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhang, M.; Zhang, X.; Xia, Y.; Shen, T.; Zhao, Z.; Chen, Z.; Huang, Z.; Wang, L. Study of epidemiological characteristics of metabolic syndrome and influencing factors in elderly people in China. China J. Epidemiol. 2019, 40, 284–289. [Google Scholar]
- Spahis, S.; Borys, J.M.; Levy, E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid. Redox Signal 2017, 26, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Hailili, G.; Chen, Z.; Tian, T.; Fu, W.H.; Pei, H.L.; Mahan, Y.; Luo, T.; Alimu, D.; Wang, L.; Zhang, G.Z.; et al. Dietary patterns and their associations with the metabolic syndrome and predicted 10-year risk of CVD in northwest Chinese adults. Br. J. Nutr. 2021, 126, 913–922. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, H.; Yang, R.; Li, Q.; Dang, S.; Wang, Y. Prevalence and determinants of metabolic syndrome among adults in a rural area of Northwest China. PLoS ONE 2014, 9, e91578. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; De Koning, L.; Delgado-Lista, J.; Diaz-Lopez, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Hassani Zadeh, S.; Salehi-Abargouei, A.; Mirzaei, M.; Nadjarzadeh, A.; Hosseinzadeh, M. The association between dietary approaches to stop hypertension diet and mediterranean diet with metabolic syndrome in a large sample of Iranian adults: YaHS and TAMYZ Studies. Food Sci. Nutr. 2021, 9, 3932–3941. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Panagiotakos, D.B.; Chrysohoou, C.; Georgousopoulou, E.; Pitaraki, E.; Puddu, P.E.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C.; Group, A.S. Metabolic syndrome, adherence to the Mediterranean diet and 10-year cardiovascular disease incidence: The ATTICA study. Atherosclerosis 2016, 246, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Farhadnejad, H.; Emamat, H.; Teymoori, F.; Tangestani, H.; Hekmatdoost, A.; Mirmiran, P. Role of Dietary Approaches to Stop Hypertension Diet in Risk of Metabolic Syndrome: Evidence from Observational and Interventional Studies. Int. J. Prev. Med. 2021, 12, PMC8218795. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Kim, J.; Yu, A.; Choi, B.Y.; Nam, J.H.; Kim, M.K.; Oh, D.H.; Yang, Y.J. Dietary Patterns Derived by Cluster Analysis are Associated with Cognitive Function among Korean Older Adults. Nutrients 2015, 7, 4154–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, G.; Zhao, R.; Huang, D.; Tao, L. Temporal trends in the prevalence of metabolic syndrome among middle-aged and elderly adults from 2011 to 2015 in China: The China health and retirement longitudinal study (CHARLS). BMC Public Health 2021, 21, 1045. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Song, F.; Wang, X.; Wang, L.; Wang, D.; Yin, X.; Cao, S.; Gong, Y.; Yue, W.; Yan, F.; et al. Prevalence of metabolic syndrome among middle-aged and elderly adults in China: Current status and temporal trends. Ann. Med. 2018, 50, 345–353. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Lun, Z.; Zhang, H.; Sun, Z.; Kanu, J.S.; Qiu, S.; Cheng, Y.; Liu, Y. Prevalence of metabolic syndrome in Mainland China: A meta-analysis of published studies. BMC Public Health 2016, 16, 296. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Shi, Z.; Hu, X.; Wu, M.; Guo, Z.; Hussain, A. Prevalence of metabolic syndrome and factors associated with its components in Chinese adults. Metabolism 2009, 58, 1102–1108. [Google Scholar] [CrossRef]
- Ying, X.; Yang, S.; Li, S.; Su, M.; Wang, N.; Chen, Y.; Jiang, Q.; Fu, C. Prevalences of metabolic syndrome and its sex-specific association with socioeconomic status in rural China: A cross-sectional study. BMC Public Health 2021, 21, 2033. [Google Scholar] [CrossRef]
- Tan, E.; Jing, W.; Rui, T.; Hong, L.; Hairong, X.; Jiao, L.; Haiying, W.; Li, Z. Dietary Structure Analysis and Dietary Nutrition Recommendations in Different Regions of China. Food Nutr. China 2020, 26, 82–86. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lobene, A.J.; Wang, Y.; Hill Gallant, K.M. The DASH Diet and Cardiometabolic Health and Chronic Kidney Disease: A Narrative Review of the Evidence in East Asian Countries. Nutrients 2021, 13, 984. [Google Scholar] [CrossRef]
- Mumme, K.D.; Conlon, C.; Von Hurst, P.R.; Jones, B.; De Seymour, J.V.; Stonehouse, W.; Heath, A.L.; Coad, J.; Haskell-Ramsay, C.F.; Mugridge, O.; et al. Associations between dietary patterns and the metabolic syndrome in older adults in New Zealand: The REACH study. Br. J. Nutr. 2021, 128, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Asadi, Z.; Moghbeli, M.; Khayyatzadeh, S.S.; Mohammadi Bajgiran, M.; Ghaffarian Zirak, R.; Zare-Feyzabadi, R.; Eidi, M.; Taheri Bonakdar, M.; Davari, H.; Mahmoudi, A.A.; et al. A Positive Association between a Western Dietary Pattern and High LDL-C among Iranian Population. J. Res. Health Sci. 2020, 20, e00485. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Bloomgarden, Z.T.; Ning, G. The Jiangnan diet, a healthy diet pattern for Chinese. J. Diabetes 2020, 12, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Cho, M.S. Geography of Food Consumption Patterns between South and North China. Foods 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; He, Y.; Li, Y.; Luan, D.; Yang, X.; Zhai, F.; Ma, G. Dietary patterns and hypertension among Chinese adults: A nationally representative cross-sectional study. BMC Public Health 2011, 11, 925. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Z.; Wang, H.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Jia, X.; Huang, F.; Zhai, F.; et al. Association between dietary patterns and blood lipid profiles among Chinese women. Public Health Nutr. 2016, 19, 3361–3368. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Taylor, A.W.; Hu, G.; Gill, T.; Wittert, G.A. Rice intake, weight change and risk of the metabolic syndrome development among Chinese adults: The Jiangsu Nutrition Study (JIN). Asia Pac. J. Clin. Nutr. 2012, 21, 35–43. [Google Scholar]
- Tian, Y.; Su, L.; Wang, J.; Duan, X.; Jiang, X. Fruit and vegetable consumption and risk of the metabolic syndrome: A meta-analysis. Public Health Nutr. 2018, 21, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Jannasch, F.; Dietrich, S.; Bishop, T.R.P.; Pearce, M.; Fanidi, A.; O’Donoghue, G.; O’Gorman, D.; Marques-Vidal, P.; Vollenweider, P.; Bes-Rastrollo, M.; et al. Associations between exploratory dietary patterns and incident type 2 diabetes: A federated meta-analysis of individual participant data from 25 cohort studies. Eur. J. Nutr. 2022, 61, 3649–3667. [Google Scholar] [CrossRef] [PubMed]
- Fretts, A.M.; Follis, J.L.; Nettleton, J.A.; Lemaitre, R.N.; Ngwa, J.S.; Wojczynski, M.K.; Kalafati, I.P.; Varga, T.V.; Frazier-Wood, A.C.; Houston, D.K.; et al. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: A meta-analysis of 50,345 Caucasians. Am. J. Clin. Nutr. 2015, 102, 1266–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; De Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, P. Metabolic Syndrome-Role of Dietary Fat Type and Quantity. Nutrients 2019, 11, 1438. [Google Scholar] [CrossRef] [Green Version]
- Ushula, T.W.; Mamun, A.; Darssan, D.; Wang, W.Y.S.; Williams, G.M.; Whiting, S.J.; Najman, J.M. Dietary patterns and the risks of metabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study. Clin. Nutr. 2022, 41, 1523–1531. [Google Scholar] [CrossRef]
- Shab-Bidar, S.; Golzarand, M.; Hajimohammadi, M.; Mansouri, S. A posteriori dietary patterns and metabolic syndrome in adults: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Kim, J.; Kim, J. Gender Differences in the Association between Dietary Pattern and the Incidence of Hypertension in Middle-Aged and Older Adults. Nutrients 2018, 10, 252. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Shivappa, N.; Hebert, J.R.; Page, A.J.; Gill, T.K.; Melaku, Y.A. Association between Dietary Inflammatory Index, Dietary Patterns, Plant-Based Dietary Index and the Risk of Obesity. Nutrients 2021, 13, 1536. [Google Scholar] [CrossRef] [PubMed]
- Tou, J.C.; Gucciardi, E.; Young, I. Lipid-modifying effects of lean fish and fish-derived protein consumption in humans: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2021, 80, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Torris, C.; Molin, M.; Cvancarova Smastuen, M. Fish consumption and its possible preventive role on the development and prevalence of metabolic syndrome—a systematic review. Diabetol. Metab. Syndr. 2014, 6, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torris, C.; Smastuen, M.C.; Molin, M. Nutrients in Fish and Possible Associations with Cardiovascular Disease Risk Factors in Metabolic Syndrome. Nutrients 2018, 10, 952. [Google Scholar] [CrossRef]
Urban Area | Rural Area | Total | ||||
---|---|---|---|---|---|---|
Males (N = 7889) | Females (N = 9012) | Males (N = 11,824) | Females (N = 12,184) | Males (N = 19,713) | Females (N = 21,196) | |
Age (mean, std, y) | 61.1 (9.7) | 59.9 (9.3) * | 60.0 (9.3) | 58.3 (8.9) * | 60.4 (9.5) | 59.0 (9.1) * |
Age group (n, %) | ||||||
45–59 y | 3673 (46.6) | 4675 (51.9) * | 6078 (51.4) | 7167(58.8) * | 9751 (49.5) | 11,842(55.9) * |
60–74 y | 3486 (44.2) | 3727 (41.4) | 4931 (41.7) | 4484 (36.8) | 8417 (42.7) | 8211 (38.7) |
75 y | 730 (9.3) | 610 (6.8) | 815 (6.9) | 533 (4.4) | 1545 (7.8) | 1143 (5.4) |
Han Nationality (n, %) | 7467 (94.7) | 8506 (94.4) | 10,451 (88.4) | 10,806 (88.7) | 17,918 (90.9) | 19,312 (91.1) |
Education level (n, %) | ||||||
Primary school or below | 2678 (33.9) | 4311 (47.8) * | 6600 (55.8) | 9449 (77.6) * | 9278 (47.1) | 13,760 (64.9) * |
Junior high school | 2824 (35.8) | 2612 (29.0) | 3793 (32.1) | 2195(18.0) | 6617 (33.6) | 4807 (22.7) |
Senior high school or above | 2387 (30.3) | 2089 (23.2) | 1431 (12.1) | 540(4.4) | 3818 (19.4) | 2629 (12.4) |
Marital status (n, %) | ||||||
Having a partner | 7467 (94.7) | 8506 (94.4) * | 10,451 (88.4) | 10,806 (88.7) * | 17,918 (90.9) | 19,312 (91.1) * |
Other status ^ | 422 (5.3) | 506 (5.6) | 1373 (11.6) | 1378 (11.3) | 1795 (9.1) | 1884 (8.9) |
Yearly average income & (n, %) | ||||||
<5000 Yuan RMB | 41 (0.5) | 37 (0.4) | 103 (0.9) | 85 (0.7) | 144 (0.7) | 122 (0.6) |
5000–9999 Yuan RMB | 75 (1.0) | 89 (1.0) | 135 (1.1) | 125 (1.0) | 210 (1.1) | 214 (1.0) |
≥ 10,000 Yuan RMB | 4096 (51.9) | 4809 (53.4) | 1596 (13.5) | 1745 (14.3) | 5692 (28.9) | 6554 (30.9) |
No response | 3677 (46.6) | 4077 (45.2) | 9990 (84.5) | 10,229 (84.0) | 13,667 (69.3) | 14,306 (67.5) |
Family history of chronic diseases (n, %) | 3014 (38.2) | 3736 (41.5) * | 3248 (27.5) | 3499 (28.7) * | 6262 (31.8) | 7235 (34.1) * |
Smoking && | 3828 (48.5) | 253 (2.8) * | 6485 (54.8) | 463 (3.8) * | 10,313 (52.3) | 716 (3.4) * |
Drinking ## | 2769 (35.1) | 496 (5.5) * | 4433 (37.5) | 618 (5.1) * | 7202 (36.5) | 1114 (5.3) * |
Adequate physical activity # (n, %) | 4753 (60.2) | 6547 (72.6) * | 8286 (70.1) | 9290 (76.2) * | 13,039 (66.1) | 15,837 (74.7) * |
BMI (mean, std, kg/m2) | 24.7 (3.1) | 25.0 (3.2) * | 23.7 (3.1) | 24.4 (3.3) * | 24.1 (3.1) | 24.7 (3.3) * |
Underweight (n, %) | 135 (1.7) | 112 (1.2) * | 322 (2.7) | 219 (1.8) * | 457 (2.3) | 331 (1.6) * |
Normal weight (n, %) | 3185 (40.4) | 3493 (38.8) | 6343 (53.6) | 5583 (45.8) | 9528 (48.3) | 9076 (42.8) |
Overweight and Obesity (n, %) | 4569 (57.9) | 5407 (60.0) | 5159 (43.6) | 6382 (52.4) | 9728 (49.4) | 11,789 (55.6) |
Urban Area | Rural Area | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Males | Females | Subtotal | Males | Females | Subtotal | Males | Females | Total | |
WC (mean, 95%CI, cm) | 86.8 (86.3,87.3) | 83.4 (82.9, 83.9) | 85.0 (84.6, 85.5) | 83.1 (82.5, 83.6) | 81.9 (81.3, 82.5) | 82.5 (82.0, 83.0) | 84.8 (84.2,85.3) | 82.6 (82.2, 83.0) | 83.7 (83.2, 84.1) |
SBP (mean, 95%CI, mmHg) | 137.1 (135.9, 138.3) | 138.1 (136.8, 139.4) | 137.6 (136.5, 138.8) | 138.5 (137.7, 139.4) | 140.5 (139.6, 141.4) | 139.5 (138.7, 140.3) | 137.9 (137.2, 138.7) | 139.4 (138.5, 140.2) | 138.6 (137.9, 139.4) |
DBP (mean, 95%CI, mmHg) | 81.7 (81.0, 82.4) | 78.0 (77.4, 78.7) | 79.8 (79.2, 80.4) | 81.8 (81.1, 82.4) | 79.5 (79.0, 80.1) | 80.7 (80.2, 81.2) | 81.7 (81.2, 82.3) | 78.8 (78.4, 79.3) | 80.3 (79.9, 80.7) |
TG (mean, 95%CI, mmol/L) | 1.55 (1.51, 1.59) | 1.56 (1.51, 1.60) | 1.55 (1.52, 1.58) | 1.43 (1.40, 1.47) | 1.48 (1.44, 1.51) | 1.46 (1.42, 1.49) | 1.48 (1.45, 1.52) | 1.52 (1.49, 1.55) | 1.50 (1.47, 1.53) |
HDL-C (mean, 95%CI, mmol/L) | 1.20 (1.18, 1.23) | 1.30 (1.28, 1.31) | 1.25 (1.24, 1.27) | 1.28 (1.26, 1.30) | 1.32 (1.31, 1.34) | 1.30 (1.28, 1.32) | 1.25 (1.23, 1.26) | 1.31 (1.30, 1.32) | 1.28 (1.26, 1.29) |
FBG (mean, 95%CI, mmol/L) | 5.6 (5.52, 5.68) | 5.57 (5.49, 5.65) | 5.59 (5.51, 5.66) | 5.45 (5.39, 5.52) | 5.41 (5.35, 5.47) | 5.43 (5.38, 5.49) | 5.52 (5.46, 5.58) | 5.49 (5.43, 5.54) | 5.50 (5.45, 5.56) |
Central obesity (%, 95%CI) | 37.1 (34.6, 39.5) | 64.7 (62.2, 67.4) | 51.3 (49.1, 53.5) | 24.3 (22.2, 26.4) | 57.1 (54.3, 60.0) | 40.2 (38.0, 42.5) | 30.1 (28.0, 32.1) | 60.8 (58.6, 62.9) | 45.4 (43.4, 47.4) |
Elevated TG (%, 95%CI) | 31.8 (29.8, 33.8) | 32.0 (29.9, 34.1) | 31.9 (30.3, 33.5) | 26.5 (25.0, 28.1) | 28.2 (26.3, 30.0) | 27.3 (25.8, 28.8) | 28.9 (27.6, 30.2) | 30.0 (28.5, 31.5) | 29.4 (28.2, 30.7) |
Decreased HDL-C (%, 95%CI) | 30.6 (28.0, 33.2) | 55.1 (52.8, 57.4) | 43.2 (40.8, 45.5) | 23.1 (21.2, 24.9) | 50.4 (47.9, 52.9) | 36.4 (34.4, 38.3) | 26.5 (24.7, 28.2) | 52.7 (50.8, 54.6) | 39.5 (37.8, 41.3) |
Elevated BP (%, 95%CI) | 68.4 (65.5, 71.3) | 68.0 (65.9, 70.2) | 68.2 (66.0, 70.5) | 68.8 (66.7, 71.0) | 68.3 (66.4, 70.2) | 68.6 (66.8, 70.3) | 68.6 (66.8, 70.4) | 68.2 (66.6, 69.7) | 68.4 (66.9, 69.9) |
Elevated glucose (%, 95%CI) | 37.1 (34.0, 40.2) | 35.6 (32.5, 38.7) | 36.3 (33.5, 39.2) | 32.0 (29.6, 34.4) | 29.2 (27.0, 31.4) | 30.7 (28.6, 32.8) | 34.3 (32.2, 36.4) | 32.3 (30.2, 34.4) | 33.3 (31.4, 35.3) |
MetS (%, 95%CI) | 34.8 (32.5, 37.2) | 51.4 (48.6, 54.2) | 43.4 (41.1, 45.6) | 25.1 (23.6, 26.6) | 43.9 (41.8, 45.9) | 34.2 (32.6, 35.8) | 29.5 (27.9, 31.2) | 47.5 (45.5, 49.5) | 37.1 (35.4, 38.8) |
1 items (%, 95%CI) | 25.1 (23.1, 27.0) | 16.9 (15.4, 18.4) | 20.9 (19.4, 22.3) | 33.0 (31.3, 34.6) | 21.1 (19.6, 22.6) | 27.2 (25.9, 28.4) | 29.4 (27.9, 30.9) | 19.1 (17.9, 20.2) | 24.2 (23.1, 25.4) |
2 items (%, 95%CI) | 28.0 (26.3, 29.7) | 24.6 (22.9, 26.3) | 26.2 (25.2, 27.3) | 27.2 (26.0, 28.4) | 26.8 (25.4, 28.1) | 27.0 (26.0, 27.9) | 27.6 (26.5, 28.6) | 25.7 (24.6, 26.8) | 26.6 (25.9, 27.3) |
3 items (%, 95%CI) | 19.8 (18.1, 21.5) | 24.8 (23.4, 26.3) | 22.4 (21.1, 23.6) | 14.9 (13.8, 16.0) | 22.5 (21.1, 23.8) | 18.6 (17.7, 19.5) | 17.1 (16.0, 18.2) | 23.6 (22.6, 24.6) | 20.4 (19.5, 21.2) |
4 items (%, 95%CI) | 10.8 (9.6, 11.9) | 18.0 (16.6, 19.5) | 14.5 (13.5, 15.5) | 8.3 (7.4, 9.2) | 15.8 (14.6, 17.0) | 11.9 (11.0, 12.8) | 9.4 (8.6, 10.2) | 16.9 (15.9, 17.8) | 13.1 (12.4, 13.8) |
5 items (%, 95%CI) | 4.3 (3.5, 5.1) | 8.6 (7.2, 10.0) | 6.5 (5.5, 7.4) | 1.9 (1.5, 2.4) | 5.6 (4.9, 6.3) | 3.7 (3.2, 4.2) | 3.0 (2.5, 3.5) | 7.0 (6.2, 7.9) | 5.0 (4.4, 5.6) |
Diversity Pattern | Northern Pattern | Southern Pattern | |
---|---|---|---|
N (%) | 4022 (9.8) | 19,288 (47.2) | 17,599 (43.0) |
Rice and products | 78.6 (71.2, 86.0) | 46.7 (42.0, 51.5) | 192.1 (180.0, 204.2) |
Wheat and products | 130.1 (118.9, 141.3) | 195.3 (182.6, 208.0) | 41.6 (37.7, 45.4) |
Other cereals | 16.5 (14.2, 18.9) | 27.7 (22.7, 32.6) | 2.9 (2.3, 3.4) |
Tubers | 51.9 (47.6,56.3) | 62.8 (54.6, 71.0) | 34.5 (30.4, 38.6) |
Dry legume | 5.2 (4.1, 6.2) | 3.5 (2.8, 4.2) | 3.8 (2.9, 4.7) |
Legume products | 11.9 (10.5, 13.3) | 7.3 (6.4, 8.2) | 10.9 (9.7, 12.0) |
Dark colored vegetables | 112.7 (102.8, 122.6) | 55.7 (51.5, 59.9) | 130.5 (120.2, 140.8) |
Light colored vegetables | 154.3 (141.3, 167.2) | 115.2 (107.0, 123.3) | 149.7 (138.3, 161.2) |
Salted vegetables | 2.8 (2.2, 3.4) | 2.5 (2.0, 3.0) | 5.9 (4.7, 7.0) |
Fungi and algae | 24.1 (20.6, 27.5) | 9.0 (7.8, 10.2) | 15.0 (12.6, 17.4) |
Fresh fruits | 171.7 (160.7, 182.7) | 21.3 (18.2, 24.5) | 21.3 (18.4, 24.1) |
Nuts | 14.8 (13.3, 16.3) | 1.6 (1.3, 1.8) | 2.8 (2.4, 3.1) |
Pork | 49.7 (44.3, 55.1) | 21.6 (19.3, 23.9) | 81.1 (76.0, 86.2) |
Other red meats | 21.0 (16.1, 26.0) | 12.8 (9.9, 15.7) | 5.4 (4.4, 6.4) |
Red meat offal | 2.6 (1.5, 3.6) | 1.5 (1.2, 1.8) | 3.5 (2.8, 4.1) |
Poultry | 14.4 (11.8, 17.0) | 4.2 (3.5, 4.9) | 17.6 (15.2, 20.0) |
Milk and dairy products | 123.2 (110.4, 136.0) | 16.1 (12.4, 19.7) | 4.9 (3.5, 6.3) |
Eggs | 40.1 (36.9, 43.2) | 19.1 (17.4, 20.9) | 14.9 (13.5, 16.3) |
Aquatic products | 30.6 (23.7, 37.5) | 6.0 (4.9, 7.1) | 38.2 (32.3, 44.1) |
Vegetable oil | 34.3 (32.4, 36.3) | 36.3 (34.4, 38.2) | 36.4 (33.9, 38.8) |
Animal oil | 1.3 (0.7, 2.0) | 1.9 (1.2, 2.6) | 7.9 (6.0, 9.9) |
Cakes and dessert | 13.9 (11.7, 16.2) | 7.8 (4.0, 11.5) | 3.7 (2.4, 5.0) |
Sugar and starch | 9.5 (7.9, 11.1) | 8.8 (7.3, 10.4) | 4.5 (3.6, 5.4) |
Salt | 7.9 (7.3, 8.5) | 9.6 (9.1, 10.0) | 9.1 (8.7, 9.4) |
Diversity Pattern | Northern Pattern | Southern Pattern | |
---|---|---|---|
Daily Energy Intake (kcal/day) | 1953.3 (1905.3, 2001.4) | 1649.9 (1608.5, 1691.3) | 1853.6 (1808.4, 1898.9) |
Carbohydrate (g/day) | 245.9 (238.6, 253.1) | 233.9 (225.2, 242.6) | 221.5 (213.2, 229.9) |
Carbohydrate E% | 50.4 (50.1, 52.0) | 56.7 (56.0, 58.1) | 48.5 (47.5, 49.5) |
Protein (g/day) | 67.3 (65.0, 69.6) | 46.5 (45.1, 48.0) | 57.1 (55.2, 59.0) |
Prontein E% | 13.7 (13.3, 14.2) | 11.3 (11.1, 11.6) | 12.5 (12.1, 12.8) |
Fat (g/day) | 81.8 (79.0, 84.7) | 61.9 (59.8, 64.0) | 83.1 (80.7, 85.5) |
Fat E% | 37.1 (36.3, 37.9) | 33.8 (32.4, 34.5) | 39.9 (38.9, 40.9) |
SFA (g/day) | 17.2 (16.4, 17.9) | 11.5 (11.0, 12.1) | 18.7 (17.7, 19.6) |
MUFA (g/day) | 26.8 (25.5, 28.2) | 21.7 (20.4, 23.1) | 32.0 (30.7, 33.3) |
PUFA (g/day) | 24.4 (23.3, 25.5) | 19.9 (18.8, 21.1) | 19.7 (18.8, 20.7) |
SFA E% | 7.8 (7.6, 8.1) | 6.3 (6.0, 6.5) | 8.9 (8.6, 9.3) |
MUFA E% | 12.2 (11.7, 12.6) | 11.7 (11.1, 12.4) | 15.4 (14.8, 16.0) |
PUFA E% | 11.2 (10.7, 11.6) | 10.8 (10.2, 11.5) | 9.5 (0.1, 10.0) |
Dietary fiber (g/day) | 13.4 (12.9, 13.9) | 9.4 (9.0, 9.7) | 8.7 (8.3, 9.0) |
Cholesterol (mg/day) | 200.2 (178.4, 221.9) | 74.0 (66.0, 81.9) | 182.3 (169.8, 194.7) |
Thiamin (mg/day) | 0.88 (0.85, 0.91) | 0.71 (0.68, 0.74) | 0.73 (0.71, 0.76) |
Riboflavin (mg/day) | 0.96 (0.92, 1.00) | 0.54 (0.52, 0.56) | 0.69 (0.66, 0.71) |
Vitamin A (μg RE/day) | 567.6 (534.2, 601.1) | 272.4 (252.3, 292.4) | 467.6 (440.5, 494.7) |
Vitamin C (mg/day) | 109.6 (101.0, 118.1) | 59.4 (56.5, 62.3) | 84.2 (80.3, 88.0) |
Total α-vitamin E (mg/day) | 11.8 (10.9, 12.6) | 7.8 (7.2, 8.3) | 8.3 (7.9, 8.7) |
Calcium (mg/day) | 519.3 (493.3, 545.3) | 270.1 (261.0, 279.3) | 347.1 (330.9, 363.2) |
Copper (mg/day) | 2.2 (2.0, 2.3) | 1.6 (1.3, 1.8) | 1.5 (1.5, 1.6) |
Iron (mg/day) | 22.2 (21.5, 23.0) | 17.6 (16.9, 18.3) | 19.4 (18.7, 20.1) |
Iodine (μg/day) | 8.3 (5.9, 10.6) | 7.0 (5.6, 8.5) | 5.9 (5.1, 6.8 ) |
Potassium (mg/day) | 2023.0 (1955.8, 2090.2) | 1274.9 (1233.5, 1316.3) | 1435.4 (1393.0, 1477.8) |
Magnesium (mg/day) | 305.9 (296.8, 314.9) | 233.7 (225.9, 241.6) | 234.3 (227.4, 241.3) |
Manganese (mg/day) | 5.1 (5.0, 5.3) | 4.5 (4.3, 4.6) | 5.0 (4.8, 5.1) |
Sodium (mg/day) | 6583.0 (6200.5, 6965.4) | 7509.5 (7190.0, 7829.0) | 7231.7 (6968.8, 7494.6) |
Phosphate (mg/day) | 1026.1 (991.6, 1060.5) | 734.8 (711.3, 758.3) | 806.0 (785.4, 826.5) |
Selenium (μg/day) | 48.8 (46.4, 51.1) | 34.8 (33.4, 36.2) | 38.0 (35.6, 40.5) |
Zinc (mg/day) | 10.7 (10.3, 11.1) | 7.7 (7.2, 8.1) | 9.9 (9.6, 10.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Zhang, X.; Li, Y.; Man, Q.; Jia, S.; Zhang, J.; Ding, G. MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study. Nutrients 2022, 14, 5301. https://doi.org/10.3390/nu14245301
Song P, Zhang X, Li Y, Man Q, Jia S, Zhang J, Ding G. MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study. Nutrients. 2022; 14(24):5301. https://doi.org/10.3390/nu14245301
Chicago/Turabian StyleSong, Pengkun, Xiaona Zhang, Yuqian Li, Qingqing Man, Shanshan Jia, Jian Zhang, and Gangqiang Ding. 2022. "MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study" Nutrients 14, no. 24: 5301. https://doi.org/10.3390/nu14245301
APA StyleSong, P., Zhang, X., Li, Y., Man, Q., Jia, S., Zhang, J., & Ding, G. (2022). MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study. Nutrients, 14(24), 5301. https://doi.org/10.3390/nu14245301