Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration of Protocol
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Data Synthesis and Analysis
2.6. Patient and Public Involvement
3. Results
3.1. Study Characteristics
3.2. Summary of Probiotic Impact in Stroke-Induced Animal
3.2.1. Neurological Test
3.2.2. Biochemical Level
3.2.3. Histopathology
4. Discussion
4.1. Probiotic and Inflammatory Effects
4.2. The Use of the Hippocampus in Measured Outcomes
4.3. Probiotic Strain and Its Benefit
4.4. Probiotic and Oxidative Stress
4.5. Low-Quality Paper with No Control or Vague Parameter
4.6. Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
A20 | ubiquitin E3 ligase A20 |
Akt | Ak strain transforming |
BDNF | Brain-Derived Neurotrophic Factor |
CA1 | Cortical Area 1 |
CENTRAL | Cochrane Central Register of Clinical Trials |
DAMPS | Damage-Associated Molecular Pattern |
DALYs | Disability-Adjusted Life Years |
GABA | γ-Aminobutyric Acid |
GFAP | Glial Fibrillary Acidic Protein |
Iba1 | Ionized calcium binding adaptor molecule 1 |
IkB | Inhibitor of nuclear factor kappa B |
IL-1 | Interleukin 1 |
IL-10 | Interleukin 10 |
LPS | Lipopolysaccharide |
MDA | Malondialdehyde |
MCAO | Middle cerebral artery occlusion |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
PNE | Panax Notoginsenoside Extract |
ROS | Reactive Oxygen Species |
SCFAs | Short-Chain Fatty Acids |
SOD | Superoxide Dismutase |
SSRIs | Selective Serotonin Reuptake Inhibitors |
TLR4 | Toll-Like Receptor 4 |
TNF alpha | Tumor necrosis factor alpha |
References
- Lanas, F.; Seron, P. Facing the stroke burden worldwide. Lancet Glob. Health 2021, 9, e235–e236. [Google Scholar] [CrossRef]
- Stinear, C.M.; Lang, C.E.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 19, 348–360. [Google Scholar] [CrossRef]
- Cramer, S.C. Drugs to Enhance Motor Recovery After Stroke. Stroke 2015, 46, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.M. SSRI Antidepressant Medications: Adverse effects and tolerability. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Borovac, J. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med. 2016, 89, 37–47. [Google Scholar] [PubMed]
- Lye, H.S.; Balakrishnan, K.; Thiagarajah, K.; Ismail, N.I.M.; Ooi, S.Y. Beneficial Properties of Probiotics. Trop. Life Sci. Res. 2016, 27, 73–90. [Google Scholar] [CrossRef]
- Mörkl, S.; Butler, M.I.; Holl, A.; Cryan, J.F.; Dinan, T.G. Probiotics and the Microbiota-Gut-Brain Axis: Focus on Psychiatry. Curr. Nutr. Rep. 2020, 9, 171–182. [Google Scholar] [CrossRef]
- Iyer, L.M.; Aravind, L.; Coon, S.L.; Klein, D.; Koonin, E.V. Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004, 20, 292–299. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2021, 108, 16050–16055. [Google Scholar] [CrossRef]
- Luck, B.; Engevik, M.A.; Ganesh, B.; Lackey, E.P.; Lin, T.; Balderas, M.; Major, A.; Runge, J.; Luna, R.A.; Sillitoe, R.V.; et al. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci. Rep. 2020, 10, 7737. [Google Scholar] [CrossRef] [PubMed]
- Durgan, D.J.; Lee, J.; McCullough, L.D.; Bryan, R.M., Jr. Examining the Role of the Microbiota-Gut-Brain Axis in Stroke. Stroke 2019, 50, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dowd, S.E.; Scurlock, B.; Acosta-Martinez, V.; Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 2009, 96, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Akhoundzadeh, K.; Vakili, A.; Shadnoush, M.; Sadeghzadeh, J. Effects of the Oral Ingestion of Probiotics on Brain Damage in a Transient Model of Focal Cerebral Ischemia in Mice. Iran. J. Med. Sci. 2018, 43, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liang, X. Food therapy and medical diet therapy of Traditional Chinese Medicine. Clin. Nutr. Exp. 2018, 18, 1–5. [Google Scholar] [CrossRef]
- Cassir, N.; Benamar, S.; La Scola, B. Clostridium butyricum: From beneficial to a new emerging pathogen. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, 37–45. [Google Scholar] [CrossRef]
- Bae, E.-A.; Hyun, Y.-J.; Choo, M.-K.; Oh, J.K.; Ryu, J.H.; Kim, D.-H. Protective effect of fermented Red ginseng on a transient focal ischemic rats. Arch. Pharmacal Res. 2004, 27, 1136–1140. [Google Scholar] [CrossRef]
- Chen, R.; Wu, P.; Cai, Z.; Fang, Y.; Zhou, H.; Lasanajak, Y.; Tang, L.; Ye, L.; Hou, C.; Zhao, J. Puerariae Lobatae Radix with Chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers of dietary capsaicin against chronic low-grade inflammation. J. Nutr. Biochem. 2019, 65, 101–114. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.; Li, X.; Chen, H.; Kang, D.; Shao, Y.; Shen, B.; Zhu, Z.; Yin, X.; Xie, L.; et al. Low Cerebral Exposure Cannot Hinder the Neuroprotective Effects of Panax Notoginsenosides. Drug Metab. Dispos. 2017, 46, 53–65. [Google Scholar] [CrossRef]
- Liu, J.; Sun, J.; Wang, F.; Yu, X.; Ling, Z.; Li, H.; Zhang, H.; Jin, J.; Chen, W.; Pang, M.; et al. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate. BioMed Res. Int. 2015, 2015, 412946. [Google Scholar] [CrossRef]
- Mei, Z.-G.; Tan, L.-J.; Wang, J.-F.; Li, X.-L.; Huang, W.-F.; Zhou, H.-J. Fermented Chinese formula Shuan-Tong-Ling attenuates ischemic stroke by inhibiting inflammation and apoptosis. Neural Regen. Res. 2017, 12, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Nagao, M.; Yamano, S.; Imagawa, N.; Igami, K.; Miyazaki, T.; Ito, H.; Watanabe, T.; Kubota, K.; Katsurabayashi, S.; Iwasaki, K. Effect of Lactobacillus paracasei A221-fermented ginseng on impaired spatial memory in a rat model with cerebral ischemia and β-amyloid injection. Tradit. Kamp-Med. 2019, 6, 96–104. [Google Scholar] [CrossRef]
- Pang, S.; Luo, Z.; Wang, C.C.; Hong, X.; Zhou, J.; Chen, F.; Ge, L.; Li, X.; Dai, Y.; Wu, Y.; et al. Effects of Dioscorea polystachya ‘yam gruel’ on the cognitive function of diabetic rats with focal cerebral ischemia-reperfusion injury via the gut-brain axis. J. Integr. Neurosci. 2020, 19, 273–283. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.S.; Kang, S.; Moon, B.R. Fermented soybeans, Chungkookjang, prevent hippocampal cell death and β-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. Exp. Biol. Med. 2015, 241, 296–307. [Google Scholar] [CrossRef]
- Rahmati, H.; Momenabadi, S.; Vafaei, A.A.; Bandegi, A.R.; Mazaheri, Z.; Vakili, A. Probiotic supplementation attenuates hippocampus injury and spatial learning and memory impairments in a cerebral hypoperfusion mouse model. Mol. Biol. Rep. 2019, 46, 4985–4995. [Google Scholar] [CrossRef]
- Sun, J.; Wang, F.; Ling, Z.; Yu, X.; Chen, W.; Li, H.; Jin, J.; Pang, M.; Zhang, H.; Yu, J.; et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res. 2016, 1642, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Wanchao, S.; Chen, M.; Zhiguo, S.; Futang, X.; Mengmeng, S. Protective effect and mechanism of Lactobacillus on cerebral ischemia reperfusion injury in rats. Braz. J. Med. Biol. Res. 2018, 51, e7172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, S.; Duan, H.; Zhu, Z.; Yang, Z.; Cao, J.; Zhao, Y.; Huang, Z.; Wu, Q.; Duan, J. A novel, highly-water-soluble apigenin derivative provides neuroprotection following ischemia in male rats by regulating the ERK/Nrf2/HO-1 pathway. Eur. J. Pharmacol. 2019, 855, 208–215. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, C.; Gong, L.; Zhang, X.; Zhu, Y.; Wang, H.; Qu, X.; Gao, R.; Yin, F.; Liu, X.; et al. The Association of Post-Stroke Cognitive Impairment and Gut Microbiota and its Corresponding Metabolites. J. Alzheimer’s Dis. 2020, 73, 1455–1466. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Williams, M. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef]
- Gould, T.D.; Dao, D.T.; Kovacsics, C.E. The Open Field Test. In Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests; Gould, T.D., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 1–20. [Google Scholar]
- Idriss, H.T.; Naismith, J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Sun, J.; Ling, Z.; Wang, F.; Chen, W.; Li, H.; Jin, J.; Zhang, H.; Pang, M.; Yu, J.; Liu, J. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci. Lett. 2016, 613, 30–35. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Bharosay, A.; Bharosay, V.V.; Bandyopadhyay, D.; Sodani, A.; Varma, M.; Baruah, H. Effect of Lipid Profile Upon Prognosis in Ischemic and Haemorrhagic Cerebrovascular Stroke. Indian J. Clin. Biochem. 2013, 29, 372–376. [Google Scholar] [CrossRef]
- Piironen, K.; Putaala, J.; Rosso, C.; Samson, Y. Glucose and Acute Stroke. Stroke 2012, 43, 898–902. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Yin, X.; Liu, H.; Zheng, D.; Zhong, C.; Du, H.; Zhang, Y.; Zhao, H.; Qiu, C.; Fan, L.; et al. Hyperfibrinogenemia is Significantly Associated with an Increased Risk of In-hospital Mortality in Acute Ischemic Stroke Patients. Curr. Neurovascular Res. 2017, 14, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Prabhakar, R.; Kumar, R.; Jyoti, D.; Sharma, C.B. Fibrinogen as a Predictor of Early Neurological Deterioration and Poor Outcome in Acute Ischemic Stroke. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar] [PubMed]
- Mao, C.; Yuan, J.-Q.; Lv, Y.-B.; Gao, X.; Yin, Z.-X.; Kraus, V.B.; Luo, J.-S.; Chei, C.-L.; Matchar, D.B.; Zeng, Y.; et al. Associations between superoxide dismutase, malondialdehyde and all-cause mortality in older adults: A community-based cohort study. BMC Geriatr. 2019, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Dohare, P.; Hyzinski-García, M.C.; Vipani, A.; Bowens, N.H.; Nalwalk, J.W.; Feustel, P.J.; Keller, R.W.K., Jr.; Jourd’Heuil, D.; Mongin, A.A. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke. Free Radic. Biol. Med. 2014, 77, 168–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugliandolo, A.; Bramanti, P.; Mazzon, E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int. J. Mol. Sci. 2020, 21, 4875. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, A.; Srivastava, S.; Siow, R.C.M.; Modo, M.; Fraser, P.A.; Mann, G.E. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J. Physiol. 2011, 589, 4125–4136. [Google Scholar] [CrossRef] [PubMed]
- Björkholm, C.; Monteggia, L.M. BDNF—A Key Transducer of Antidepressant Effects. Neuropharmacology 2015, 102, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Arya, A. Brain-gut axis after stroke. Brain Circ. 2018, 4, 165–173. [Google Scholar] [CrossRef]
- Dhikav, V.; Anand, K.S. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Zaidi, S.F.; Aghaebrahim, A.; Urra, X.; Jumaa, M.A.; Jankowitz, B.; Hammer, M.; Nogueira, R.; Horowitz, M.; Reddy, V.; Jovin, T.G. Final Infarct Volume Is a Stronger Predictor of Outcome Than Recanalization in Patients with Proximal Middle Cerebral Artery Occlusion Treated with Endovascular Therapy. Stroke 2012, 43, 3238–3244. [Google Scholar] [CrossRef]
- Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics 2016, 13, 661–670. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Yuan, X.; Yang, J.; Li, K. Effect of early enteral nutrition combined with probiotics in patients with stroke: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2021, 76, 592–603. [Google Scholar] [CrossRef]
- Fan, W.; Dai, Y.; Xu, H.; Zhu, X.; Cai, P.; Wang, L.; Sun, C.; Hu, C.; Zheng, P.; Zhao, B. Caspase-3 Modulates Regenerative Response After Stroke. Stem Cells 2013, 32, 473–486. [Google Scholar] [CrossRef]
- Keubler, L.M.; Buettner, M.; Häger, C.; Bleich, A. A Multihit Model: Colitis Lessons from the Interleukin-10-deficient Mouse. Inflamm. Bowel Dis. 2015, 21, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, G.; Wen, K.; Bui, T.; Cao, D.; Zhang, Y.; Yuan, L. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol. 2010, 23, 135–149. [Google Scholar] [CrossRef]
- Elian, S.D.; Souza, E.L.; Vieira, A.T.; Teixeira, M.M.; Arantes, R.M.; Nicoli, J.R.; Martins, F.S. Bifidobacterium longum subsp. infantis BB-02 attenuates acute murine experimental model of inflammatory bowel disease. Benef. Microbes. 2015, 6, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kuhara, T.; Oki, M.; Xiao, J.Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomised, double-blind, placebo-controlled trial. Benef. Microbes 2019, 10, 511–520. [Google Scholar] [CrossRef]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Williams, T.I.; Lynn, B.C.; Markesbery, W.R.; Lovell, M.A. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1094–1099. [Google Scholar] [CrossRef]
- Shandilya, S.; Kumar, S.; Jha, N.K.; Kesari, K.K.; Ruokolainen, J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J. Adv. Res. 2021, 38, 223–244. [Google Scholar] [CrossRef]
Author | Country | Type of Intervention | Animal Type | Number of Case | Number of Control | Measure Outcome | Result of Outcome | |
---|---|---|---|---|---|---|---|---|
Non-food based | Food-based | |||||||
Akhoundzadeh, 2018 [14] | Iran | Combination of 4 viable probiotic bacteria strains, namely Bifidobacterium breve, Lactobacillus casei, Lactobacillus bulgaricus (Lactobacillus delbrueckii subsp. bulgaricus), and Lactobacillus acidophilus | Mice | 5 | 5 mice received saline, 5 mice were sham operated | Neurological outcome | Could not improve neurological function | |
Histopathology (infarct size) | Reduced infarct size 52% | |||||||
Biochemical markers | Decreased the malondialdehyde content and TNF alpha level | |||||||
Bae, 2004 [17] | South Korea | Red ginseng and fermented red ginseng | Rat | Ginseng 5, red ginseng 5, fermented red ginseng 5 | 10 | Histopathology (infarction area, volume) | Fermented red ginseng treated group showed reduction of the infarction area in all regions and total infarction volume | |
Chen R, 2019 [18] | United States | Puerariae Lobatae Radix(PLR) + Chuanxiong Rhizoma(CXR) | Rat | Not found | Not found | Neurological function score | Repaired neurological impairment | |
Histopathology (body weight gain, cerebral infarction area) | Reduced the cerebral infarction | |||||||
Biochemical level (serum level of LDL/HDL/TG/T CHO/ blood viscosity/fibrinogen level/ platelet aggregation rate) | Reversed the dyslipidemiaReduced the blood viscosity and thrombotic risk | |||||||
Li, 2018 [19] | United States | Panax Notoginsenoside extract(PNE) | Germ free rat | Not found | Not found | Neurological evaluation | Decreased neurological deficit scores | |
Histopathology (triphenyl tetrazolium chloride (TTC) assessment of infarct size) | Decreased cerebral infarct volume | |||||||
Biochemical level (pro inflammatory cytokine/BDNF/GABA in rat hippocampus) | Upregulated the expression of GABA receptor in hippocampusDecreased rate of attenuation in BDNF expression | |||||||
Liu, 2015 [20] | China | Clostridium butyricum | Mice | 12 | 12 | Neurological evaluation (behavioral tests, open field test, Morris water maze) | Improved spatial learning ability | |
Histopathology (Hippocampal change) | Ameliorated the morphological changes in the HippocampusIncreased butyrate in the brain | |||||||
Mei, 2017 [21] | China | Shuan tong ling | Rat | Not found | Not found | Neurological deficit | Increased neurological scores | |
Histopathology (infarct volume) | Reduced infarct volume | |||||||
Biochemical level (inflammatory cytokines including TNF alpha, IL 1 beta) | Decreased TNF alpha and IL 1 beta | |||||||
Nagao, 2019 [22] | Japan | Fermented ginseng | Rat | Not found | Not found | Neurological evaluation (spatial memory evaluated using Morris water maze (MWM)) | Shortened the extended time to reach the platform in the MWM | |
Histopathology (use of neuronal nuclei positive cells to assess hippocampus neuron loss, protein expression of caspase3/Iba1/glial fibrillary acidic protein) | Ameliorated loss of hippocampus cornu ammonis neurons and increased caspase-3/Iba1 | |||||||
Pang, 2020 [23] | United Kingdom | Yam gruel | Rat | 9 | 18 | Neurological evaluation (MWM test (spatial learning and memory function)) | Improved cognitive function | |
Biochemical markers (SOD and MDA, TNF alpha and IL 1 beta and LPS, characteristic of gut microbiota) | Increased relative content of probiotic bacteria and SCFAs in intestinal tract, cerebral cortexreduced oxidative stressand inflammatory responsePromoted the expression of neurotransmitters and brain derived neurotrophic factor | |||||||
Park, 2016 [24] | Korea | Chungkookjang (fermented soybean) | Gerbil | Not found | Not found | Neurological evaluation | Prevented symptoms such as drooped eyelid/bristling hair/reduced muscle tone and flexor reflex/abnormal posture | |
Histopathology (Neuronal cell death in hippocampus) | Prevent the neuronal cell deat | |||||||
Biochemical markers (cytokine expression in hippocampus, serum cytokine levels, glucose metabolism) | Suppress cytokine expression, prevent the impairment of glucose metabolism | |||||||
Rahmati, 2019 [25] | Netherlands | Commercial probiotics (LactoCare capsule, 109 CFU, ZIST TAKHMIR, Tehran, Iran), which are a mixture of seven probiotic bacteria strains, including Lactobacillus casei ZT-Lca.106, Lactobacillus acidophilus ZT-Lac.51, Lactobacillus rhamnosus ZT-Lrh.54, Lactobacillus bulgaricus ZT-Lbu.90, Bifidobacterium breve ZT-Bbr.22, Bifidobacterium longum ZT-Lca.106, and Streptococcus thermophilus ZT-Sth.20 | Mouse | 30 | 20 | Neurological evaluation (Spatial and learning memory) | Reduced spatial memory impairment and neurological dysfunction | |
Histopathology (histological damage and apoptosis) | Reduced neuronal death | |||||||
Biochemical markers malondialdehyde (MDA) content and brain-derived neurotrophic factor (BDNF) level | MDA and BDNF change was not significant | |||||||
Sun, 2016 [26] | Netherlands | Clostridium butyricum | Diabetic mice | Not found | Not found | Neurological evaluaiton (Cognitive impairment) | Ameliorate cognitive impairment | |
Histopathology (neuronal injury, apoptosis, expression of Akt/p-Akt/caspase3 level) | Ameliorate histopathologic change in the hippocampusIncrease p-Atk expression and decreased caspase-3 expression equal inhibit neuronal apoptosis | |||||||
Biochemical markers (blood glucose level) | Decrease blood glucose level | |||||||
Wanchao, 2018 [27] | China | Inactivated lactobacillus | Rat | 24 (divided into 4 groups with varied concentrations) | 6 | Neurological evaluationneurolobehavioral scores, | Improve neurobehavioral scores | |
HistopathologyCerebral infarction volume, tunnel and TLR4/ IkB/A20 (cell apoptosis) | Decrease cerebral infarction volumeDecrease neural cells apoptosisInhibit expression of TLR4Promote the expression of IkB and A20 which | |||||||
Biochemical markers (SOD + MDA levels), | MDA level decrease, SOD activity increase, reduce oxidative stress | |||||||
Zhang, 2019 [28] | Netherlands | Chamomile | Rat | Not found | Not found | Neurological evaluation (neurological score, neurological deficits) | Improve neurological scores | |
Histopathology (infarction size) | Decrease in both infarct volume | |||||||
Biochemical markers(Protein levels of Nrf2/Keap1/HO1/ERK) | Increase the activity of HO1 and Nrf2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savigamin, C.; Samuthpongtorn, C.; Mahakit, N.; Nopsopon, T.; Heath, J.; Pongpirul, K. Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients 2022, 14, 3661. https://doi.org/10.3390/nu14173661
Savigamin C, Samuthpongtorn C, Mahakit N, Nopsopon T, Heath J, Pongpirul K. Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients. 2022; 14(17):3661. https://doi.org/10.3390/nu14173661
Chicago/Turabian StyleSavigamin, Chatuthanai, Chatpol Samuthpongtorn, Nuttida Mahakit, Tanawin Nopsopon, Julia Heath, and Krit Pongpirul. 2022. "Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies" Nutrients 14, no. 17: 3661. https://doi.org/10.3390/nu14173661
APA StyleSavigamin, C., Samuthpongtorn, C., Mahakit, N., Nopsopon, T., Heath, J., & Pongpirul, K. (2022). Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients, 14(17), 3661. https://doi.org/10.3390/nu14173661