Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Pork Meat Products
2.4. Identification of Bioactive Peptides in Hams by Mass Spectrometry in Tandem
2.5. In Vitro Activity of Bioactive Peptides
2.5.1. ACE Inhibitory Activity Assay
2.5.2. HMG-CoAR Inhibitory Activity Assay
2.5.3. Peptide Extracts Binding Capacity of Bile Acids
2.6. Characteristics and Dietary Habits of Participants
2.7. Blood Pressure Monitoring
2.8. Blood Sampling and Biochemical Determinations
2.9. Plasma Biomarkers
2.10. Sample Calculation and Statistical Analyses
3. Results
3.1. Meat Products Characterization
3.2. In Vitro Inhibitory Bioactivies
3.3. Baseline Characteristics of the Study Population
3.4. Plasmatic Biomarkers of the CV Pathophysiological Status
4. Discussion
4.1. In Vitro Biological Activities
4.2. Key Metabolic Pathways
4.3. Adipokines and Inflammation
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Baseline Dry-Cured Ham (n = 54) | End Dry-Cured ham | Baseline Cooked Ham (n = 54) | End Cooked Ham | |
---|---|---|---|---|
BMI, (kg/m2) | 27.97 ± 4.67 | 28.18 ± 4.56 | 27.93 ± 4.60 | 29.29 ± 4.30 |
Fat content, % | 33.62 ± 7.53 | 33.11 ± 7.57 | 31.73 ± 8.92 | 31.10 ± 8.89 |
Mean 24 h-Systolic BP, mmHg | 126.80 ± 10.97 | 124.28 ± 10.18 | 125.78 ± 10.54 | 126.08 ± 10.68 |
Day Systolic BP, mmHg | 130.76 ± 10.92 | 128.54 ± 10.40 | 130.76 ± 11.08 | 130.58 ± 10.67 |
Night Systolic BP, mmHg | 119.06 ± 12.60 | 117.51 ± 12.10 | 116.65 ± 11.55 | 118.26 ± 12.29 * |
Mean 24 h-Diastolic BP, mmHg | 76.67 ± 8.02 | 74.86 ± 7.58 | 76.02 ± 8.19 | 76.94 ± 8.24 |
Day Diastolic BP, mmHg | 79.78 ± 9.69 | 78.31 ± 9.76 | 80.16 ± 8.74 | 80.96 ± 8.75 |
Night Diastolic BP, mmHg | 70.12 ± 8.07 | 68.94 ± 13.18 | 70.27 ± 9.59 | 70.46 ± 9.18 |
MAP, mmHg | 93.40 ± 8.34 | 89.52 ± 14.92 | 90.82 ± 15.17 | 93.4 ± 8.54 |
Basal Glucose, mg/dL | 98.20 ± 27.70 | 93.40 ± 11.08 | 99.51 ± 29.36 | 98.15 ± 23.69 |
Basal Cholesterol, mg/dL | 213.59 ± 40.38 | 209.69 ± 37.83 | 210.79 ± 35.77 | 211.81 ± 36.52 |
TG, mg/dL | 119.83 ± 60.45 | 112.44 ± 57.31 | 136.38 ± 163.15 | 122.15 ± 61.79 |
HDL, mg/dL | 57.79 ± 14.14 | 55.60 ± 13.08 * | 56.58 ± 15.08 | 56.34 ± 13.93 |
LDL, mg/dL | 130.79 ± 31.23 | 131.35 ± 32.43 | 130.79 ± 30.41 | 130.38 ± 30.46 |
Non-HDL-Cholesterol, mg/dL | 158.88 ± 39.11 | 152.32 ± 41.91 | 154.09 ± 35.36 | 156.32 ± 35.10 |
Creatinine, mg/dL | 0.85 ± 0.18 | 0.88 ± 0.19 | 0.85 ± 0.17 | 0.85 ± 0.17 |
Insulin. mIU/L | 11.86 ± 7.24 | 11.78 ± 7.39 | 12.44 ± 8.92 | 13.02 ± 8.32 |
Na+ excretion, (mmol/24 h) | 175.82 ± 77.19 | 181.13 ± 68.33 | 176.82 ± 66.43 | 178.37 ± 72.63 |
Food groups | ||||
Dairy (1–2/day), % | 84.2 | 79.2 | 85.1 | 81.5 |
Fruit and vegetables (2–3/day), % | 81.9 | 76.4 | 83.2 | 79.3 |
Cereals (2–3 day), % | 47.1 | 49.1 | 45.7 | 47.4 |
Poultry (2–3/week), % | 26.7 | 23.1 | 31.7 | 28.4 |
Red and other processed meat (3–4/week), % | 74.2 | 69.4 | 78.1 | 72.1 |
Nut (3–4/week), % | 21.1 | 26.3 | 27.3 | 24.2 |
Red wine, 4–7/week, % | 7.5 | 7.0 | 9.0 | 7.7 |
References
- Ozemek, C.; Laddu, D.R.; Arena, R.; Lavie, C.J. The role of diet for prevention and management of hypertension. Curr. Opin. Cardiol. 2018, 33, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lopez-Miranda, J.; Katsiki, N.; Lista, F.J.D.; Alvarez-Sala-Walther, L.A. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbańczuk, J.O.; Jozwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective Effects of Pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 2020, 17, 3. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sánchez, S.M.; Gabaldón-Hernández, J.A.; Montoro-García, S. Unravelling the molecular mechanisms associated with the role of food-derived bioactive peptides in promoting cardiovascular health. J. Funct. Foods 2020, 64, 103645. [Google Scholar] [CrossRef]
- Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.-C.; Mora, L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem. 2020, 321, 126689. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Aristoy, M.-C.; Nishimura, H.; Arihara, K.; Toldrá, F. Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Sci. 2012, 91, 306–311. [Google Scholar] [CrossRef]
- Mora, L.; Escudero, E.; Arihara, K.; Toldrá, F. Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Res. Int. 2015, 78, 71–78. [Google Scholar] [CrossRef]
- Martínez-Sánchez, S.M.; Pérez-Sánchez, H.; Gabaldón, J.A.; Abellán-Alemán, J.; Montoro-García, S. Multifunctional Peptides from Spanish Dry-Cured Pork Ham: Endothelial Responses and Molecular Modeling Studies. Int. J. Mol. Sci. 2019, 20, 4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M.-C.; Arihara, K.; Toldrá, F. Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. J. Proteom. 2013, 78, 499–507. [Google Scholar] [CrossRef]
- Montoro-García, S.; Zafrilla-Rentero, M.P.; Haro, F.M.C.-D.; Armas, J.J.P.-D.; Toldrá, F.; Tejada-Portero, L.; Abellán-Alemán, J. Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. J. Funct. Foods 2017, 38, 160–167. [Google Scholar] [CrossRef]
- Martínez-Sánchez, S.M.; Minguela, A.; Prieto-Merino, D.; Zafrilla-Rentero, M.P.; Abellán-Alemán, J.; Montoro-García, S. The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients 2017, 9, 321. [Google Scholar] [CrossRef] [Green Version]
- Lucey, A.J.; Heneghan, C.; Manning, E.; Kroon, P.; Kiely, M.E. Effect of an egg ovalbumin-derived protein hydrolysate on blood pressure and cardiovascular risk in adults with a mildly elevated blood pressure: A randomized placebo-controlled crossover trial. Eur. J. Nutr. 2019, 58, 2823–2833. [Google Scholar] [CrossRef]
- Mora, L.; González-Rogel, D.; Heres, A.; Toldrá, F. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. J. Funct. Foods 2020, 67, 103840. [Google Scholar] [CrossRef]
- Moayedi, A.; Mora, L.; Aristoy, M.-C.; Hashemi, M.; Safari, M.; Toldrá, F. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Appl. Biochem. Biotechnol. 2016, 181, 48–64. [Google Scholar] [CrossRef]
- Singh, N.; Bhattacharyya, D. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays. J. Chromatogr. B 2016, 1019, 83–94. [Google Scholar] [CrossRef]
- Sesso, H.D.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Gaziano, J.M.; Manson, J.E.; Glynn, R.J. Systolic and Diastolic Blood Pressure, Pulse Pressure, and Mean Arterial Pressure as Predictors of Cardiovascular Disease Risk in Men. Hypertension 2000, 36, 801–807. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, F.; Kaczor, K.; Gandhi, N.; Pendley, B.D.; Danish, R.K.; Neuman, M.R.; Tóth, B.; Horváth, V.; Lindner, E. Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds. Talanta 2007, 74, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamcova, M.; Šimko, F. Multiplex biomarker approach to cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.M.; Adekola, B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Cardiology, F.T.A.S.F.P.; Amsterdam, E.A.; Ballantyne, C.; Khera, A.; Nasir, K.; Toth, P.P. Spotlight from the American Society for Preventive Cardiology on Key Features of the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guidelines on the Management of Blood Cholesterol. Am. J. Cardiovasc. Drugs 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Scicali, R.; Giral, P.; Gallo, A.; Di Pino, A.; Rabuazzo, A.M.; Purrello, F.; Cluzel, P.; Redheuil, A.; Bruckert, E.; Rosenbaum, D. HbA1c increase is associated with higher coronary and peripheral atherosclerotic burden in non diabetic patients. Atheroscler. 2016, 255, 102–108. [Google Scholar] [CrossRef]
- Bargieł, W.; Cierpiszewska, K.; Maruszczak, K.; Pakuła, A.; Szwankowska, D.; Wrzesińska, A.; Gutowski, Ł.; Formanowicz, D. Recognized and Potentially New Biomarkers—Their Role in Diagnosis and Prognosis of Cardiovascular Disease. Medicina 2021, 57, 701. [Google Scholar] [CrossRef]
- Pizarroso, N.; Fuciños, P.; Gonçalves, C.; Pastrana, L.; Amado, I. A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota–Gut–Brain Axis in Satiety Regulation. Nutrients 2021, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Han, J.; He, B.; Yi, M.; Liu, X.; Song, H.; Li, J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct. 2021, 12, 5157–5170. [Google Scholar] [CrossRef]
- Kromhout, D. Diet and cardiovascular diseases. J. Nutr. Health Aging. 2001, 5, 144–149. [Google Scholar]
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Karaca, A.C.; Sharifi-Rad, M.; Karıncaoglu, D.K.; Gülseren, G.; Özçelik, B.; Demircan, E.; et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef] [Green Version]
- Ruscica, M.; Penson, P.E.; Ferri, N.; Sirtori, C.R.; Pirro, M.; Mancini, G.J.; Sattar, N.; Toth, P.P.; Sahebkar, A.; Lavie, C.J.; et al. Impact of nutraceuticals on markers of systemic inflammation: Potential relevance to cardiovascular diseases—A position paper from the International Lipid Expert Panel (ILEP). Prog. Cardiovasc. Dis. 2021, 67, 40–52. [Google Scholar] [CrossRef]
- Stadnik, J.; Kęska, P. Meat and fermented meat products as a source of bioactive peptides. Acta Sci. Pol. Technol. Aliment. 2015, 14, 181–190. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Peptides with Potential Cardioprotective Effects Derived from Dry-Cured Ham Byproducts. J. Agric. Food Chem. 2019, 67, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Siow, H.-L.; Choi, S.-B.; Gan, C.-Y. Structure—Activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J. Funct. Foods 2016, 27, 600–611. [Google Scholar] [CrossRef]
- Musso, N.; Carloni, B.; Chiusano, M.C.; Giusti, M. Simple dietary advice reduces 24-hour urinary sodium excretion, blood pressure, and drug consumption in hypertensive patients. J. Am. Soc. Hypertens. 2018, 12, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Sayón-Orea, C.; Martínez-González, M.Á.; Ruiz-Canela, M.; Ruiz-Estigarribia, L.; de la Fuente-Arrillaga, C.; Toledo, E.; Bes-Rastrollo, M. Cured ham consumption and incidence of hypertension: The “Seguimiento Universidad de Navarra” (SUN) cohort. Med. Clínica 2020, 155, 9–17. [Google Scholar] [CrossRef]
- Sharkey, S.J.; Harnedy-Rothwell, P.A.; Allsopp, P.J.; Hollywood, L.E.; Fitzgerald, R.J.; O’Harte, F.P.M. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol. Nutr. Food Res. 2020, 64, 2000403. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Fitzgerald, R.J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J. Food Biochem. 2017, 43, e12451. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef]
- Lima, R.D.C.L.; Berg, R.S.; Rønning, S.B.; Afseth, N.K.; Knutsen, S.H.; Staerk, D.; Wubshet, S.G. Peptides from chicken processing by-product inhibit DPP-IV and promote cellular glucose uptake: Potential ingredients for T2D management. Food Funct. 2019, 10, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Youn, B. Hypolipidemic Roles of Casein-Derived Peptides by Regulation of Trans-Intestinal Cholesterol Excretion and Bile Acid Synthesis. Nutrients 2020, 12, 3058. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Fang, F.; Yang, T.; Yu, Z.; Zhang, B.; Xie, X. Ghrelin inhibits AngII -induced expression of TNF-α, IL-8, MCP-1 in human umbilical vein endothelial cells. Int. J. Clin. Exp. Med. 2015, 8, 579–588. [Google Scholar] [PubMed]
- Iantorno, M.; Chen, H.; Kim, J.-A.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M. Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am. J. Physiol. Metab. 2007, 292, E756–E764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatib, M.N.; Shankar, A.; Kirubakaran, R.; Agho, K.; Simkhada, P.; Gaidhane, S.; Saxena, D.; Gode, D.; Gaidhane, A.; Zahiruddin, S.Q. Effect of Ghrelin on Mortality and Cardiovascular Outcomes in Experimental Rat and Mice Models of Heart Failure: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0126697. [Google Scholar] [CrossRef]
- Nagaya, N.; Kojima, M.; Uematsu, M.; Yamagishi, M.; Hosoda, H.; Oya, H.; Hayashi, Y.; Kangawa, K. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am. J. Physiol. Integr. Comp. Physiol. 2001, 280, R1483–R1487. [Google Scholar] [CrossRef] [Green Version]
- Suematsu, M.; Katsuki, A.; Sumida, Y.; Gabazza, E.; Murashima, S.; Matsumoto, K.; Kitagawa, N.; Akatsuka, H.; Hori, Y.; Nakatani, K.; et al. Decreased circulating levels of active ghrelin are associated with increased oxidative stress in obese subjects. Eur. J. Endocrinol. 2005, 153, 403–407. [Google Scholar] [CrossRef]
- Poykko, S.M.; Horkko, S.; Kauma, H.; Kesaniemi, Y.A.; Ukkola, O. Low Plasma Ghrelin Is Associated With Insulin Resistance, Hypertension, and the Prevalence of Type 2 Diabetes. Diabetes 2003, 52, 2546–2553. [Google Scholar] [CrossRef]
- Howick, K.; Wallace-Fitzsimons, S.E.; Kandil, D.; Chruścicka, B.; Calis, M.; Murphy, E.; Murray, B.A.; Fernandez, A.; Barry, K.M.; Kelly, P.M.; et al. A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo. Int. J. Mol. Sci. 2018, 19, 2780. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.N.; Carmo, J.M.D.; Adi, A.H.; da Silva, A.A. Chronic central ghrelin infusion reduces blood pressure and heart rate despite increasing appetite and promoting weight gain in normotensive and hypertensive rats. Peptides 2013, 42, 35–42. [Google Scholar] [CrossRef] [Green Version]
- García-Cáceres, C.; Fuente-Martín, E.; Díaz, F.; Granado, M.; Argente-Arizón, P.; Frago, L.M.; Freire-Regatillo, A.; Barrios, V.; Argente, J.; Chowen, J.A. The Opposing Effects of Ghrelin on Hypothalamic and Systemic Inflammatory Processes Are Modulated by Its Acylation Status and Food Intake in Male Rats. Endocrinology 2014, 155, 2868–2880. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef] [Green Version]
- Yvan-Charvet, L.; Bonacina, F.; Guinamard, R.R.; Norata, G.D. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc. Res. 2019, 115, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
Dry-Cured Ham | Cooked Ham | |
---|---|---|
Energy value (Kcal/100 g) | 241.5 ± 9.3 | 97.7 ± 3.9 |
Fats (%) | 12.1 ± 2.2 | 2.5 ± 0.3 |
Saturated Fats (%) | 4.4 ± 0.3 | 0.9 ± 0.01 |
Monounsaturated Fats (%) | 6.2 ± 0.3 | 1.3 ± 0.1 |
Polyunsaturated Fats (%) | 1.5 ± 0.3 | 0.3 ± 0.02 |
Carbohydrates (%) | 0.0 | 0.3 ± 0.08 |
Sugars (%) | 0.0 | 0.3 ± 0.07 |
Proteins (%) | 32.8 ± 2.0 | 18.5 ± 0.4 |
Salt (%) | 3.5 ± 0.3 | 2.5 ± 0.2 |
Sodium (ppm) | 13672 ± 1143 | 9850 ± 622 |
Total Nitrogen (%) | 5.24 ± 0.5 | 2.97 ± 0.055 |
Soluble Nitrogen (%) | 1.95 ± 0.07 | 0.45 ± 0.006 |
Denatured Nitrogen (%) | 1.92 ± 0.03 | 0.44 ± 0.021 |
Non-Protein Nitrogen (%) | 1.49 ± 0.02 | 0.46 ± 0.006 |
Free Amino acids (mg/100 g dm) | 9656 ± 715 | - |
Proteolysis Index (%) | 28.5 | - |
Previously identified biologically active peptides that are present in the sample | AAATP, PAPPK, KAAAAP, AMNPP, IKLPP, AAPLAP, KPVAAP, KPGRP, PSNPP, IAGRP, KVLPG, TGLKP, KAAAATP | None |
Inhibitory Activity, % | Dry-Cured Ham | Cooked Ham | p Value |
---|---|---|---|
Angiotensin converting enzyme (ACE) | 85.22 ± 2.4 | 50.12 ± 0.26 | p < 0.05 |
HMG-CoAR | 56.6 ± 3.1 | 45.9 ± 3.5 | p < 0.05 |
All (n = 54) | Cooked Ham First (n = 19) | Dry-Cured Ham First (n = 35) | p-Value | |
---|---|---|---|---|
Age, years | 49.00 ± 10.28 | 49.42 ± 11.98 | 49.05 ± 9.4 | 0.703 |
Gender (male) | 65% | 68% | 63% | 0.612 |
BMI, (kg/m2) | 28.01 ± 4.79 | 25.56 ± 4.38 | 29.30 ± 4.34 | 0.065 |
Fat content, % | 31.84 ± 9.12 | 27.88 ± 8.96 | 34.06 ± 8.55 | 0.069 |
Mean 24 h-Systolic BP, mmHg | 127.00 ± 10.85 | 124.05 ± 9.32 | 128.38 ± 11.51 | 0.103 |
Mean 24 h-Diastolic BP, mmHg | 74.12 ± 8.15 | 73.26 ± 7.93 | 75.24 ± 8.25 | 0.363 |
Basal Glucose mg/dL | 98.57 ± 24.01 | 105.89 ± 36.22 | 93.96 ± 10.68 | 0.277 |
Basal Cholesterol, mg/dL | 212.98 ± 37.48 | 191.85 ± 26.51 | 216.54 ± 42.40 | 0.195 |
TG, mg/dL | 118.53 ± 62.43 | 102.84 ± 49.33 | 130.30 ± 68.47 | 0.105 |
HDL, mg/dL | 58.18 ± 30.35 | 60.95 ± 14.29 | 56.79 ± 14.58 | 0.353 |
LDL, mg/dL | 131.94 ± 30.35 | 122.74 ± 24.92 | 135.21 ± 34.19 | 0.201 |
non-HDL-Cholesterol, mg/dL | 157.38 ± 39.32 | 143.68 ± 26.78 | 164.25 ± 42.00 | 0.071 |
Creatinine, mg/dL | 0.86 ± 0.17 | 0.85 ± 0.16 | 0.86 ± 0.18 | 0.957 |
Insulin, mIU/L | 11.92 ± 8.31 | 11.72 ± 10.80 | 11.96 ± 6.51 | 0.232 |
HbA1c, % | 5.75 ± 0.64 | 5.98 ± 0.94 | 5.60 ± 0.30 | 0.104 |
Food groups | ||||
Dairy (1–2/day), % | 85.8 | 79.5 | 86.1 | 0.487 |
Fruit and vegetables (2–3/day), % | 84.2 | 85.2 | 78.8 | 0.302 |
Cereals (2–3 day), % | 42.5 | 37.2 | 44.6 | 0.239 |
Poultry (2–3/week), % | 33.5 | 37.2 | 31.0 | 0.195 |
Red and other processed meat (3–4/week), % | 76.5 | 73.7 | 77.1 | 0.587 |
Nut (3–4/week), % | 25.0 | 25.3 | 24.7 | 0.955 |
Red wine, 4–7/week, % | 8.5 | 8.9 | 8.4 | 0.927 |
Olive oil, daily, % | 93.5 | 91.8 | 94.5 | 0.803 |
Variable | Cooked Ham | Dry-Cured Ham | Dry-Cured—Cooked Ham Effect | P-ori | p-Value |
---|---|---|---|---|---|
BMI, (kg/m2) | 0.08 (0.54) | −0.09 (0.65) | −0.15 (−0.39 to 0.09) | 0.21470 | 0.39180 |
Fat content, % | −0.07 (1.86) | −0.40 (1.82) | −0.22 (−0.89 to 0.45) | 0.52420 | 0.89420 |
Mean 24 h-Systolic BP | 0.65 (4.66) | −1.62 (6.89) | −2.41 (−4.39 to −0.43) | 0.02190 | 0.03820 |
Day Systolic BP | 0.06 (5.50) | −1.58 (7.54) | −2.05 (−4.33 to 0.23) | 0.08630 | 0.05830 |
Night Systolic BP | 2.00 (6.24) | 0.02 (7.90) | −1.83 (−4.46 to 0.79) | 0.17810 | 0.27250 |
Mean 24 h-Diastolic BP | 1.08 (4.04) | −1.20 (5.35) | −2.49 (−4.14 to −0.84) | 0.00500 | 0.02330 |
Day Diastolic BP | 0.81 (5.92) | −1.06 (8.00) | −2.09 (−4.66 to 0.48) | 0.11810 | 0.38610 |
Night Diastolic BP | 0.57 (9.14) | −0.41 (12.29) | −2.20 (−6.37 to 1.97) | 0.30650 | 0.53660 |
MAP | 0.94 (3.82) | −1.34 (5.56) | −2.47 (−4.10 to −0.85) | 0.00480 | 0.02220 |
% High SBP | 2.61 (7.76) | −2.73 (8.67) | −3.91 (−6.76 to −1.07) | 0.01040 | 0.00700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro-García, S.; Velasco-Soria, Á.; Mora, L.; Carazo-Díaz, C.; Prieto-Merino, D.; Avellaneda, A.; Miranzo, D.; Casas-Pina, T.; Toldrá, F.; Abellán-Alemán, J. Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients 2022, 14, 298. https://doi.org/10.3390/nu14020298
Montoro-García S, Velasco-Soria Á, Mora L, Carazo-Díaz C, Prieto-Merino D, Avellaneda A, Miranzo D, Casas-Pina T, Toldrá F, Abellán-Alemán J. Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients. 2022; 14(2):298. https://doi.org/10.3390/nu14020298
Chicago/Turabian StyleMontoro-García, Silvia, Ángeles Velasco-Soria, Leticia Mora, Carmen Carazo-Díaz, David Prieto-Merino, Antonio Avellaneda, Domingo Miranzo, Teresa Casas-Pina, Fidel Toldrá, and José Abellán-Alemán. 2022. "Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk" Nutrients 14, no. 2: 298. https://doi.org/10.3390/nu14020298
APA StyleMontoro-García, S., Velasco-Soria, Á., Mora, L., Carazo-Díaz, C., Prieto-Merino, D., Avellaneda, A., Miranzo, D., Casas-Pina, T., Toldrá, F., & Abellán-Alemán, J. (2022). Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients, 14(2), 298. https://doi.org/10.3390/nu14020298