The Health Benefits of Egg Protein
Abstract
:1. Introduction
2. Egg Protein and Prevention of Malnutrition in Children
3. Egg Proteins and Skeletal Muscle Health
Egg Proteins and Sarcopenia
4. Egg Proteins, Immunity and Protection against Chronic Disease
5. Eggs Protein, Satiety, and Weight Loss
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Available online: http://health.gov/dietaryguidelines/2015/ (accessed on 14 June 2022).
- Herron, K.L.; Vega-Lopez, S.; Conde, K.; Ramjiganesh, T.; Shachter, N.S.; Fernandez, M.L. Men classified as hypo- or hyperresponders to dietary cholesterol feeding exhibit differences in lipoprotein metabolism. J. Nutr. 2003, 133, 1036–1042. [Google Scholar] [CrossRef]
- DiMarco, D.D.; Barona, J.; Fernandez, M.L. Dietary cholesterol affects plasma lipid levels, the intravascular processing of lipoproteins and reverse cholesterol transport without increasing the risk for heart disease. Nutrients 2012, 4, 1015–1025. [Google Scholar]
- Blesso, C.N.; Andersen, C.J.; Barona, J.; Volek, J.S.; Fernandez, M.L. Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 2013, 62, 400–410. [Google Scholar] [CrossRef]
- Ballesteros, M.N.; Valenzuela, F.; Robles, A.E.; Artalejo, E.; Aguilar, D.; Andersen, C.J.; Valdez, H.; Fernandez, M.L. One egg per day improves inflammation when compared to an oatmeal-based breakfast without increasing other cardiometabolic risk factors in diabetic patients. Nutrients 2015, 7, 3449–3463. [Google Scholar] [CrossRef]
- Fernandez, M.L. Effects of eggs on plasma lipoproteins in healthy populations. Food Funct. 2010, 1, 156–160. [Google Scholar] [CrossRef]
- Kovas-Nolan, J.; Phillips, M.; Mine, Y. Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef]
- Dubin, S.; McKee, K.; Battish, S. Essential amino acid reference profile affects the evaluation of enteral feeding products. J. Am. Diet Assoc. 1994, 94, 884–887. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Andersen, C.J. Eggs, Composition and Health. In Encyclopedia of Food and Health; Finglas, P.M., Toldra, F., Caballero, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 470–475. [Google Scholar]
- Rona, R.J.; Keil, T.; Summers, C.; Gislason, D.; Zuidmeer, L.; Sodergren, E.; Sigurdardottir, S.T.; Lindner, T.; Goldhahn, K.; Dahlstrom, J.; et al. The prevalence of food allergy: A meta-analysis. J. Allergy Clin. Immunol. 2007, 120, 638–646. [Google Scholar]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef][Green Version]
- Tome, D. Criteria and markers for protein quality assessment-A review. Br. J. Nutr. 2012, 108, S222–S229. [Google Scholar]
- Drewnowski, A. The nutrient rich food index helps to identify healthy, affordable foods. Am. J. Clin. Nutr. 2010, 91, 1095S–1110S. [Google Scholar] [CrossRef] [PubMed]
- Stanciuc, N.; Cretu, A.A.; Banu, I.; Aprodu, I. Advances on the impact of thermal processing on structure and antigenicity of chicken ovomucoid. J. Sci. Food Agric. 2018, 98, 3119–3128. [Google Scholar] [PubMed]
- Iannotti, L.L.; Lutter, C.K.; Bunn, D.A.; Stewart, C.P. Eggs: The uncracked potential for improving maternal and young child nutrition among the world’s poor. Nutr. Rev. 2014, 72, 355–368. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pachón, H.; Simondon, K.B.; Fall, S.T.; Menon, P.; Ruel, M.T.; Hotz, C.; Creed-Kanashiro, H.; Arce, B.; Domínguez, M.R.; Frongillo, E.A.; et al. Constraints on the delivery of animal source foods to infants and young children: Case studies from five countries. Food Nutr. Bull. 2007, 28, 215–229. [Google Scholar] [CrossRef]
- Alive & Thrive. Infant and Young Child Feeding in Communities: A Rapid Assessment in Tigray and SNNPR, Ethiopia; Alive & Thrive: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Jinadu, M.K.; Ojofeitimi, E.O.; Sifor, E.O. Feeding patterns of children with protein-energy malnutrition in Nigeria. Trop. Doct. 1986, 16, 82–85. [Google Scholar] [CrossRef]
- Sullivan, J.; Ndekha, M.; Maker, D.; Hotz, C.; Manary, M.J. The quality of the diet in Malawian children with kwashiorkor and marasmus. Matern. Child Nutr. 2006, 2, 114–122. [Google Scholar] [CrossRef]
- Lutter, C.K.; Iannotti, L.L.; Stewart, C.P. The potential of a simple egg to improve maternal nutrition. In Eggs: A Potential Food for Improving Maternal and Child Nutrition; Wiley: Hoboken, NJ, USA, 2018; Volume 14. [Google Scholar]
- Cao, J.; Wei, X.; Tang, X.; Jiang, H.; Fan, Z.; Yu, Q.; Chen, J.; Liu, Y.; Li, T. Effects of egg and Vitamin A supplementation on hemoglobin, retinol status and physical growth of primary and middle school students in Chongqing, China. Asia Pac. J. Clin. Nutr. 2013, 22, 214–221. [Google Scholar]
- Guldan, G.S.; Fan, H.C.; Ma, X.; Ni, Z.Z.; Xiang, X.; Tang, M.Z. Culturally appropriate nutrition education improves infant feeding and growth in rural Sichuan, China. J. Nutr. 2000, 130, 1204–1211. [Google Scholar] [CrossRef][Green Version]
- Ianannotti, L.L.; Lutter, C.K.; Stewart, C.P.; Gallegos Riofrio, C.A.; Malo, C.; Reignhar, G.; Walters, W.F. Eggs in early complementary feeding and child growth. A randomized controlled trial. Pediatrics 2017, 140, e20163459. [Google Scholar] [CrossRef][Green Version]
- Iananotti, L.; Cunningham, K.; Ruel, M.T. Diversifying into healthy diets: Homestead food production in Bangladesh. In Millions Fed: Proven Success in Agricultural Development; Spielman, D.J., Pandya-Lorch, R., Eds.; International Policy Research Institute: Washington, DC, USA, 2009; pp. 145–151. [Google Scholar]
- Olney, D.K.; Talukder, A.; Iannotti, L.L.; Ruel, M.T.; Quinn, V. Assessing impact and impact pathways of a homestead food production program on household and child nutrition in Cambodia. Food Nutr. Bull. 2009, 30, 355–369. [Google Scholar] [CrossRef][Green Version]
- De Pee, S.; Bloem, M.W.; Satoto; Yip, R.; Sukaton, A.; Tjiong, R.; Shrimpton, R.; Muhilal Kodyat, B. Impact of a social marketing campaign promoting dark-green leafy vegetables and eggs in central Java, Indonesia. Int. J. Vitam. Res. 1998, 68, 389–398. [Google Scholar]
- Nielsen, H.; Roos, N.; Thisted, S.H. The impact of semi-scavenging poultry production on the consumption of animal source foods by women and girls in Bangladesh. J. Nutr. 2003, 133, 4027S–4030S. [Google Scholar] [CrossRef] [PubMed]
- Gala, O.M.; Harrison, G.G.; Abdou, A.I.; Zein el Abedin, A. The impact of a small scale agricultural intervention on socio-economic and health status. Food Nutr. 1987, 13, 35–43. [Google Scholar]
- Hunter, G.R.; McCarthy, J.P.; Bamman, M.M. Effects of resistance training on older adults. Sports Med. 2004, 34, 329–348. [Google Scholar] [CrossRef] [PubMed]
- Sillanpaa, E.; Laaksonen, D.E.; Hakkinen, A.; Karavirta, L.; Jensen, B.; Kraemer, W.J.; Nyman, K.; Hakkinen, K. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur. J. Appl. Physiol. 2009, 106, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic strength training improves insulin sensitivity without altering plasma levels and gene expression of adipokines in subcutaneous adipose tissue in obese men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar]
- Kohrt, W.M.; Bloomfield, S.A.; Little, K.D.; Nelson, M.E.; Yingling, V.R. American College of Sports Medicine American College of Sports Medicine Position Stand: Physical activity and bone health. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar] [CrossRef][Green Version]
- Collier, S.R.; Kanaley, J.A.; Carhart, R., Jr.; Frechette, V.; Tobin, M.M.; Bennett, N.; Luckenbaugh, A.N.; Fernhall, B. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension. Acta Physiol. 2009, 195, 339–348. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Phillips, S.M. Protein requirements and supplementation in strength sports. Nutrition 2004, 20, 689–695. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 8. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Antonio, J.; Ellerbroek, A.; Silver, T.; Orris, S.; Scheiner, M.; Gonzalez, A.; Peacock, C.A. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women—A follow-up investigation. J. Int. Soc. Sports Nutr. 2015, 12, 39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Antonio, J.; Ellerbroek, A.; Silver, T.; Vargas, L.; Tamayo, A.; Buehn, R.; Peacock, C.A. A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. J. Nutr. Metab. 2016, 2016, 9104792. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fryar, C.D.; Carroll, M.D.; Afful, J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats2020. Available online: https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/overweight-obesity-adults-H.pdf (accessed on 11 June 2022).
- U.S. Department of Agriculture USDA National Nutrient Database. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 14 June 2022).
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef][Green Version]
- Food and Agriculture Organization. Report of a Sub-Committee of the 2011 FAO Consultation on “Protein Quality Evaluation in Human Nutrition”: The Assessment of Amino Acid Digestibility in Foods for Humans and including a Collation of Published Ileal Amino Acid Digestibility Data for Human Foods; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations. United Nations University Protein and Amino Acid Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Fouillet, H.; Juillet, B.; Gaudichon, C.; Mariotti, F.; Tome, D.; Bos, C. Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1691–R1705. [Google Scholar] [CrossRef][Green Version]
- Norton, L.E.; Wilson, G.J.; Moulton, C.J.; Layman, D.K. Meal Distribution of Dietary Protein and Leucine Influences Long-Term Muscle Mass and Body Composition in Adult Rats. J. Nutr. 2017, 147, 195–201. [Google Scholar]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar]
- Hida, A.; Hasegawa, Y.; Mekata, Y.; Usuda, M.; Masuda, Y.; Kawano, H.; Kawano, Y. Effects of egg white protein supplementation on muscle strength and serum free amino acid concentrations. Nutrients 2012, 4, 1504–1517. [Google Scholar] [CrossRef][Green Version]
- Iglay, H.B.; Apolzan, J.W.; Gerrard, D.E.; Eash, J.K.; Anderson, J.C.; Campbell, W.W. Moderately increased protein intake predominately from egg sources does not influence whole body, regional, or muscle composition responses to resistance training in older people. J. Nutr. Health Aging 2009, 13, 108–114. [Google Scholar]
- Kato, Y.; Sawada, A.; Numao, S.; Suzuki, M. Chronic effect of light resistance exercise after ingestion of a high-protein snack on increase of skeletal muscle mass and strength in young adults. J. Nutr. Sci. Vitaminol. 2011, 57, 233–238. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bagheri, R.; Hooshmand Moghadam, B.; Ashtary-Larky, D.; Forbes, S.C.; Candow, D.G.; Galpin, A.J.; Eskandari, M.; Kreider, R.B.; Wong, A. Whole Egg Vs. Egg White Ingestion During 12 weeks of Resistance Training in Trained Young Males: A Randomized Controlled Trial. J. Strength Cond Res. 2021, 35, 411–419. [Google Scholar]
- Bagheri, R.; Hooshmand Moghadam, B.; Jo, E.; Tinsley, G.M.; Stratton, M.T.; Ashtary-Larky, D.; Eskandari, M.; Wong, A. Comparison of whole egg v. egg white ingestion during 12 weeks of resistance training on skeletal muscle regulatory markers in resistance-trained men. Br. J. Nutr. 2020, 124, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, R.; Shirouchi, B.; Umegatani, M.; Fukuda, M.; Muto, A.; Masuda, Y.; Kunou, M.; Sato, M. Dietary egg-white protein increases body protein mass and reduces body fat mass through an acceleration of hepatic beta-oxidation in rats. Br. J. Nutr. 2017, 118, 423–430. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Eckfeldt, G.A.; Sheffner, A.L.; Spector, H. The pepsin-digest-residue (PDR) amino acid index of net protein utilization. J. Nutr. 1956, 60, 105–120. [Google Scholar]
- Matsuoka, R.; Shirouchi, B.; Kawamura, S.; Baba, S.; Shiratake, S.; Nagata, K.; Imaizumi, K.; Sato, M. Dietary egg white protein inhibits lymphatic lipid transport in thoracic lymph duct-cannulated rats. J. Agric. Food Chem. 2014, 62, 10694–10700. [Google Scholar] [CrossRef]
- Gargouri, Y.; Julien, R.; Sugihara, A.; Verger, R.; Sarda, L. Inhibition of pancreatic and microbial lipases by proteins. Biochim. Biophys. Acta 1984, 795, 326–331. [Google Scholar] [CrossRef]
- Van Loon, L.J. Leucine as a pharmaconutrient in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 71–77. [Google Scholar] [CrossRef]
- Van Vliet, S.; Shy, E.L.; Abou Sawan, S.; Beals, J.W.; West, D.W.; Skinner, S.K.; Ulanov, A.V.; Li, Z.; Paluska, S.A.; Parsons, C.M.; et al. Consumption of whole eggs promotes greater stimulation of postexercise muscle protein synthesis than consumption of isonitrogenous amounts of egg whites in young men. Am. J. Clin. Nutr. 2017, 106, 1401–1412. [Google Scholar] [CrossRef]
- Santos, H.O.; Gomes, G.K.; Schoenfeld, B.J.; de Oliveira, E.P. The Effect of Whole Egg Intake on Muscle Mass: Are the Yolk and Its Nutrients Important? Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 514–521. [Google Scholar] [CrossRef]
- Evans, W.; Shankaran, M.; Nyangau, E.; Field, T.; Mohammed, H.; Wolfe, R.; Schutzler, S.; Hellerstein, M. Effects of Fortetropin on the Rate of Muscle Protein Synthesis in Older Men and Women: A Randomized, Double-Blinded, Placebo-Controlled Study. J. Gerontol. Ser. A 2021, 76, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L. Rethinking dietary cholesterol. Curr. Opin. Med. Nutr. Metab. Care 2012, 15, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F., Jr.; Young, A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. FASEB J. 2013, 27, 3837–3847. [Google Scholar] [CrossRef][Green Version]
- U.S. Department of Health and Human Services Physical Activity Guidelines for Americans. Available online: https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (accessed on 18 June 2022).
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smith, A.; Gray, J. Considering the benefits of egg consumption for older people at risk of sarcopenia. Br. J. Community Nurs. 2016, 21, 305–309. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Campbell, W.W.; Jacques, P.F.; Kritchevsky, S.B.; Moore, L.L.; Rodriguez, N.R.; van Loon, L.J. Protein and healthy aging. Am. J. Clin. Nutr. 2015, 101, 1339S–1345S. [Google Scholar] [CrossRef][Green Version]
- Murton, A.J. Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc. Nutr. Soc. 2015, 74, 387–396. [Google Scholar] [CrossRef][Green Version]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef][Green Version]
- Johnston, A.P.; De Lisio, M.; Parise, G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl. Physiol. Nutr. Metab. 2008, 33, 191–199. [Google Scholar] [CrossRef]
- Wall, B.T.; van Loon, L.J. Nutritional strategies to attenuate muscle disuse atrophy. Nutr. Rev. 2013, 71, 195–208. [Google Scholar] [CrossRef]
- Boirie, Y. Fighting sarcopenia in older frail subjects: Protein fuel for strength, exercise for mass. J. Am. Med. Dir. Assoc. 2013, 14, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L. 3rd Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008, 87, 1554S–1557S. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mendonca, N.; Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Mathers, J.C.; Siervo, M.; Wrieden, W.L.; Seal, C.J.; Kirkwood, T.B.; et al. Macronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016, 115, 2170–2180. [Google Scholar] [PubMed][Green Version]
- Tieland, M.; Borgonjen-Van den Berg, K.J.; van Loon, L.J.; de Groot, L.C. Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: Scope for improvement. Eur. J. Nutr. 2012, 51, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.L.; Richardson, J.R.; Collene, A.L.; Droll, K.R.; Belury, M.A. Dietary protein and beef consumption predict for markers of muscle mass and nutrition status in older adults. J. Nutr. Health Aging 2012, 16, 784–790. [Google Scholar] [CrossRef]
- Pennings, B.; Groen, B.B.; van Dijk, J.W.; de Lange, A.; Kiskini, A.; Kuklinski, M.; Senden, J.M.; van Loon, L.J. Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men. Am. J. Clin. Nutr. 2013, 98, 121–128. [Google Scholar] [CrossRef][Green Version]
- Robinson, M.J.; Burd, N.A.; Breen, L.; Rerecich, T.; Yang, Y.; Hector, A.J.; Baker, S.K.; Phillips, S.M. Dose-dependent responses of myofibrillar protein synthesis with beef ingestion are enhanced with resistance exercise in middle-aged men. Appl. Physiol. Nutr. Metab. 2013, 38, 120–125. [Google Scholar] [CrossRef][Green Version]
- Pannemans, D.L.; Wagenmakers, A.J.; Westerterp, K.R.; Schaafsma, G.; Halliday, D. Effect of protein source and quantity on protein metabolism in elderly women. Am. J. Clin. Nutr. 1998, 68, 1228–1235. [Google Scholar] [CrossRef][Green Version]
- Kim, I.Y.; Shin, Y.A.; Schutzler, S.E.; Azhar, G.; Wolfe, R.R.; Ferrando, A.A. Quality of meal protein determines anabolic response in older adults. Clin. Nutr. 2018, 37, 2076–2083. [Google Scholar] [CrossRef]
- Bosaeus, I.; Rothenberg, E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. Proc. Nutr. Soc. 2016, 75, 174–180. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guillet, C.; Masgrau, A.; Walrand, S.; Boirie, Y. Impaired protein metabolism: Interlinks between obesity, insulin resistance and inflammation. Obes. Rev. 2012, 13 (Suppl. 2), 51–57. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.S.; Zhou, J.; Sayer, R.D.; Kim, J.E.; Campbell, W.W. Effects of a High-Protein Diet Including Whole Eggs on Muscle Composition and Indices of Cardiometabolic Health and Systemic Inflammation in Older Adults with Overweight or Obesity: A Randomized Controlled Trial. Nutrients 2018, 10, 946. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ullevig, S.L.; Zuniga, K.; Austin Lobitz, C.; Santoyo, A.; Yin, Z. Egg protein supplementation improved upper body muscle strength and protein intake in community-dwelling older adult females who attended congregate meal sites or adult learning centers: A pilot randomized controlled trial. Nutr. Health 2021, 3, 02601060211051592. [Google Scholar]
- Kido, K.; Koshinaka, K.; Iizawa, H.; Honda, H.; Hirota, A.; Nakamura, T.; Arikawa, M.; Ra, S.G.; Kawanaka, K. Egg White Protein Promotes Developmental Growth in Rodent Muscle Independently of Leucine Content. J. Nutr. 2022, 152, 117–129. [Google Scholar] [CrossRef]
- Riddle, E.S.; Stipanuk, M.H.; Thalacker-Mercer, A.E. Amino acids in healthy aging skeletal muscle. Front. Biosci. 2016, 8, 326–350. [Google Scholar]
- Jiayu, Y.; Botta, A.; Simtchouk, S.; Winkler, J.; Renaud, L.M.; Dadlani, H.; Rasmussen, B.; Elango, R.; Ghosh, S. Egg white consumption increases GSH and lowers oxidative damage in 110-week-old geriatric mice hearts. J. Nutr. Biochem. 2020, 76, 108252. [Google Scholar] [CrossRef]
- Chucri, T.M.; Monteriro, J.M.; Lima, A.R.; Salvador, M.L.B.; Kfoury Junior, J.R.; Miglino, M.A. A review of immune transfer by the placenta. J. Reprod. Immunol. 2010, 87, 14–20. [Google Scholar] [CrossRef]
- Kovas-Nolan, J.; Mine, Y. Egg yolk antibodies for passive immunity. Annu. Rev. Food Sci. Technol. 2012, 3, 163–182. [Google Scholar] [CrossRef][Green Version]
- Li, X.; Yao, Y.; Wang, X.; Zhen, Y.; Thacker, P.A.; Wang, L.; Shi, M.; Zhao, J.; Zong, Y.; Wang, N.; et al. Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection. Int. Immunopharmacol. 2016, 36, 305–314. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Aoki, T.; Pellegrini, A. Strategies for new antimicrobial proteins and peptides: Lysozyme and aprotinin as model molecules. Curr. Pharmaceut. Des. 2002, 8, 671–693. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.G.; Board, R.G.; Sparks, N.H. Natural antimicrobial systems and their potential in food preservation of the future. Biotech. Appl. Biochem. 1986, 8, 103–147. [Google Scholar]
- Brady, D.; Gaines, S.; Fenelon, J. A Lipoprotein-derived Antimicrobial Factor from Hen-egg Yolk is Active against Streptococcus Species. J. Food Sci. 2002, 67, 3096–3103. [Google Scholar]
- Wu, J.P.; Acero-Lopez, A. Ovotransferrin: Structure, bioactivities, and preparation. Food Res. Int. 2012, 46, 480–487. [Google Scholar] [CrossRef]
- Fujita, H.; Sasaki, R.; Yoshikawa, M. Potentiation of the antihypertensive activity of orally administered ovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine. Biosci. Biotech. Biochem. 1995, 59, 2344–2345. [Google Scholar]
- Jahandideh, F.; Majumder, K.; Chakrabarti, S.; Morton, J.S.; Panahi, S.; Kaufman, S.; Davidge, S.T.; Wu, J. Beneficial effects of simulated gastro-intestinal digests of fried egg and its fractions on blood pressure, plasma lipids and oxidative stress in spontaneously hypertensive rats. PLoS ONE 2014, 9, e115006. [Google Scholar]
- Lee, M.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. Hen egg lysozyme attenuates inflammation and modulates local gene expression in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Agric. Food Chem. 2009, 57, 2233–2240. [Google Scholar]
- Si, R.; Qu, K.; Jiang, Z.; Yang, X.; Gao, P. Egg consumption and breast cancer risk: A meta-analysis. Breast Cancer 2014, 21, 251–261. [Google Scholar]
- Wu, J.; Zeng, R.; Huang, J.; Li, X.; Zhang, J.; Ho, J.C.; Zheng, Y. Dietary Protein Sources and Incidence of Breast Cancer: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 730. [Google Scholar] [CrossRef][Green Version]
- Xie, B.; He, H. No association between egg intake and prostate cancer risk: A meta-analysis. Asian Pac. J. Cancer Prev. 2012, 13, 4677–4681. [Google Scholar] [CrossRef][Green Version]
- Das, S.; Banerjee, S.; Gupta, J.D. Experimental evaluation of preventive and therapeutic potentials of lysozyme. Chemotherapy 1992, 38, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.; Benetti, A.; Ceschia, V.; Pacor, S. Lysozyme and cancer: Role of exogenous lysozyme as anticancer agent (review). Anticancer Res. 1989, 9, 583–591. [Google Scholar] [PubMed]
- Hap, A.; Kielan, W.; Grzebieniak, Z.; Siewinski, M.; Rudnicki, J.; Tarnawa, R.; Rudno-Rudzinska, J.; Agrawal, A.K. Control of active B and L cathepsins in tissues of colorectal cancer using cystatins isolated from chicken egg proteins: In vitro studies. Folia Histochem. Cytobiol. 2011, 49, 670–676. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ishikawa, S.; Asano, T.; Takenoshita, S.; Nozawa, Y.; Arihara, K.; Itoh, M. Egg yolk proteins suppress azoxymethane-induced aberrant crypt foci formation and cell proliferation in the colon of rats. Nutr. Res. 2009, 29, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A.; Liang, L.; Caballero, B.; Kumanyika, S.K. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 2008, 16, 2323–2330. [Google Scholar] [CrossRef]
- Holt, S.H.; Miller, J.C.; Petocz, P.; Farmakalidis, E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995, 49, 675–690. [Google Scholar]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef][Green Version]
- Ratliff, J.; Leite, J.O.; de Ogburn, R.; Puglisi, M.J.; VanHeest, J.; Fernandez, M.L. Consuming eggs for breakfast influences plasma glucose and ghrelin, while reducing energy intake during the next 24 hours in adult men. Nutr. Res. 2010, 30, 96–103. [Google Scholar] [CrossRef]
- Missimer, A.; DiMarco, D.M.; Andersen, C.J.; Murillo, A.G.; Fernandez, M.L. Consuming 2 eggs per day, as compared to an oatmeal breakfast, decreases plasma ghrelin and maintains the LDL/HDL ratio. Nutrients 2017, 9, 89. [Google Scholar] [CrossRef][Green Version]
- Foster-Schubert, K.E.; Overduin, J.; Prudom, C.E.; Liu, J.; Callahan, H.S.; Gaylinn, B.D.; Thorner, M.O.; Cummings, D.E. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J. Clin. Endocrinol. Metab. 2008, 93, 1971–1979. [Google Scholar] [CrossRef][Green Version]
- Vander Wal, J.S.; Marth, J.M.; Khosla, P.; Jen, K.L.; Dhurandhar, N.V. Short-term effect of eggs on satiety in overweight and obese subjects. J. Am. Coll. Nutr. 2005, 24, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Vander Wal, J.S.; Gupta, A.; Khosla, P.; Dhurandhar, N.V. Egg breakfast enhances weight loss. Int. J. Obes. 2008, 32, 1545–1551. [Google Scholar]
- Rueda, J.M.; Khosla, P. Impact of breakfasts (with or without Eggs) on body weight regulation and blood lipids in university students over a 14-week semester. Nutrients 2013, 5, 5097–5113. [Google Scholar] [CrossRef] [PubMed][Green Version]
Subject Population | Weight Management or Loss | Protein Intake (g/kg Body Weight/Day or g in Single Dose) | Protein Metabolism/Body Composition | Practical Implications | Authors |
---|---|---|---|---|---|
Healthy young men | N/A | 0, 5, 10, 20, 40 g egg protein after resistance exercise | Maximal muscle protein synthesis reached with 20 g dose | 20 g egg protein is optimal single dose for young males | Moore et al. (2009) [46] |
Young female athletes | Slight reduction, no difference between groups | 1.0 (daily 15 g egg white protein) vs. 1.2 for 8 weeks | No differences in body composition or strength changes between groups | 15 g dose egg protein as part of 1.2 g/kg/day is not sufficient for female athletes | Hida et al. (2012) [48] |
Young males | No change | 1.3 (daily 15 g egg white protein) with and without exercise vs. no supplement with exercise for 5 weeks | Egg white protein and resistance exercise increased skeletal muscle mass and strength, reduced fat mass | 15 g dose egg protein as part of 1.3 g/kg/day diet may be sufficient for young resistance trained males | Kato et al. (2011) [50] |
Resistance-trained young males | Increased for both groups | 1.5 for both groups, 3 whole eggs vs. isonitrogenous source of egg whites | Improved body composition for both groups, larger reduction in body fat percentage and greater increases in strength for the whole egg group, trend of greater lean body mass gains with whole eggs | Three whole eggs or an isonitrogenous amount of egg whites is potentially beneficial for trained males consuming 1.5 g/kg/day of protein, whole eggs may have added benefits | Bagheri et al. (2021) [51] |
Older men and women | No change | 0.9 vs. 1.2 (focused on egg protein) for 12 weeks | No difference in body composition or skeletal muscle | 1.2 g/kg/day, with a focus on eggs is not sufficient for older individuals | Iglay et al. (2009) [49] |
Older men and women | Loss for both groups (−3.3%) | 0.8 vs. 1.4 with 3 eggs per day for 12 weeks | Lean body mass preserved with 1.4, reduced for 0.8 | Sarcopenia is countered by 1.4 g/kg/day with eggs vs. 0.8 during weight loss | Wright et al. (2018) [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, M.J.; Fernandez, M.L. The Health Benefits of Egg Protein. Nutrients 2022, 14, 2904. https://doi.org/10.3390/nu14142904
Puglisi MJ, Fernandez ML. The Health Benefits of Egg Protein. Nutrients. 2022; 14(14):2904. https://doi.org/10.3390/nu14142904
Chicago/Turabian StylePuglisi, Michael J., and Maria Luz Fernandez. 2022. "The Health Benefits of Egg Protein" Nutrients 14, no. 14: 2904. https://doi.org/10.3390/nu14142904