Changes in Total Energy, Nutrients and Food Group Intake among Children and Adolescents during the COVID-19 Pandemic—Results of the DONALD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Dietary Assessment
2.3. Childcare Characteristics during the Pandemic
2.4. Assessment of Potential Confounding Factors
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verordnung zum Schutz vor Neuinfizierungen mit dem Coronavirus SARS-CoV-2 (CoronaSchVO) vom 22 März 2020, GV.NRW.2020, S.178a. Available online: https://www.land.nrw/sites/default/files/asset/document/2021-03-26_coronaschvo_ab_29.03.2021_lesefassung.pdf (accessed on 6 January 2022).
- Press Information by the Federal Office of North Rhine-Westphalia, 15 March 2020; [Landesregierung beschließt weitere Maßnahmen zur Eindämmung der Corona-Virus-Pandemie]. Available online: https://www.land.nrw/de/pressemitteilung/landesregierung-beschliesst-weitere-massnahmen-zur-eindaemmung-der-corona-virus (accessed on 28 October 2021).
- World Health Organization. Rolling Updates on Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 29 September 2021).
- Koletzko, B.; Holzapfel, C.; Schneider, U.; Hauner, H. Lifestyle and Body Weight Consequences of the COVID-19 Pandemic in Children: Increasing Disparity. Ann. Nutr. Metab. 2021, 77, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The Impact of Lockdown During the COVID-19 Outbreak on Dietary Habits in Various Population Groups: A Scoping Review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Menon, P.; Govender, R.; Abu Samra, A.M.; Allaham, K.K.; Nauman, J.; Östlundh, L.; Mustafa, H.; Smith, J.E.M.; AlKaabi, J.M. Systematic review of the effects of pandemic confinements on body weight and their determinants. Br. J. Nutr. 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Alexy, U.; Sichert-Hellert, W.; Kersting, M. Fifteen-year time trends in energy and macronutrient intake in German children and adolescents: Results of the DONALD study. Br. J. Nutr. 2002, 87, 595–604. [Google Scholar] [CrossRef]
- Weder, S.; Hoffmann, M.; Becker, K.; Alexy, U.; Keller, M. Energy, Macronutrient Intake, and Anthropometrics of Vegetarian, Vegan, and Omnivorous Children (1–3 Years) in Germany (VeChi Diet Study). Nutrients 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Grech, A.; Kam, C.O.; Gemming, L.; Rangan, A. Diet-Quality and Socio-Demographic Factors Associated with Non-Nutritive Sweetener Use in the Australian Population. Nutrients 2018, 10, 833. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241549028. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the Nova Classification System; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/fsnforum/resources/fsn-resources/ultra-processed-foods-diet-quality-and-health-using-nova-classification (accessed on 6 January 2022).
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef]
- Dietz, W.H. Critical periods in childhood for the development of obesity. Am. J. Clin. Nutr. 1994, 59, 955–959. [Google Scholar] [CrossRef]
- Buyken, A.E.; Mitchell, P.; Ceriello, A.; Brand-Miller, J. Optimal dietary approaches for prevention of type 2 diabetes: A life-course perspective. Diabetologia 2010, 53, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Buyken, A.E.; Alexy, U.; Kersting, M.; Remer, T. The DONALD cohort. An updated overview on 25 years of research based on the Dortmund Nutritional and Anthropometric Longitudinally Designed study. Bundesgesundheitsblatt 2012, 55, 875–884. [Google Scholar] [CrossRef]
- Kroke, A.; Manz, F.; Kersting, M.; Remer, T.; Sichert-Hellert, W.; Alexy, U.; Lentze, M.J. The DONALD Study. History, current status and future perspectives. Eur. J. Nutr. 2004, 43, 45–54. [Google Scholar] [CrossRef]
- Press Information by The Federal Office of North Rhine-Westphalia, 20 May 2020, [Öffnung der Kindertagesbetreuung im eingeschränkten Regelbetrieb]. Available online: https://www.land.nrw/de/pressemitteilung/oeffnung-der-kindertagesbetreuung-im-eingeschraenkten-regelbetrieb (accessed on 28 October 2021).
- Press Information by the Federal Office of North Rhine-Westphalia, 9 May 2020; [Nordrhein-Westfalen-Plan tritt in Kraft/Stufenweise Öffnung der Anti-Corona-Maßnahmen startet in der kommenden Woche]. Available online: https://www.land.nrw/de/pressemitteilung/nordrhein-westfalen-plan-tritt-kraft-stufenweise-oeffnung-der-anti-corona (accessed on 28 October 2021).
- Sichert-Hellert, W.; Kersting, M.; Chahda, C.; Schäfer, R.; Kroke, A. German food composition database for dietary evaluations in children and adolescents. J. Food Compos. Anal. 2007, 20, 63–70. [Google Scholar] [CrossRef]
- Swan, G.E.; Powell, N.A.; Knowles, B.L.; Bush, M.T.; Levy, L.B. A definition of free sugars for the UK. Public Health Nutr. 2018, 21, 1636–1638. [Google Scholar] [CrossRef] [Green Version]
- Scientific Advisory Committee on Nutrition (2016) Minutes of the 48th Meeting. Available online: https://app.box.com/s/ivrivaemf7fgeo9a17xdmv167c4uvteu/file/106585193169 (accessed on 29 October 2021).
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. Saude Publica 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [Green Version]
- Sichert-Hellert, W.; Kersting, M.; Schöch, G. Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z. Ernahrungswiss. 1998, 37, 242–251. [Google Scholar] [CrossRef]
- Booth, M.L.; Okely, A.D.; Chey, T.N.; Bauman, A. The reliability and validity of the Adolescent Physical Activity Recall Questionnaire. Med. Sci. Sports Exerc. 2002, 34, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Opper, E.; Worth, A.; Wagner, M.; Bös, K. The module “Motorik” in the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Motor fitness and physical activity of children and young people. Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Bolzenius, K.; Cheng, G.; Remer, T.; Buyken, A.E. Longitudinal associations between reported sleep duration in early childhood and the development of body mass index, fat mass index and fat free mass index until age 7. Int. J. Pediatr. Obes. 2011, 6, e114–e123. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis; Oxford University Press: Oxford, UK, 2003; ISBN 9780195152968. [Google Scholar]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Perrar, I.; Schmitting, S.; Della Corte, K.W.; Buyken, A.E.; Alexy, U. Age and time trends in sugar intake among children and adolescents: Results from the DONALD study. Eur. J. Nutr. 2020, 59, 1043–1054. [Google Scholar] [CrossRef]
- Perrar, I.; Schadow, A.M.; Schmitting, S.; Buyken, A.E.; Alexy, U. Time and Age Trends in Free Sugar Intake from Food Groups among Children and Adolescents between 1985 and 2016. Nutrients 2019, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Birch, L.L.; Deysher, M. Calorie compensation and sensory specific satiety: Evidence for self regulation of food intake by young children. Appetite 1986, 7, 323–331. [Google Scholar] [CrossRef]
- Birch, L.L.; Johnson, S.L.; Andresen, G.; Peters, J.C.; Schulte, M.C. The variability of young children’s energy intake. N. Engl. J. Med. 1991, 324, 232–235. [Google Scholar] [CrossRef]
- Kral, T.V.E.; Moore, R.H.; Chittams, J.; O’Malley, L.; Jones, E.; Quinn, R.J.; Fisher, J.O. Caloric compensation and appetite control in children of different weight status and predisposition to obesity. Appetite 2020, 151, 104701. [Google Scholar] [CrossRef]
- Westerterp, K.R. Seasonal variation in body mass, body composition and activity-induced energy expenditure: A long-term study. Eur. J. Clin. Nutr. 2020, 74, 135–140. [Google Scholar] [CrossRef]
- Mensink, G.B.M.; Heseker, H.; Stahl, A.; Richter, A.; Vohmann, C. Current nutrient intake of children and adolescents in Germany. Ernährungs Umschau. 2007. Available online: https://www.ernaehrungs-umschau.de/fileadmin/Ernaehrungs-Umschau/pdfs/pdf_2007/11_07/EU11_636_646.qxd.pdf (accessed on 6 January 2022).
- Mensink, G.B.M.; Kleiser, C.; Richter, A. Food consumption of children and adolescents in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundh. 2007, 50, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Gallo, L.A.; Gallo, T.F.; Young, S.L.; Moritz, K.M.; Akison, L.K. The impact of isolation measures due to COVID-19 on energy intake and physical activity levels in Australian University students. Nutrients 2020, 12, 1865. [Google Scholar] [CrossRef] [PubMed]
- Biró, G.; Hulshof, K.; Ovesen, L.; Amorim Cruz, J. A Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56, S25–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppitt, S.D.; Swann, D.; Black, A.E.; Prentice, A.M. Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokhof, B.; Günther, A.L.B.; Berg-Beckhoff, G.; Kroke, A.; Buyken, A.E. Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study. Public Health Nutr. 2010, 13, 826–834. [Google Scholar] [CrossRef] [Green Version]
Food Groups | Components |
---|---|
Ultra-processed foods (UPF) 1 | Ultra-processed dairy (e.g., processed cheese, milk desserts, milkshake, dairy powder, instant milk beverages), ready to eat egg meals (e.g., pancakes), Sugary food and sweets (e.g., syrup, sweet spreads, sweets and marshmallows, chocolate and bars, ice cream, jelly desserts, sweet sauces, sweet baking ingredients (e.g., marzipan)); sweet bread and cakes (incl. baking mixtures); salty snacks; ready to eat cereals and mueslis; ultra-processed meat and fish (e.g., sausages, meat/fish salad, breaded meat/fish); vegetarian/vegan meat/fish substitutes, vegetarian/vegan spreads; vegan milks substitutes with flavor, vegan cheese; potato products (e.g., French fries, croquettes, instant potato dumplings), wrapped bread; ready to bake doughs; filled pasta, e.g., tortellini; ready to eat meals; instant/ready to eat soups, sauces and dressings; formula and baby food; sugar sweetened beverages (e.g., sweetened fruit juice drinks and nectars, soft drinks/sodas, sweetened teas and waters, instant beverages, sweetened sport drinks) |
Fruits and vegetables | Fresh, frozen, canned and dried fruits and vegetables |
Sugar sweetened beverages | Sweetened fruit juice drinks and nectars, soft drinks/sodas, sweetened teas and waters, instant beverages (except dairy drinks), sweetened sport drinks |
Juices | Fruits and vegetable juices, juice spritzers and smoothies |
Pre-Pandemic 1 | Pandemic 2 | Changes (%) | |
---|---|---|---|
Females/males [%] | 45 (42)/63 (58) | - | |
Age [years] | 10.3 ± 4.8 | 11.3 ± 4.8 | +9.7 |
Dietary data | |||
TEI [kcal/day] | 1757 ± 566 | 1742 ± 489 | −0.85 |
Fat [%E] | 34.7 ± 5.3 | 35.3 ± 6.2) | +1.7 |
Protein [%E] | 13.5 ± 2.4 | 13.6 ± 2.9 | +0.7 |
Carbohydrate [%E] | 50.7 ± 6.1 | 50.2 ± 7.1 | −1.0 |
Free sugar [%E] | 13.0 ± 5.9 | 12.8 ± 6.1 | +1.5 |
Sugar sweetened beverage intake [g/1000kcal] | 9.9 (0.0; 91.5) | 0.0 (0.0; 86.5) | −100 |
Juice intake [g/1000kcal] | 18.4 (0; 61.5) | 24.0 (0.0; 75.5) | +30.4 |
Fruit & vegetable intake [g/1000kcal] | 159.6 ± 103.1 | 158.2 ± 93.7 | −0.9 |
Ultra-processed food intake [g/1000kcal] | 296.4 ± 134.4 | 290.5 ± 121.7 | −2.0 |
Underreported 3 [%] | 6 (5.6) | 14 (13.0) | +233 |
BMR/TEI | 1.4 ± 0.3 | 1.3 ± 0.3 | −7.1 |
Anthropometric data | |||
BMI [kg/m²] 4 | 18.2 ± 3.5 | 18.6 ± 4.0 | +2.2 |
Overweight [%] | 16 (14.8) | 17 (15.7) | +6.3 |
Socioeconomic factors [%] | |||
Maternal overweight 5 | 44 (40.7) | - | |
Maternal high educational status 6 | 100 (92.6) | - | |
Maternal employment | 94 (87.0) | - | |
Physical activity 7 Low Moderate High | 24 (32.9) 25 (34.3) 24 (32.9) | 24 (32.9) 24 (32.9) 25 (34.3) | 0.0 −4.2 +4.2 |
Childcare Characteristics | |
---|---|
Females/males [%] | 35/65 |
Age [years] | 11.0 (6.7; 15.9) |
Type of childcare before pandemic 1 | |
Kindergarten | 15 (21.1) |
School | 52 (73.2) |
Others, e.g., family members | 4 (5.6) |
Childcare visit (school or kindergarten) during pandemic 1 | |
Yes | 11 (15.5) |
days per week (n = 9) | 4.0 (3.0; 5.0) |
hours per week (n = 11) | 6.0 (6.0; 7.0) |
No | 60 (84.5) |
Home Office situation during pandemic 1 | |
Mother worked in home office | 20 (28.2) |
Father worked in home office | 13 (18.3) |
Both parents worked in home office | 21 (29.6) |
No parent worked in home office | 17 (23.9) |
Crude Model | Adjusted Model | |||
---|---|---|---|---|
Outcome (Dietary Intake) | β (CI) | p | β (CI) | p |
Difference in total energy intake (kcal) 1 | ||||
Pandemic | −14.74 (−86.81; 57.32) | 0.6859 | −109.65 (−187.42; −31.88) | 0.0062 |
Pre-pandemic (reference) | 0 | 0 | ||
Difference in fat intake (%E) 2 | ||||
Pandemic | 0.54 (−0.81; 1.90) | 0.4280 | 0.46 (−0.91; 1.83) | 0.5038 |
Pre-pandemic (reference) | 0 | 0 | ||
Difference in protein intake (%E) 3 | ||||
Pandemic | 0.00 (−0.57; 0.57) | 0.9930 | −0.08 (−0.68; 0.52) | 0.7857 |
Pre-pandemic (reference) | 0 | 0 | ||
Difference in carbohydrate intake (%E) 2 | ||||
Pandemic | −0.57 (−2.01; 0.88) | 0.4409 | −0.41 (−1.87; 1.05) | 0.5784 |
Pre-pandemic (reference) | 0 | 0 | ||
Difference in Free sugar intake (%E) 4 | ||||
Pandemic | −0.20 (−1.34; 0.94) | 0.7262 | −0.55 (−1.75; 0.66) | 0.3685 |
Pre-pandemic (reference) | 0 | 0 | ||
Difference in Food group intake | ||||
(g/1000 kcal) | ||||
Ultra-processed foods 1 | ||||
Pandemic | −2.89 (−23.41; 17.63) | 0.7801 | −12.19 (−34.30; 9.93) | 0.2764 |
Pre-pandemic (reference) | 0 | 0 | ||
Fruits and vegetables 1 | ||||
Pandemic | −1.41 (−17.02; 14.20) | 0.8582 | 2.68 (−13.95; 19.30) | 0.7497 |
Pre-pandemic (reference) | 0 | 0 | ||
Sugar sweetened beverages 5 | ||||
Pandemic | −2.47 (−21.05; 16.11) | 0.7921 | −12.78 (−32.16; 6.61) | 0.1936 * |
Pre-pandemic (reference) | 0 | 0 | ||
Juices 6 | ||||
Pandemic | 7.72 (−5.95; 21.38) | 0.2653 | 8.91 (−4.91; 22.72) | 0.2040 * |
Pre-pandemic (reference) | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrar, I.; Alexy, U.; Jankovic, N. Changes in Total Energy, Nutrients and Food Group Intake among Children and Adolescents during the COVID-19 Pandemic—Results of the DONALD Study. Nutrients 2022, 14, 297. https://doi.org/10.3390/nu14020297
Perrar I, Alexy U, Jankovic N. Changes in Total Energy, Nutrients and Food Group Intake among Children and Adolescents during the COVID-19 Pandemic—Results of the DONALD Study. Nutrients. 2022; 14(2):297. https://doi.org/10.3390/nu14020297
Chicago/Turabian StylePerrar, Ines, Ute Alexy, and Nicole Jankovic. 2022. "Changes in Total Energy, Nutrients and Food Group Intake among Children and Adolescents during the COVID-19 Pandemic—Results of the DONALD Study" Nutrients 14, no. 2: 297. https://doi.org/10.3390/nu14020297
APA StylePerrar, I., Alexy, U., & Jankovic, N. (2022). Changes in Total Energy, Nutrients and Food Group Intake among Children and Adolescents during the COVID-19 Pandemic—Results of the DONALD Study. Nutrients, 14(2), 297. https://doi.org/10.3390/nu14020297