Chemically Defined Formulas, Symbiotics and Cow’s Milk Protein Allergy
Funding
Conflicts of Interest
References
- Fiocchi, A.; Brozek, J.; Schuenemann, H.; Bahna, S.L.; Von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. World Allergy Organ. J. 2010, 3, 57–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winitz, M.; Graff, J.; Gallagher, N.; Narkin, A.; Seedman, D.A. Evaluation of Chemical Diets as Nutrition for Man-in-Space. Nature 1965, 205, 741–743. [Google Scholar] [CrossRef]
- Deglaire, A.; Moughan, P.J.; Airinei, G.; Benamouzig, R.; Tomé, D. Intact and hydrolyzed casein lead to similar ileal endogenous protein and amino acid flows in adult humans. Am. J. Clin. Nutr. 2020, 111, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Potier, M.; Tomé, D. Comparison of digestibility and quality of intact proteins with their respective hydrolysates. J. AOAC Int. 2008, 91, 1002–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Y.-J.; Kanai, Y.; Nussberger, S.; Ganapathy, V.; Leibach, F.H.; Romero, M.F.; Singh, S.K.; Boron, W.F.; Hediger, M.A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994, 368, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Marquet, P.; Barbot, L.; Planté, A.; Huneau, J.F.; Gobert, J.G.; Kapel, N. Cryptosporidiosis induces a transient upregulation of the oligopeptides transporter (PepT1) activity in neonatal rats. Exp. Biol. Med. 2007, 232, 454–460. [Google Scholar]
- Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta (BBA) Gen. Subj. 2015, 1850, 488–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.E.; Clémençon, B.; Hediger, M.A. Proton-coupled oligopeptide transporter family SLC15: Physiological, pharmacological and pathological implications. Mol. Asp. Med. 2013, 34, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, R.; Crombach, N.; Gijsen, A.P.; Walrand, S.; Fauquant, J.; Kies, A.K.; Lemosquet, S.; Saris, W.H.M.; Boirie, Y.; van Loon, L.J.C. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009, 90, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin-Vidal, C.; Cayol, M.; Obled, C.; Ziegler, F.; Bommelaer, G.; Beaufrere, B. Leucine kinetics are different during feeding with whole protein or oligopeptides. Am. J. Physiol. Metab. 1994, 267, E907–E914. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, F.; Nitenberg, G.; Coudray-Lucas, C.; Lasser, P.; Giboudeau, J.; Cynober, L. Pharmacokinetic assessment of an oligopeptide-based enteral formula in abdominal surgery patients. Am. J. Clin. Nutr. 1998, 67, 124–128. [Google Scholar] [CrossRef] [PubMed]
- A Young, E.; A Cioletti, L.; Winborn, W.B.; Traylor, J.B.; Weser, E. Comparative study of nutritional adaptation to defined formula diets in rats. Am. J. Clin. Nutr. 1980, 33, 2106–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolotti, M.; Ventura, G.; Jegatheesan, P.; Choisy, C.; Cynober, L.; De Bandt, J.-P. Impact of qualitative and quantitative variations in nitrogen supply on catch-up growth in food-deprived-refed young rats. Clin. Nutr. 2016, 35, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Burks, W.; Jones, S.M.; Berseth, C.L.; Harris, C.; Sampson, H.A.; Scalabrin, D.M. Hypoallergenicity and Effects on Growth and Tolerance of a New Amino Acid-Based Formula with Docosahexaenoic Acid and Arachidonic Acid. J. Pediatr. 2008, 153, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toni, T.; Alverdy, J.; Gershuni, V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Qamer, S.; Deshmukh, M.; Patole, S. Probiotics for cow’s milk protein allergy: A systematic review of randomized controlled trials. Eur. J. Pediatr. 2019, 178, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, K.; Cawood, A.; Gibson, G.; Cooke, L.; Stratton, R. Amino Acid Formula Containing Synbiotics in Infants with Cow’s Milk Protein Allergy: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 935. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bandt, J.-P. Chemically Defined Formulas, Symbiotics and Cow’s Milk Protein Allergy. Nutrients 2022, 14, 299. https://doi.org/10.3390/nu14020299
De Bandt J-P. Chemically Defined Formulas, Symbiotics and Cow’s Milk Protein Allergy. Nutrients. 2022; 14(2):299. https://doi.org/10.3390/nu14020299
Chicago/Turabian StyleDe Bandt, Jean-Pascal. 2022. "Chemically Defined Formulas, Symbiotics and Cow’s Milk Protein Allergy" Nutrients 14, no. 2: 299. https://doi.org/10.3390/nu14020299
APA StyleDe Bandt, J. -P. (2022). Chemically Defined Formulas, Symbiotics and Cow’s Milk Protein Allergy. Nutrients, 14(2), 299. https://doi.org/10.3390/nu14020299