The Effect of Nighttime Snacking on Cognitive Function in Older Adults: Evidence from Observational and Experimental Studies
Abstract
:1. Introduction
2. Study 1: Observational Study—Evidence from Dietary Habits
2.1. Materials and Methods
2.1.1. Data and Samples
2.1.2. Nighttime Snacking
2.1.3. Cognitive Function: Objective and Subjective Measures
2.1.4. Covariates
2.1.5. Statistical Analyses
2.2. Results
2.2.1. Cognitive Differences between the Groups
2.2.2. The Associations between Nighttime Snacking and Cognitive Function
3. Study 2: Experimental Study—Evidence from Acute Ingestion
3.1. Materials and Methods
3.1.1. Participants
3.1.2. Experimental Design
3.1.3. Experimental Procedure
3.1.4. Cognitive Tasks
3.1.5. Statistical Analysis
3.2. Results
3.2.1. Immediate Recall
3.2.2. Short-Term Delayed Recall
3.2.3. Long-Term Delayed Recall
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smyth, A.; Dehghan, M.; O’Donnell, M.; Anderson, C.; Teo, K.; Gao, P.; Sleight, P.; Dagenais, G.; Probstfield, J.L.; Mente, A. Healthy eating and reduced risk of cognitive decline: A cohort from 40 countries. Neurology 2015, 84, 2258–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Cao, Y.; Ascherio, A.; Okereke, O.I.; Zong, G.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-term diet quality and its change in relation to late-life subjective cognitive decline. Am. J. Clin. Nutr. 2022, 115, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Lee, M.S.; Chiou, J.M.; Chen, T.F.; Chen, Y.C.; Chen, J.H. Association of diet quality and vegetable variety with the risk of cognitive decline in Chinese older adults. Nutrients 2019, 11, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, I.M. Nutritional disorders in the elderly. Med. Clin. 2006, 90, 887–907. [Google Scholar] [CrossRef]
- Engelheart, S.; Brummer, R.J.; Forslund, H.B. Meal patterns in relation to energy and protein intake in older adults in home health care. Clin. Nutr. ESPEN 2020, 35, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Viñas, B.R.; Barba, L.R.; Ngo, J.; Gurinovic, M.; Novakovic, R.; Cavelaars, A.; De Groot, L.C.; van’t Veer, P.; Matthys, C.; Majem, L.S. Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 2011, 59, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Zizza, C.A.; Tayie, F.A.; Lino, M. Benefits of snacking in older Americans. J. Am. Diet. Assoc. 2007, 107, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Zizza, C.A. Healthy snacking recommendations: One size does not fit all. Physiol. Behav. 2014, 134, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, A.W.; Ormsbee, M.J. The health impact of nighttime eating: Old and New Perspectives. Nutrients 2015, 7, 2648–2662. [Google Scholar] [CrossRef] [PubMed]
- Morehen, S.; Smeuninx, B.; Perkins, M.; Morgan, P.; Breen, L. Pre-sleep casein protein ingestion does not impact next-day appetite, energy intake and metabolism in older individuals. Nutrients 2019, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Dela Cruz, J.; Kahan, D. Pre-sleep casein supplementation, metabolism, and appetite: A Systematic Review. Nutrients 2021, 13, 1872. [Google Scholar] [CrossRef] [PubMed]
- Madzima, T.A.; Panton, L.B.; Fretti, S.K.; Kinsey, A.W.; Ormsbee, M.J. Night-time consumption of protein or carbohydrate results in increased morning resting energy expenditure in active college-aged men. Br. J. Nutr. 2014, 111, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kouw, I.W.; Holwerda, A.M.; Trommelen, J.; Kramer, I.F.; Bastiaanse, J.; Halson, S.L.; Wodzig, W.K.; Verdijk, L.B.; van Loon, L.J. Protein ingestion before sleep increases overnight muscle protein synthesis rates in healthy older men: A randomized controlled trial. J. Nutr. 2017, 147, 2252–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, E.E.; Hsu, T.M.; Liang, J.; Kanoski, S.E. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr. Neurosci. 2019, 22, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.; Shahar, S.; Haron, H.; Din, N.C. Habitual sugar intake and cognitive impairment among multi-ethnic Malaysian older adults. Clin. Interv. Aging 2019, 14, 1331. [Google Scholar] [CrossRef] [Green Version]
- Messier, C.; Gagnon, M.; Knott, V. Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiol. Aging 1997, 18, 297–304. [Google Scholar] [CrossRef]
- Riby, L.M. The impact of age and task domain on cognitive performance: A meta-analytic review of the glucose facilitation effect. Brain Impair. 2004, 5, 145–165. [Google Scholar] [CrossRef]
- Scholey, A.B.; Harper, S.; Kennedy, D.O. Cognitive demand and blood glucose. Physiol. Behav. 2001, 73, 585–592. [Google Scholar] [CrossRef]
- Riby, L.M.; Meikle, A.; Glover, C. The effects of age, glucose ingestion and gluco-regulatory control on episodic memory. Age Ageing 2004, 33, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, P.Y.; Benton, D. Blood glucose levels selectively influence memory for word lists dichotically presented to the right ear. Neuropsychologia 1995, 33, 843–854. [Google Scholar] [CrossRef]
- Donohoe, R.T.; Benton, D. Declining blood glucose levels after a cognitively demanding task predict subsequent memory. Nutr. Neurosci. 1999, 2, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Owens, D.S.; Parker, P.Y. Blood glucose influences memory and attention in young adults. Neuropsychologia 1994, 32, 595–607. [Google Scholar] [CrossRef]
- Mantantzis, K.; Schlaghecken, F.; Maylor, E.A. Food for happy thought: Glucose protects age-related positivity effects under cognitive load. Psychol. Aging 2017, 32, 203. [Google Scholar] [CrossRef] [Green Version]
- Sünram-Lea, S.I.; Foster, J.K.; Durlach, P.; Perez, C. Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology 2002, 160, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.M.; El-Obeid, T.; Riley, M.; Li, M.; Page, A.; Liu, J.H. High chili intake and cognitive function among 4582 adults: An open cohort study over 15 years. Nutrients 2019, 11, 1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, T.D.; Feng, Z.Y.; Jiang, L.L.; Yu, Q.; Liu, K.R. Associations of health behaviors, food preferences, and obesity patterns with the incidence of mild cognitive impairment in the middle-aged and elderly population: An 18-year cohort study. J. Affect. Disord. 2020, 275, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.M.; El-Obeid, T.; Li, M.; Xu, X.Y.; Liu, J.H. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Parker, D.; Shi, Z.; Byles, J.; Hall, J.; Hickman, L. Dietary pattern, hypertension and cognitive function in an older population: 10-year longitudinal survey. Front. Public Health 2018, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, C.; Greenwood, C.E.; Bherer, L. The acute effects of glucose ingestion on attentional control in fasting healthy older adults. Psychopharmacology 2010, 211, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, H.; Roberstson, B.; Sünram-Lea, S.; Stough, C.; Kennedy, D.; Scholey, A. Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology 2015, 232, 1135–1142. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Parsons, M.W.; Gold, P.E. Glucose enhancement of memory in elderly humans: An inverted-U dose-response curve. Neurobiol. Aging 1992, 13, 401–404. [Google Scholar] [CrossRef]
- Sünram-Lea, S.I.; Owen, L.; Finnegan, Y.; Hu, H.L. Dose–response investigation into glucose facilitation of memory performance and mood in healthy young adults. J. Psychopharmacol. 2011, 25, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Rey, A. L’examen Clinique en Psychologie; Presses Universitaries De France: Paris, France, 1958. [Google Scholar]
- Rey, A. L’examen psychologique dans les cas d’encéphalopathie traumatique (Les problems.). Arch. De Psychol. 1941, 28, 215–285. [Google Scholar]
- McCuen-Wurst, C.; Ruggieri, M.; Allison, K.C. Disordered eating and obesity: Associations between binge-eating disorder, night-eating syndrome, and weight-related comorbidities. Ann. N. Y. Acad. Sci. 2018, 1411, 96–105. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.K.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.J.L.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.; Killgore, W.; Gehrels, J.; Alfonso-Miller, P.; Grandner, M. Nighttime snacking: Prevalence and associations with poor sleep, health, obesity, and diabetes. Sleep 2018, 41, A49–A50. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, C.R.; Taylor, H.A.; Kanarek, R.B. The acute effects of meals on cognitive performance. Nutr. Neurosci. 2005, 73–91. [Google Scholar] [CrossRef]
- Hutchinson, R. Effect of gastric contents on mental concentration and production rate. J. Appl. Physiol. 1954, 7, 143–147. [Google Scholar] [CrossRef]
- Ormsbee, M.J.; Kinsey, A.W.; Eddy, W.R.; Madzima, T.A.; Arciero, P.J.; Figueroa, A.; Panton, L.B. The influence of nighttime feeding of carbohydrate or protein combined with exercise training on appetite and cardiometabolic risk in young obese women. Appl. Physiol. Nutr. Metab. 2015, 40, 37–45. [Google Scholar] [CrossRef]
- Foster, J.; Lidder, P.; Sünram, S. Glucose and memory: Fractionation of enhancement effects? Psychopharmacology 1998, 137, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Milte, C.M.; Ball, K.; Crawford, D.; McNaughton, S.A. Diet quality and cognitive function in mid-aged and older men and women. BMC Geriatrics 2019, 19, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, T.S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Blacker, D.; Willett, W.C. Long-term intake of total energy and fat in relation to subjective cognitive decline. Eur. J. Epidemiol. 2022, 37, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes for Thiamin Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline; Institute of Medicine, Food and Nutrition Board: Washington, DC, USA, 1998.
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
Nighttime Snacking (n = 500) | Non-Nighttime Snacking (n = 2118) | p-Value | |
---|---|---|---|
Age (years) | 65.00 (7.64) | 64.70 (7.83) | 0.28 b |
Sex (female) | 257 (51.4%) | 1039 (49.1%) | 0.37 a |
Education | <0.001 a | ||
Junior high school and below | 336 (67.2%) | 1836 (86.7%) | |
Senior high school | 62 (12.4%) | 109 (5.1%) | |
University and above | 102 (20.4%) | 173 (8.2%) | |
Smoking | 0.41 a | ||
Yes | 169 (33.8%) | 760 (35.9%) | |
No | 331 (66.2%) | 1358 (64.1%) | |
Drinking | 0.30 a | ||
<1 time/week | 387 (77.7%) | 1600 (76.0%) | |
1–4 times/week | 39 (7.8%) | 213 (10.1%) | |
Almost every day | 72 (14.5%) | 292 (13.9%) | |
Sum score in 4 cognitive tasks (0~27) | 15.38 (5.00) | 14.04 (6.00) | <0.001 b |
Self-reported memory score (1~5) | 3.17 (0.98) | 2.96 (0.89) | <0.001 b |
Objective Measure of Cognitive Function | Subjective Measure of Cognitive Function | |||||||
---|---|---|---|---|---|---|---|---|
Β (SE) | t | ΔR2 | ΔF | Β (SE) | t | ΔR2 | ΔF | |
Step 1 | ||||||||
Age | −0.36(0.01) | −20.58 *** | 0.21 | 231.82 *** | −0.22(0.002) | −11.83 *** | 0.09 | 81.11 *** |
Sex | 0.12(0.21) | 6.61 *** | 0.07(0.04) | 3.69 *** | ||||
Education | 0.23(0.16) | 13.10 *** | 0.16(0.03) | 8.35 *** | ||||
Step 2 | ||||||||
Smoking | 0.02(0.27) | 1.03 | 0.001 | 0.85 | −0.003(0.05) | −0.15 | 0.001 | 1.61 |
Drinking | 0.01(0.16) | 0.56 | 0.04(0.03) | 1.78 | ||||
Step 3 | ||||||||
Nighttime snacking | 0.05(0.26) | 3.06 ** | 0.003 | 9.37 ** | 0.07(0.04) | 3.53 *** | 0.004 | 12.47 *** |
Placebo n = 25 | Glucose n = 25 | p-Value | |
---|---|---|---|
Age (years) | 69.2 (4.85) | 66.84 (5.93) | 0.13 |
Sex (M/F) a | 7/18 | 9/16 | 0.54 |
Education (years) | 9.88 (2.79) | 9.04 (2.09) | 0.23 |
MMSE | 28.16 (1.21) | 28.52 (1.26) | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, C.-C.; Bao, W.-J.; Jiang, H.-X.; Yu, J. The Effect of Nighttime Snacking on Cognitive Function in Older Adults: Evidence from Observational and Experimental Studies. Nutrients 2022, 14, 4900. https://doi.org/10.3390/nu14224900
Niu C-C, Bao W-J, Jiang H-X, Yu J. The Effect of Nighttime Snacking on Cognitive Function in Older Adults: Evidence from Observational and Experimental Studies. Nutrients. 2022; 14(22):4900. https://doi.org/10.3390/nu14224900
Chicago/Turabian StyleNiu, Cheng-Cheng, Wei-Jie Bao, Hai-Xin Jiang, and Jing Yu. 2022. "The Effect of Nighttime Snacking on Cognitive Function in Older Adults: Evidence from Observational and Experimental Studies" Nutrients 14, no. 22: 4900. https://doi.org/10.3390/nu14224900
APA StyleNiu, C. -C., Bao, W. -J., Jiang, H. -X., & Yu, J. (2022). The Effect of Nighttime Snacking on Cognitive Function in Older Adults: Evidence from Observational and Experimental Studies. Nutrients, 14(22), 4900. https://doi.org/10.3390/nu14224900