Dietary Patterns of 479 Indonesian Adults and Their Associations with Sodium and Potassium Intakes Estimated by Two 24-h Urine Collections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Study Area
2.2. Measurement Schedule
2.3. Dietary Intake
2.4. 24-h Urine Collection
2.5. Other Measurements
2.6. Data Analysis
3. Results
3.1. Characteristics of Participants
3.2. Factor Analysis of Dietary Pattern
3.3. Dietary Pattern and Participant’s Characteristics
3.4. The Multivariate-Adjusted Means for Urine Excretion throughout the Quantiles of Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt Intakes around the World: Implications for Public Health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, P.; Brown, I. Sodium Intakes around the World; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014 “Attaining the Nine Global Noncommunicable Diseases Targets; a Shared Responsibility”; WHO Press: Geneva, Switzerland, 2014. [Google Scholar]
- D’Elia, L.; Galletti, F.; Fata, E.L.; Sabino, P.; Strazzullo, P. Effect of Dietary Sodium Restriction on Arterial Stiffness: Systematic Review and Meta-Analysis of the Randomized Controlled Trials. J. Hypertens. 2018, 36, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Young, D.B. Role of Potassium in Preventive Cardiovascular Medicine; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-1-4615-1443-5. [Google Scholar]
- Schorling, E.; Niebuhr, D.; Kroke, A. Cost-Effectiveness of Salt Reduction to Prevent Hypertension and CVD: A Systematic Review. Public Health Nutr. 2017, 20, 1993–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; Wang, X.; Liu, L.; Yan, H.; Lee, S.F.; Mony, P.; Devanath, A.; et al. Urinary Sodium and Potassium Excretion, Mortality, and Cardiovascular Events. N. Engl. J. Med. 2014, 371, 612–623. [Google Scholar] [CrossRef] [Green Version]
- Sari, D.W.; Noguchi-Watanabe, M.; Sasaki, S.; Sahar, J.; Yamamoto-Mitani, N. Estimation of Sodium and Potassium Intakes Assessed by Two 24-Hour Urine Collections in a City of Indonesia. Br. J. Nutr. 2021, 125, 1537–1548. [Google Scholar] [CrossRef]
- Fujiwara, A.; Asakura, K.; Uechi, K.; Masayasu, S.; Sasaki, S. Dietary Patterns Extracted from the Current Japanese Diet and Their Associations with Sodium and Potassium Intakes Estimated by Repeated 24 h Urine Collection. Public Health Nutr. 2016, 19, 2580–2591. [Google Scholar] [CrossRef] [Green Version]
- Gibson, S.; Ashwell, M. Dietary Patterns among British Adults: Compatibility with Dietary Guidelines for Salt/Sodium, Fat, Saturated Fat and Sugars. Public Health Nutr. 2011, 14, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Food & Drug Administration U.S. Sodium. Available online: https://www.fda.gov/food/food-labeling-nutrition/nutrition-education-resources-materials (accessed on 20 November 2019).
- Strazzullo, P. Nutrient Information of Sodium. Adv. Nutr. 2014, 2, 188–190. [Google Scholar] [CrossRef] [Green Version]
- Food & Drug Administration U.S. Voluntary Sodium Reduction Goals: Target Mean and Upper Bound Concentrations for Sodium in Commercially Processed, Packaged, and Prepared Foods; FDA: Silver Spring, MD, USA, 2016.
- Oltersdorf, U.; Schlettwein-Gsell, D.; Winkler, G. Assessing Eating Patterns-An Emerging Research Topic in Nutritional Sciences: Introduction to the Symposium. Appetite 1999, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dam, R.M. van New Approaches to the Study of Dietary Patterns. Br. J. Nutr. 2005, 93, 573–574. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Nutr. Metab. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Schulze, M.; Boeing, H.; Altenburg, H. Dietary Patterns: Report of an International Workshop. Public Health Nutr. 2002, 5, 89–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding Meal Patterns: Definitions, Methodology and Impact on Nutrient Intake and Diet Quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulos, D.; Lagiou, P. Dietary Patterns and Mortality. Br. J. Nutr. 2001, 85, 133–134. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Jung, H.; Lee, J.E. Dietary Pattern and Hypertension in Korean Adults. Public Health Nutr. 2014, 17, 597–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO/PAHO regional Expert Group for Cardiovascular Disease. Protocol for Population Level Sodium Determination in 24-Hour Urine Samples; WHO/PAHO: Washington, DC, USA, 2010. [Google Scholar]
- Yulia; Khusun, H.; Fahmida, U. Dietary Patterns of Obese and Normal-Weight Women of Reproductive Age in Urban Slum Areas in Central Jakarta. Br. J. Nutr. 2016, 116, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Yulia; Fahmida, U.; Khusun, H. Food Consumption of Obese and Normal Women of Reproductive Age in an Urban Slum Area in Central Jakarta; Universitas Indonesia: Depok City, Indonesia, 2013. [Google Scholar]
- Ambrosini, G.L.; O’Sullivan, T.A.; De Klerk, N.H.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Relative Validity of Adolescent Dietary Patterns: A Comparison of a FFQ and 3d Food Record. Br. J. Nutr. 2011, 105, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Streppel, M.T.; De Vries, J.H.; Meijboom, S.; Beekman, M.; De Craen, A.J.; Slagboom, P.E.; Feskens, E.J. Relative Validity of the Food Frequency Questionnaire Used to Assess Dietary Intake in the Leiden Longevity Study. Nutr. J. 2013, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Asakura, K.; Uechi, K.; Sasaki, Y.; Masayasu, S.; Sasaki, S. Estimation of Sodium and Potassium Intakes Assessed by Two 24 h Urine Collections in Healthy Japanese Adults: A Nationwide Study. Br. J. Nutr. 2014, 112, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K.; Watanabe, T.; Kohri, T.; Yamasaki, M.; Watanabe, R.; Baba, K.; Shibata, K.; et al. Sensitivity and Specificity of Published Strategies Using Urinary Creatinine to Identify Incomplete 24-h Urine Collection. Nutrition 2008, 24, 16–22. [Google Scholar] [CrossRef]
- World Health Organization. WHO STEPS Instrument Question-by-Question Guide. Available online: http://www.who.int/ncds/surveillance/steps/en/ (accessed on 12 February 2018).
- FI, M.; Barthel, D. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 56–61. [Google Scholar]
- Borson, S. Mini-Cog Instructions for Administration & Scoring. Available online: https://mini-cog.com/ (accessed on 30 January 2018).
- Hagströmer, M. International Physical Activity Questionnaire (IPAQ)-Bahasa Malaysian. Available online: https://sites.google.com/site/theipaq/questionnaire_links (accessed on 23 March 2017).
- Ipaq Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. Available online: www.ipaq.ki.se (accessed on 11 January 2018).
- Drawz, P.E.; Abdalla, M.; Rahman, M. Blood Pressure Measurement: Clinic, Home, Ambulatory, and Beyond. Am. J. Kidney Dis. 2012, 60, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, T.G. Principles and Techniques of Blood Pressure Measurement. Cardiol. Clin. 2002, 20, 207–223. [Google Scholar] [CrossRef] [Green Version]
- British and Irish hypertension Society Blood Pressure Monitors. Available online: https://bihsoc.org/bp-monitors/ (accessed on 6 May 2018).
- British & Irish Hypertension Society. Statement on the Diagnosis of Hypertension in Obese Patients with a Large or Very Large Arm Circumference. Available online: https://bihsoc.org/wp-content/uploads/2017/11/Statement-on-diagnosis-of-hypertension-in-obese-patients-Nov-2017.pdf (accessed on 5 May 2018).
- Northstone, K. Dietary Patterns: The Importance of Sex Differences. Br. J. Nutr. 2012, 108, 393–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuiman, J.; Hautvast, J.; Van der Heyden, L.; Geboers, J.; Joossens, J.; Tornqvist, H.; Isaksson, B.; Pietinen, P.; Tuomilehto, J.; Poulsen, L. A Multi-Centre Study on Completeness of Urine Collection in 11 European Centres. I. Some Problems with the Use of Creatinine and 4-Aminobenzoic Acid as Markers of the Completeness of Collection. Hum. Nutr. Clin. Nutr. 1986, 40, 229–237. [Google Scholar]
- Joossens JV, G.J. Monitoring Salt Intake of the Population: Methodological Considerations. In Surveillance of the Dietary Habits of the Population with Regard to Cardiovascular Diseases; Backer, G.G., Pedoe, H.T., Ducime-Tiere, P., Eds.; EURO-NUT Report 2; Department of Human Nutrition, Agricultural University: Wageningen, The Netherlands, 1984; pp. 61–73. [Google Scholar]
- Karl, J.P.; Roberts, S.B. Energy Density, Energy Intake, and Body Weight Regulation in Adults. Adv. Nutr. 2014, 5, 835–850. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Gong, Z. Modeling the Relationship between Body Weight and Energy Intake: A Molecular Diffusion-Based Approach. Biol. Direct 2012, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.L. Factor Analysis and Item Analysis. Available online: https://www.applyingstatisticsinbehaviouralresearch.com/documenten/factor_analysis_and_item_analysis_version_11_.pdf (accessed on 3 September 2019).
- De Oliveira Santos, R.; Fisberg, R.M.; Marchioni, D.M.; Troncoso Baltar, V. Dietary Patterns for Meals of Brazilian Adults. Br. J. Nutr. 2015, 114, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Amtha, R.; Zain, R.; Razak, I.A.; Basuki, B.; Roeslan, B.O.; Gautama, W.; Purwanto, D.J. Dietary Patterns and Risk of Oral Cancer: A Factor Analysis Study of a Population in Jakarta, Indonesia. Oral Oncol. 2009, 45, e49–e53. [Google Scholar] [CrossRef] [Green Version]
- Nkondjock, A.; Bizome, E. Dietary Patterns Associated with Hypertension Prevalence in the Cameroon Defence Forces. Eur. J. Clin. Nutr. 2010, 64, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.K.; Tucker, K.L. Empirically Derived Eating Patterns Using Factor or Cluster Analysis: A Review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Walter, W., Ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Asakura, K.; Uechi, K.; Masayasu, S.; Sasaki, S. Sodium Sources in the Japanese Diet: Difference between Generations and Sexes. Public Health Nutr. 2016, 19, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M. Global Nutrition Dynamics: The World Is Shifting Rapidly toward a Diet Linked with Noncommunicable Diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Relationship between Shifts in Food System Dynamics and Acceleration of the Global Nutrition Transition. Nutr. Rev. 2017, 75, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Chajès, V.; Gibson, L.J.; Biessy, C.; Slimani, N.; Asiki, G.; Dossus, L.; Wild, C.P.; Newton, R. Trends of Serum Phospholipid Fatty Acids over Time in Rural Uganda: Evidence of Nutritional Transition? Br. J. Nutr. 2019, 121, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M. The Nutrition Transition: An Overview Od World Patterns of Change. Nutr. Rev. 2004, 62, S140–S143. [Google Scholar] [CrossRef]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of Ultra-Processed Foods and Associated Sociodemographic Factors in the USA between 2007 and 2012: Evidence from a Nationally Representative Cross-Sectional Study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [Green Version]
- Trieu, K.; Ieremia, M.; Santos, J.; Neal, B.; Woodward, M.; Moodie, M.; Bell, C.; Snowdon, W.; Faumuina, T.; Webster, J. Effects of a Nationwide Strategy to Reduce Salt Intake in Samoa. J. Hypertens. 2018, 36, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Mhurchu, C.N.; Capelin, C.; Dunford, E.K.; Webster, J.L.; Neal, B.C.; Jebb, S.A. Sodium Content of Processed Foods in the United Kingdom: Analysis of 44,000 Foods Purchased by 21,000 Households. Am. J. Clin. Nutr. 2011, 93, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Nieto, C.; Tolentino-Mayo, L.; Medina, C.; Monterrubio-Flores, E.; Denova-Gutiérrez, E.; Barquera, S. Sodium Content of Processed Foods Available in the Mexican Market. Nutrients 2018, 10, 2008. [Google Scholar] [CrossRef] [Green Version]
- O’Halloran, S.A.; Grimes, C.A.; Lacy, K.E.; Campbell, K.J.; Nowson, C.A. Dietary Intake and Sources of Potassium and the Relationship to Dietary Sodium in a Sample of Australian Pre-School Children. Nutrients 2016, 8, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, A.; Damasceno, A.; Jessen, N.; Novela, C.; Moreira, P.; Lunet, N.; Padrão, P. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique. Nutrients 2017, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L. Food Sources of Energy and Nutrients of Public Health Concern and Nutrients to Limit with a Focus on Milk and Other Dairy Foods in Children 2 to 18 Years of Age: National Health and Nutrition Examination Survey, 2011–2014. Nutrients 2018, 10, 1050. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Murakami, K.; Sasaki, S.; Kim, M.K.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Relative Validity of Dietary Patterns Derived from a Self-Administered Diet History Questionnaire Using Factor Analysis among Japanese Adults. Public Health Nutr. 2010, 13, 1080–1089. [Google Scholar] [CrossRef]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease: The Trials of Hypertension Prevention (TOHP) Follow-up Study. Arch. Intern. Med. 2009, 12, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Tabara, Y.; Takahashi, Y.; Kumagai, K.; Setoh, K.; Kawaguchi, T.; Takahashi, M.; Muraoka, Y.; Tsujikawa, A.; Gotoh, N.; Terao, C.; et al. Descriptive Epidemiology of Spot Urine Sodium-to-Potassium Ratio Clarified Close Relationship with Blood Pressure Level: The Nagahama Study. J. Hypertens. 2015, 33, 2407–2413. [Google Scholar] [CrossRef]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary Sodium-to-Potassium Ratio as a Risk Factor for Stroke, Cardiovascular Disease and All-Cause Mortality in Japan: The NIPPON DATA80 Cohort Study. BMJ Open 2016, 6, e011632. [Google Scholar] [CrossRef]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; O’Leary, N.; Yin, L.; Liu, X.; Swaminathan, S.; Khatib, R.; Rosengren, A.; et al. Joint Association of Urinary Sodium and Potassium Excretion with Cardiovascular Events and Mortality: Prospective Cohort Study. BMJ 2019, 364, l772. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Hoffmann, K.; Kroke, A.; Boeing, H. Dietary Patterns and Their Association with Food and Nutrient Intake in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. Br. J. Nutr. 2001, 85, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Public Health England National Diet and Nutrition Survey: Assessment of Dietary Sodium Adults (19 to 64 Years) in England, 2014. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773836/Sodium_study_2014_England_Text_final.pdf (accessed on 19 September 2019).
- He, F.J.; Brinsden, H.C.; MacGregor, G.A. Salt Reduction in the United Kingdom: A Successful Experiment in Public Health. J. Hum. Hypertens. 2014, 28, 345–352. [Google Scholar] [CrossRef] [PubMed]
All (n = 240) | M1 ‘Meat, Vegetable, Oil, and Fruit’ | M2 ‘Staples, Oil, and Sweet’ | M3 ‘Noodle, Oil, and Salty Sea Products’ | M4 ‘Vegetable, Non-Oil, and Milk’ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (n = 60) | Q4 (n = 60) | p Value † | Q1 (n = 60) | Q4 (n = 60) | p Value† | Q1 (n = 60) | Q4 (n = 60) | p Value† | Q1 (n = 60) | Q4 (n = 60) | p Value† | |||||||||||
Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | ||||||||||||||||||
Age (years) | 57.0 | 14.8 | 64.7 | 12.2 | 52.9 | 13.9 | <0.001 | 55.4 | 16.0 | 58.8 | 14.9 | 0.63 | 58.7 | 16.3 | 60.2 | 13.4 | 0.05 | 51.7 | 12.3 | 64.4 | 14.9 | <0.001 |
Age group | ||||||||||||||||||||||
20–59 years | 127 | 52.9 | 18 | 30.0 | 40 | 66.7 | <0.001 | 33 | 55.0 | 28 | 46.7 | 0.39 | 28 | 46.7 | 25 | 41.7 | 0.60 | 46 | 76.7 | 20 | 33.3 | <0.001 |
60–99 years | 113 | 47.1 | 42 | 70.0 | 20 | 33.3 | 27 | 45.0 | 32 | 53.3 | 32 | 53.3 | 35 | 58.3 | 14 | 23.3 | 40 | 66.7 | ||||
Body height (cm) | 159.8 | 5.9 | 159.1 | 6.0 | 160.5 | 4.8 | 0.46 | 161.9 | 5.8 | 156.8 | 5.1 | <0.001 | 160.0 | 6.2 | 159.3 | 5.4 | 0.49 | 160.8 | 5.2 | 157.7 | 7.1 | 0.02 |
Body weight (kg) | 53.5 | 10.4 | 53.2 | 10.8 | 52.3 | 9.6 | 0.60 | 53.2 | 10.8 | 52.3 | 9.6 | <0.001 | 61.7 | 11.5 | 44.4 | 5.6 | 0.006 | 54.5 | 11.9 | 49.8 | 8.1 | <0.001 |
BMI (kg/m2) | 20.9 | 3.7 | 20.9 | 3.7 | 20.3 | 3.3 | 0.42 | 23.6 | 4.5 | 18.1 | 2.3 | <0.001 | 21.2 | 4.1 | 19.6 | 2.9 | 0.010 | 22.8 | 3.7 | 18.6 | 2.9 | <0.001 |
SBP (mmHg) | 139.9 | 23.9 | 148.1 | 28.1 | 132.4 | 19.9 | 0.002 | 139.4 | 22.3 | 135.3 | 22.6 | 0.30 | 140.9 | 25.0 | 140.1 | 26.0 | 0.73 | 144.9 | 23.8 | 135.3 | 26.0 | 0.13 |
DBP (mmHg) | 87.4 | 11.8 | 88.9 | 11.9 | 85.4 | 10.4 | 0.39 | 88.7 | 12.4 | 84.7 | 11.8 | 0.20 | 88.4 | 12.9 | 86.4 | 11.1 | 0.56 | 91.9 | 12.1 | 83.0 | 11.8 | <0.001 |
PAL (MET·h) | 67.2 | 56.4 | 54.2 | 53.7 | 76.6 | 59.4 | 0.14 | 52.0 | 50.8 | 83.3 | 60.0 | 0.010 | 49.1 | 51.5 | 75.4 | 61.7 | 0.03 | 91.9 | 12.1 | 83.0 | 11.8 | <0.001 |
Education level ‡ | ||||||||||||||||||||||
Low | 54 | 22.5 | 17 | 28.3 | 11 | 18.3 | <0.001 | 11 | 18.3 | 18 | 30.0 | <0.001 | 11 | 18.3 | 20 | 33.3 | 0.06 | 9 | 15.0 | 19 | 31.7 | 0.03 |
Middle | 124 | 51.7 | 40 | 66.7 | 26 | 43.3 | 21 | 35.0 | 36 | 60.0 | 31 | 51.7 | 30 | 50.0 | 36 | 60.0 | 28 | 46.7 | ||||
High | 62 | 25.8 | 3 | 5.0 | 23 | 38.3 | 28 | 46.7 | 6 | 10.0 | 18 | 30.0 | 10 | 16.7 | 15 | 25.0 | 13 | 21.7 | ||||
Smoking | ||||||||||||||||||||||
Yes | 144 | 60.0 | 28 | 46.7 | 42 | 70 | 0.010 | 24 | 40.0 | 45 | 75.0 | <0.001 | 28 | 46.7 | 38 | 63.3 | 0.06 | 42 | 70.0 | 28 | 46.7 | 0.010 |
No | 96 | 40.0 | 32 | 53.3 | 18 | 30 | 36 | 60.0 | 15 | 25.0 | 32 | 53.3 | 22 | 36.7 | 18 | 30.0 | 32 | 53.3 |
All (n = 239) | W1 ‘Meat, Vegetable, and Fruit’ | W2 ‘Staples, Oil, and Sweet’ | W3 ‘Noodle, Oil, and Salty Sea Products’ | W4 ‘Composite and Non-Oil’ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (n = 60) | Q4 (n = 59) | p Value† | Q1 (n = 60) | Q4 (n = 59) | p Value† | Q1 (n = 60) | Q4 (n = 59) | p Value† | Q1 (n = 59) | Q4 (n = 60) | p Value† | |||||||||||
Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | ||||||||||||||||||
Age (years) | 56.0 | 14.6 | 61.4 | 14.6 | 54.8 | 14.6 | 0.01 | 54.2 | 16.2 | 64.0 | 11.4 | <0.001 | 58.8 | 13.3 | 53.3 | 15.4 | 0.24 | 48.2 | 12.9 | 65.6 | 13.0 | <0.001 |
Age group | ||||||||||||||||||||||
20–59 years | 130 | 54.4 | 23 | 38.3 | 38 | 64.4 | 0.008 | 34 | 57.6 | 20 | 33.3 | 0.003 | 29 | 48.3 | 36 | 61.0 | 0.17 | 49 | 81.7 | 15 | 25.4 | <0.001 |
60–99 years | 109 | 45.6 | 37 | 61.7 | 21 | 35.6 | 25 | 42.4 | 40 | 66.7 | 31 | 51.7 | 23 | 39.0 | 11 | 18.3 | 44 | 74.6 | ||||
Body height (cm) | 151.1 | 6.0 | 151.6 | 8.2 | 150.5 | 5.0 | 0.50 | 153.2 | 5.1 | 148.8 | 8.0 | 0.001 | 150.0 | 5.7 | 151.4 | 5.4 | 0.44 | 152.0 | 8.0 | 150.3 | 5.2 | 0.43 |
Body weight (kg) | 54.2 | 10.7 | 54.8 | 11.7 | 51.3 | 9.1 | 0.10 | 61.5 | 10.4 | 45.1 | 8.3 | <0.001 | 53.9 | 11.5 | 52.1 | 10.5 | 0.11 | 55.9 | 9.3 | 51.7 | 11.7 | 0.10 |
BMI (kg/m2) | 23.7 | 4.2 | 23.8 | 4.6 | 22.6 | 3.8 | 0.11 | 26.1 | 3.8 | 20.4 | 3.7 | <0.001 | 23.9 | 4.4 | 22.7 | 4.1 | 0.06 | 24.2 | 3.8 | 22.8 | 4.5 | 0.09 |
SBP (mmHg) | 138.7 | 25.5 | 145.1 | 25.1 | 136.8 | 26.3 | 0.04 | 139.2 | 24.4 | 141.3 | 23.8 | 0.77 | 139.9 | 26.2 | 133.6 | 25.9 | 0.15 | 130.0 | 23.3 | 142.9 | 23.0 | 0.02 |
DBP (mmHg) | 87.3 | 10.7 | 90.0 | 11.2 | 85.0 | 9.9 | 0.03 | 88.3 | 10.5 | 86.3 | 9.6 | 0.80 | 87.3 | 11.1 | 86.4 | 9.3 | 0.32 | 85.6 | 9.5 | 86.8 | 10.0 | 0.26 |
PAL (MET·h) | 75.2 | 56.7 | 69.6 | 53.7 | 81.3 | 60.9 | 0.35 | 54.7 | 45.3 | 78.3 | 55.8 | 0.01 | 64.2 | 58.1 | 79.0 | 56.1 | 0.20 | 72.5 | 53.8 | 66.9 | 53.0 | 0.48 |
Education level ‡ | ||||||||||||||||||||||
Low | 80 | 33.5 | 24 | 40.0 | 19 | 32.2 | 0.04 | 14 | 23.7 | 36 | 60.0 | <0.001 | 24 | 40.0 | 17 | 28.8 | 0.19 | 7 | 11.7 | 34 | 57.6 | <0.001 |
Middle | 107 | 44.8 | 30 | 50.0 | 23 | 39.0 | 23 | 39.0 | 20 | 33.3 | 27 | 45.0 | 25 | 42.4 | 38 | 63.3 | 18 | 30.5 | ||||
High | 52 | 21.8 | 6 | 10.0 | 17 | 28.8 | 22 | 37.3 | 4 | 6.7 | 9 | 15.0 | 17 | 28.8 | 15 | 25.0 | 7 | 11.9 |
Quantiles Category of Dietary Patterns | |||||||||
---|---|---|---|---|---|---|---|---|---|
Q1 (n = 60) | Q2 (n = 60) | Q3 (n = 60) | Q4 (n = 60) | ||||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | p Value * | |
M1 ‘Meat, vegetable, oil, and fruit’ | |||||||||
Na excretion (mmol/d) | |||||||||
Model 1 | 90.8 | 5.7 | 104.9 | 5.5 | 110.6 | 5.6 | 103.9 | 5.6 | 0.10 |
Model 2 | 91.4 | 5.8 | 104.7 | 5.5 | 110.6 | 5.6 | 103.4 | 5.7 | 0.02 |
K excretion (mmol/d) | |||||||||
Model 1 | 21.9 | 1.2 | 25.3 | 1.1 | 25.5 | 1.2 | 27.0 | 1.2 | 0.02 |
Model 2 | 21.9 | 1.2 | 25.4 | 1.2 | 25.5 | 1.2 | 26.9 | 1.2 | 0.04 |
Na:K | |||||||||
Model 1 | 6.8 | 0.4 | 6.7 | 0.3 | 6.9 | 0.3 | 6.0 | 0.3 | 0.27 |
Model 2 | 6.7 | 0.4 | 6.7 | 0.3 | 6.9 | 0.3 | 6.0 | 0.3 | 0.33 |
M2 ‘Staples, oil, and sweet’ | |||||||||
Na excretion (mmol/d) | |||||||||
Model 1 | 112.3 | 5.5 | 109.9 | 5.5 | 90.5 | 5.5 | 97.6 | 5.5 | 0.02 |
Model 2 | 112.2 | 5.7 | 109.8 | 5.5 | 90.4 | 5.5 | 97.9 | 5.7 | 0.04 |
K excretion (mmol/d) | |||||||||
Model 1 | 27.6 | 1.1 | 25.8 | 1.1 | 22.9 | 1.1 | 23.3 | 1.1 | 0.01 |
Model 2 | 28.2 | 1.2 | 26.0 | 1.1 | 22.7 | 1.1 | 22.8 | 1.2 | 0.003 |
Na:K | |||||||||
Model 1 | 6.5 | 0.3 | 6.9 | 0.3 | 6.4 | 0.3 | 6.6 | 0.3 | 0.77 |
Model 2 | 6.3 | 0.4 | 6.8 | 0.3 | 6.4 | 0.3 | 6.8 | 0.4 | 0.72 |
M3 ‘Noodle, oil, and salty sea products’ | |||||||||
Na excretion (mmol/d) | |||||||||
Model 1 | 89.4 | 5.5 | 104.4 | 5.5 | 108.5 | 5.6 | 107.9 | 5.6 | 0.05 |
Model 2 | 87.6 | 5.6 | 104.5 | 5.5 | 108.5 | 5.6 | 109.6 | 5.6 | 0.02 |
K excretion (mmol/d) | |||||||||
Model 1 | 21.9 | 1.1 | 28.6 | 1.1 | 24.2 | 1.1 | 25.0 | 1.1 | <0.001 |
Model 2 | 21.9 | 1.2 | 28.6 | 1.1 | 24.1 | 1.1 | 25.0 | 1.1 | <0.001 |
Na:K | |||||||||
Model 1 | 6.6 | 0.3 | 6.0 | 0.3 | 7.1 | 0.3 | 6.7 | 0.3 | 0.16 |
Model 2 | 6.5 | 0.3 | 6.0 | 0.3 | 7.1 | 0.3 | 6.8 | 0.3 | 0.13 |
M4 ‘Vegetable, non-oil, and milk’ | |||||||||
Na excretion (mmol/d) | |||||||||
Model 1 | 116.8 | 5.5 | 112.6 | 5.4 | 97.8 | 5.4 | 83.1 | 5.6 | <0.001 |
Model 2 | 117.2 | 5.5 | 111.7 | 5.5 | 98.4 | 5.4 | 83.0 | 5.6 | <0.001 |
K excretion (mmol/d) | |||||||||
Model 1 | 25.5 | 1.2 | 26.3 | 1.2 | 24.5 | 1.2 | 23.4 | 1.2 | 0.37 |
Model 2 | 25.5 | 1.2 | 26.4 | 1.2 | 24.6 | 1.2 | 23.2 | 1.2 | 0.30 |
Na:K | |||||||||
Model 1 | 7.4 | 0.3 | 6.7 | 0.3 | 6.3 | 0.3 | 5.9 | 0.4 | 0.03 |
Model 2 | 7.4 | 0.3 | 6.6 | 0.3 | 6.3 | 0.3 | 6.0 | 0.4 | 0.03 |
Quantiles Category of Dietary Patterns | |||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | p Value * | |
W1 ‘Meat, vegetable, and fruit’ | Q1 (n = 60) | Q2 (n = 60) | Q3 (n = 60) | Q4 (n = 59) | |||||
Na excretion (mmol/d) | |||||||||
Model 1 | 105.8 | 4.4 | 98.2 | 4.3 | 97.4 | 4.3 | 100.3 | 4.4 | 0.54 |
Model 2 | 105.9 | 4.4 | 98.7 | 4.3 | 97.3 | 4.3 | 99.7 | 4.3 | 0.52 |
K excretion (mmol/d) | |||||||||
Model 1 | 22.9 | 1.1 | 21.9 | 1.1 | 24.6 | 1.1 | 24.1 | 1.1 | 0.25 |
Model 2 | 23.0 | 1.1 | 21.9 | 1.0 | 24.7 | 1.0 | 24.0 | 1.1 | 0.26 |
Na:K | |||||||||
Model 1 | 7.4 | 0.3 | 7.1 | 0.3 | 6.1 | 0.3 | 6.5 | 0.3 | 0.01 |
Model 2 | 7.4 | 0.3 | 7.1 | 0.3 | 6.1 | 0.3 | 6.5 | 0.3 | 0.01 |
W2 ‘Staples, oil, and sweet’ | Q1 (n = 59) | Q2 (n = 60) | Q3 (n = 60) | Q4 (n = 60) | |||||
Na excretion (mmol/d) | |||||||||
Model 1 | 105.7 | 4.3 | 102.3 | 4.4 | 100.6 | 4.3 | 93.1 | 4.5 | 0.24 |
Model 2 | 104.9 | 4.5 | 102.0 | 4.3 | 100.6 | 4.3 | 94.2 | 4.5 | 0.42 |
K excretion (mmol/d) | |||||||||
Model 1 | 25.9 | 1.1 | 23.2 | 1.1 | 22.8 | 1.0 | 21.7 | 1.1 | 0.05 |
Model 2 | 26.0 | 1.1 | 23.1 | 1.0 | 22.6 | 1.0 | 21.8 | 1.1 | 0.05 |
Na:K | |||||||||
Model 1 | 6.3 | 0.3 | 6.9 | 0.3 | 7.2 | 0.3 | 6.7 | 0.3 | 0.24 |
Model 2 | 6.3 | 0.3 | 6.9 | 0.3 | 7.2 | 0.3 | 6.7 | 0.3 | 0.17 |
W3 ‘Noodle, oil, and salty sea products’ | Q1 (n = 60) | Q2 (n = 60) | Q3 (n = 60) | Q4 (n = 59) | |||||
Na excretion (mmol/d) | |||||||||
Model 1 | 84.3 | 4.1 | 99.2 | 4.1 | 112.4 | 4.1 | 105.8 | 4.2 | <0.001 |
Model 2 | 84.8 | 4.1 | 98.1 | 4.1 | 113.2 | 4.1 | 105.6 | 4.1 | <0.001 |
K excretion (mmol/d) | |||||||||
Model 1 | 21.3 | 1.1 | 24.6 | 1.1 | 23.9 | 1.1 | 23.8 | 1.1 | 0.13 |
Model 2 | 21.5 | 1.1 | 24.4 | 1.0 | 23.9 | 1.0 | 23.7 | 1.1 | 0.22 |
Na:K | |||||||||
Model 1 | 6.2 | 0.3 | 6.3 | 0.3 | 7.4 | 0.3 | 7.3 | 0.3 | 0.003 |
Model 2 | 6.2 | 0.3 | 6.3 | 0.3 | 7.4 | 0.3 | 7.3 | 0.3 | 0.002 |
W4 ‘Composite and non-oil’ | Q1 (n = 59) | Q2 (n = 60) | Q3 (n = 60) | Q4 (n = 60) | |||||
Na excretion (mmol/d) | |||||||||
Model 1 | 97.0 | 4.5 | 102.7 | 4.3 | 106.3 | 4.3 | 95.5 | 4.6 | 0.26 |
Model 2 | 97.1 | 4.5 | 102.2 | 4.3 | 106.3 | 4.3 | 95.9 | 4.6 | 0.29 |
K excretion (mmol/d) | |||||||||
Model 1 | 22.9 | 1.1 | 24.2 | 1.1 | 24.3 | 1.1 | 22.2 | 1.1 | 0.44 |
Model 2 | 23.0 | 1.1 | 24.1 | 1.1 | 24.2 | 1.0 | 22.3 | 1.1 | 0.54 |
Na:K | |||||||||
Model 1 | 6.8 | 0.3 | 6.6 | 0.3 | 7.1 | 0.3 | 6.8 | 0.3 | 0.70 |
Model 2 | 6.7 | 0.3 | 6.6 | 0.3 | 7.1 | 0.3 | 6.7 | 0.3 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sari, D.W.; Noguchi-Watanabe, M.; Sasaki, S.; Yamamoto-Mitani, N. Dietary Patterns of 479 Indonesian Adults and Their Associations with Sodium and Potassium Intakes Estimated by Two 24-h Urine Collections. Nutrients 2022, 14, 2905. https://doi.org/10.3390/nu14142905
Sari DW, Noguchi-Watanabe M, Sasaki S, Yamamoto-Mitani N. Dietary Patterns of 479 Indonesian Adults and Their Associations with Sodium and Potassium Intakes Estimated by Two 24-h Urine Collections. Nutrients. 2022; 14(14):2905. https://doi.org/10.3390/nu14142905
Chicago/Turabian StyleSari, Dianis Wulan, Maiko Noguchi-Watanabe, Satoshi Sasaki, and Noriko Yamamoto-Mitani. 2022. "Dietary Patterns of 479 Indonesian Adults and Their Associations with Sodium and Potassium Intakes Estimated by Two 24-h Urine Collections" Nutrients 14, no. 14: 2905. https://doi.org/10.3390/nu14142905