A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Data Extraction and Presentation
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Levels of UPF Intake
Author (Year) | Country | Study Population | Assessment of UPF Intake | Results on UPF Consumption |
---|---|---|---|---|
Oliveira et al., (2021) [34] | Brazil | n = 462 adolescents (53.5% M) (mean age: 13.1 ± 1.5 years; mean BMI: nd) | Recall 24 h | 31.9% of TEI SD or SEM: nd |
Graciliano et al., (2021) [40] | Brazil | n = 295 pregnant women (100% W) (mean age: 23.7 years; mean BMI: nd) | 2 Recall 24 h | 22.2% of TEI SD or SEM: nd |
Silva et al., (2021) [42] | Brazil | n = 42 pregnant women with pregestational diabetes mellitus (100% women) (mean age: 31.5 ± 5.8 years; mean BMI: nd) | FFQ | Data nd (see Supplementary Table S1) |
Rocha et al., (2021) [32] | Brazil | n = 71,533 adolescents (55.5% W) (mean age: nd, range 12–17 years; mean BMI: nd) | Recall 24 h (n = 1626 foods and drinks) | 28% (95% CI 27.80–28.15) of TEI |
Costa et al., (2021) [60] | Brazil | n = 3128 children and 3454 adolescents (51.9% M) (mean age: nd, range 6–11 years; mean BMI: nd) | FFQ | Data nd (see Table 3) |
Da Silva et al., (2021) [61] | Brazil | n = 670 adults (50.1% M) (mean age: nd, range 20–59 years; mean BMI: nd) | Recall 24 h | 24.6 ± 1.32% of TEI |
Melo et al., (2021) [31] | Brazil | n = 804 adolescents (57.7% W) (mean age: 16.1 ± 1.2 years; mean BMI: nd) | 2 Recall 24 h | 45.9% (95% CI; 45.1–46.7) of TEI |
Scaranni et al., (2021) [62] | Brazil | n = 8171 adults (% M/W ND) (mean age: 49 years (35–74 years); mean BMI: nd) | FFQ (116 items) | 25.2 ± 9.6% (14.5% for low UPF consumption, up to 35.4% for high consumption) of TEI |
Oliveira et al., (2020) [17] | Brazil | n = 164 overweight + obese children (59.1% F) (mean age: 8.6 ± 0.8 years; mean BMI: nd) | 3 Recall 24 h (3 non-consecutive days, one of them on the weekend) | 43.7 ± 13% (95% CI: 41.7–45.7) of TEI |
Cattafesta et al., (2020) [63] | Brazil | n = 740 farmer adults (51.5% M) (mean age: nd, ≥18 years; mean BMI: nd) | 3 Recall 24 h | 17.7 ± 10.8% of TEI |
Paulino et al., (2020) [41] | Brazil | n = 175 high-risk pregnant women (100% W) (mean age: 31.1 ± 6 years; mean BMI: 32.2 ± 7.8 kg/m2) | 3 Recall 24 h | 25.5% of TEI SD or SEM: nd |
Viola et al., (2020) [35] | Brazil | n = 1525 adolescents (52.9% F) (mean age: nd, range 18–19 years; mean BMI: nd) | FFQ (106 items) | 37% of TEI SD or SEM: nd |
Lacerda et al., (2020) [23] | Brazil | n = 322 children (53.4% F) (mean age: 9.8 ± 0.5 years; mean BMI: nd) | 2 Recall 24 h (2 non-consecutive days of the week) | 25.2% (95% CI: 23.61–26.83) of TEI |
Souza et al., (2020) [64] | Brazil | n = 921 adults (55.8% M) (mean age: 38 ± 17.7 years; mean BMI: 27.5 kg/m2) | Recall 24 h | 20.6% of TEI SD or SEM: nd |
Leffa et al., (2020) [24] | Brazil | n = 308 children (52% M) (mean age: 3.2 ± 0.1 years and 6.3 ± 0.2 years; mean BMI: nd) | 2 Recall 24 h (non-consecutive days) | Data nd (see Table 3) |
Smaira et al., (2020) [65] | Brazil | n = 56 women with rheumatoid arthritis (100% W) (mean age: 62.5 ± 7.9 years; mean BMI: 28.4 ± 5.1 kg/m2) | 3 Recall 24 h (3 non-consecutive days) | 18.1 ± 11.8% of TEI |
Canhada et al., (2020) [66] | Brazil | n = 11827 adult + older subjects (55% F) (mean age: 51.3 ± 8.7 years (35–74 years); mean BMI: 26.8 ± 4.6 kg/m2) | FFQ (114 items) | 24.6 ± 9.6% of TEI |
Silverio et al., (2019) [67] | Brazil | n = 120 children + adolescents (53.3% W) (mean age: 11.7 ± 2.8 years; mean BMI: nd) | Recall 24 h | 24.2 ± 17.9% of TEI |
Sousa et al., (2020) [68] | Brazil | n = 2499 adolescents (52.3% W) (mean age: 18–19 years; mean BMI: nd) | FFQ (106 items) | 35.8 ± 13.1% of TEI |
Longo et al., (2020) [69] | Brazil | n = 74 subjects with atherosclerosis (66.2% M) (mean age: 60.7 ± 1.1 years; mean BMI: 28.7 ± 0.5 kg/m2) * | Recall 24 h | 35.1% of TEI SD or SEM: nd |
Rezende-Alves et al., (2020) [70] | Brazil | n = 1221 adults (76.1% W) (mean age: 35.2 ± 9.1 years; mean BMI: nd) | FFQ (144 items) | 25.8 ± 11% of TEI |
Fonseca et al., (2019) [25] | Brazil | n = 403 children (55.1% M) (mean age: 71.8 ± 12 months; mean BMI: nd) | 3-day food diary (1 day of the weekend) | 38 ± 1% of TEI |
Da Conceição et al., (2019) [57] | Brazil | n = 64 adults (64.1% W) (mean age: nd, range 25–57 years; mean BMI: nd) | Recall 24 h | 7.7% of TEI SD or SEM: nd |
Fortins et al., (2019) [71] | Brazil | n = 120 children + adolescents (53.3% W) (mean age: 11.7 ± 2.8 years; mean BMI: nd) | Recall 24 h | 24.3 ± 17.9% of TEI |
Ferreira et al., (2019) [26] | Brazil | n = 206 children + adolescents (53% W) (age > 10 years; mean BMI: nd) | Recall 24 h | 31% of TEI SD or SEM: nd |
Gomes et al., (2019) [39] | Brazil | n = 353 pregnant women (100% W) (mean age: nd; mean BMI: nd) | 2 Recall 24 h | 24.6% of TEI SD or SEM: nd |
Enes et al., (2019) [37] | Brazil | n = 200 adolescents (56% F) (mean age: nd, range 10–18 years; mean BMI: nd) | FFQ | 50.6 ±1.0% * of TEI |
Silva et al., (2018) [72] | Brazil | n = 8977 adult + older subjects (51.9% W) (mean age: nd, range 35–64 years; mean BMI: nd) | FFQ (114 items) | 22.7% of TEI SD or SEM: nd |
Simões et al., (2018) [73] | Brazil | n = 14378 adult + older subjects (54.2% W) (mean age: nd, range 35–74 years; mean BMI: nd) | FFQ (114 items) | 22.7% of TEI SD or SEM: nd |
Louzada et al., (2018) [74] | Brazil | n = 32,898 subjects (% M/W: nd) (mean age: nd, ≥10 years; mean BMI: nd) | 2 Recall 24 h | 20.4% of TEI SD or SEM: nd |
Bielemann et al., (2018) [28] | Brazil | n = 3427 children (51.9% M) (mean age: 6 years; mean BMI: nd) | FFQ (54 items) | 40.3 ± 11.7% of TEI |
D’Avila et al., (2017) [33] | Brazil | n = 784 adolescents (57.4% W) (mean age: 15.2 ± 1.3 years; mean BMI: nd) | FFQ (90 items) | 49.2% of TEI SD or SEM: nd |
Batalha et al., (2017) [27] | Brazil | n = 1185 children (51.2% M) (mean age: nd, range 15–35 mo.; mean BMI: nd) | Recall 24 h | 24.5% of TEI SD or SEM: nd |
Karnopp et al., (2017) [29] | Brazil | n = 770 children (52% M) (mean age: nd, range 0–72 mo; mean BMI: nd) | Recall 24 h | 32% of TEI SD or SEM: nd |
Bielemann et al., (2015) [58] | Brazil | n = 4202 adults (51.4% M) (mean age: 21.8 years; mean BMI: nd) | FFQ | 51.2% (95% CI: 50.8–51.6) of TEI |
Sparrenberger et al., (2015) [30] | Brazil | n = 204 children (50% girls) (mean age: 5.9 ± 2.5 years; mean BMI: nd) | 2 Recall 24 h | 47 ± 1.1% * of TEI |
Louzada et al., (2015a) [75] | Brazil | n = 32,898 subjects (% M/F: nd) (mean age: nd, ≥10 years; mean BMI: nd) | 2 Recall 24 h | 21.5% of TEI SD or SEM: nd |
Louzada et al., (2015b) [76] | Brazil | n = 30,243 subjects (50.2% W) (mean age: nd, ≥10 years; mean BMI: nd) | 2 Recall 24 h | 29.6% of TEI SD or SEM: nd |
Baraldi et al., (2021) [77] | USA | n = 24,505 subjects (% M/F: nd) (mean age: nd, ≥1 years; mean BMI: nd) | Recall 24 h | 57.9% of TEI SD or SEM: nd |
Bidinotto et al., (2021) [78] | USA | n = 5720 adults (50.8% W) (mean age: 39.6 ± 0.4 years; mean BMI: nd) | 2 Recall 24 h | 56.9 ± 0.5% of TEI |
Zhong et al., (2021) [59] | USA | n = 91,891 adults + older subjects (% M/W: nd) (mean age: nd, range 55–74 years; mean BMI: nd) | FFQ (137 items) | 35.5 ± 16.6% of TEI |
Yang et al., (2020) [79] | USA | n = 12,640 adults (50.2% W) (mean age: 49.7 years; mean BMI: 29.4 kg/m2) | 2 Recall 24 h | 54.5% of TEI SD or SEM: nd |
Zheng et al., (2020) [80] | USA | n = 13,637 adults + older subjects (50.1% W) (mean age: nd, >20 years; mean BMI: nd) | Recall 24 h | 55% of TEI SD or SEM: nd |
Gupta et al., (2020) [81] | USA | n = 755 adults (82.1% W) (mean age: nd, range 21–59 years; mean BMI: nd) | FFQ (126 items) | 59.7 ± 10.7% of TEI |
Smiljanec et al., (2020) [14] | USA | n = 40 adults 62.5% W) (mean age: 27 ± 1 years; mean BMI: 23.6 ± 0.5 kg/m2) | 3-day food diary | 50 ± 2.4% of TEI |
Zhang et al., (2021) [82] | USA | n = 11,246 adults (51% W) (mean age: 44.6 ± 0.4 years; mean BMI: nd) | 2 Recall 24 h | 55.4% of TEI SD or SEM: nd |
Martinez Steele et al., (2020) [51] | USA | n = 9416 subjects (% M/W: nd) (mean age: nd, ≥6 years; mean BMI: nd) | 2 Recall 24 h | 58% ± 0.5% * of TEI |
Neri et al., (2019) [18] | USA | n = 9469 children + adolescents (% M/F: nd) (mean age: nd, range 2–19 years; mean BMI: nd) | 2 Recall 24 h | 64.6% of TEI SD or SEM: nd |
Martínez-Steele et al., (2019) [83] | USA | n = 6385 adults + older subjects (% M/W: nd) (mean age: nd, ≥20 years; mean BMI: nd) | 2 Recall 24 h | 55.5 ± 0.5%* of TEI |
Baraldi et al., (2018) [49] | USA | n = 23,847 subjects (% M/W: nd) (mean age: nd, ≥2 years; mean BMI: nd) | 2 Recall 24 h | 58.5 ± 0.3% * of TEI UPF consumption for years: 2007–2008 years = 57.6% of TEI 2009–2010 years = 58.9% of TEI 2011–2012 years = 59.7% of TEI |
Juul et al., (2018) [52] | USA | n = 15,977 adults (50.6% W) (mean age: 41.9 ± 0.2 years; mean BMI: 28.9 ± 0.1 kg/m2) | 2 Recall 24 h | 56.1 ± 25.4% of TEI |
Rohatgi et al., (2017) [38] | USA | n = 45 pregnant women (100% W) (mean age: nd; mean BMI: nd) | FFQ | 54.4 ± 13.2% of TEI |
Martínez-Steele et al., (2016) [50] | USA | n = 9317 subjects (% M/W: nd) (mean age: nd, ≥1 years; mean BMI: nd) | 2 Recall 24 h | 57.9% of TEI SD or SEM: nd |
Calixto Andrade et al., (2021) [84] | France | n = 2642 adults + older subjects (63.3% W) (mean age: nd, ≥18 years; mean BMI: nd) | 3 Recall 24 h (week days and weekend days) | 31.1% (95% CI: 30.3, 31.9) of TEI |
Gehring et al., (2020 and 2021) [85,86] | France | n = 21,212 adults + older subjects (73.1% W) (mean age: 56.3 ± 13.8 years; mean BMI: nd) | 3 Recall 24 h (every 6 months) | 33.1% of TEI SD or SEM: nd |
Srour et al., (2020) [87] | France | n = 104,707 adults + older subjects (79.2% W) (mean age: 42.7 ± 14.5 years; mean BMI: nd) | 3 Recall 24 h via web (every six months; 2 days of the weekend and 1 of the week) | 17.3 ± 9.8% of TEI |
Beslay et al., (2020) [15] | France | n = 110,260 adults + older subjects (78.2% W) (mean age: 43.1 ± 14.6 years; mean BMI: 23.8 ± 4.6 kg/m2) | 3 Recall 24 h via web (2 week days and 1 day of the weekend; more than 3500 items) | 17.1 ± 10.3% of TEI |
Vasseur et al., (2020) [88] | France | n = 105,832 adults + older subjects (78% W) mean age: 43.3 ± 14.7 years; mean BMI: 23.9 kg/m2) | 3 Recall 24 h via web (2 week days and 1 day of the weekend; more than 3300 items) | 17 ± 9% of TEI SD or SEM: nd |
Schnabel et al., (2019) [89] | France | n = 44,551 adults + older subjects (73.1% W) (mean age: 56.7 ± 7.5 years; mean BMI: nd) | 3 Recall 24 h via web (3000 common foods and drinks) | 29.1 ± 10.9% of TEI |
Adjibade et al., (2019) [90] | France | n = 26,730 adults + older subjects (76.2% W) (mean age 47.2 ± 14.2 years; mean BMI: nd) | 3 Recall 24 h (every 6 months; 2 days of the week and 1 day of the weekend) | 32 ± 11% of TEI |
Schnabel et al., (2018) [91] | France | n = 33,343 adults + older subjects (76.4% W) (mean age: 50 ± 14 years; mean BMI: nd) | 3 Recall 24 h via web (every 6 months; 3021 common foods and drinks) | 33 ± 13.7% of TEI |
Rauber et al., (2021a) [36] | UK | n = 542 adolescents (% M/W: nd) (mean age: nd; range 11–18 years, mean BMI: nd) | 4-day food diary | 67.8% of TEI SD or SEM: nd |
Rauber et al., (2021b) [47] | UK | n = 22,659 adults + older subjects (52.1% W) (mean age: 55.9 ± 7.4 years; mean BMI: 26.7 ± 4.3 kg/m2) | 4 Recall 24 h via web (200 common foods and drinks) | 48.6 ± 17.9% of TEI |
Onita et al., (2021) [19] | UK | n = 1772 children (51.2% boys) (mean age: nd, range 4–10 years; mean BMI: nd) | 4-day food diary | 65.4% of TEI SD or SEM: nd |
Rauber et al., (2020) [54] | UK | n = 6143 adults + older subjects (51.6% W) (mean age: nd, range 19–96 years; mean BMI: nd) | 4-day food diary | 54.3 ± 0.4% * of TEI |
Rauber et al., (2018 and 2019) [46,53] | UK | n = 9.374 subjects (% M/W: nd) (mean age: nd, ≥1.5 years; mean BMI: nd) | 3–4-day food diary | 56.8% of TEI SD or SEM: nd |
Adams and White. (2015) [48] | UK | n = 2174 adults + older subjects (51.4% W) (mean age: nd, ≥18 years; mean BMI: nd) | 4-day food diary | 53.1% (95% CI: 52.4–53.7) of TEI |
Polsky et al., (2020) [92] | Canada | n = 33,924 subjects in 2004 and 20,080 subjects in 2015 (% M/W: nd) (mean age: nd, ≥2 years; mean BMI: nd) | Recall 24 h | 2004 years = 47.8% (95% CI: 47.3% to 48.3%) of TEI 2015 years = 45.7% (95% CI: 45.0% to 46.4%) of TEI |
Nardocci et al., (2021) [93] | Canada | n = 13608 adults + older subjects (% M/W: nd) (mean age: nd, ≥19 years; BMI: nd) | Recall 24 h | 47% of TEI SD or SEM: nd |
Batal et al., (2018) [94] | Canada | n = 3267 adults (62.6% W) (mean age 45.2 ± 14.9 years; mean BMI: nd) | Recall 24 h | 54% ±24.6% of TEI |
Nardocci et al., (2019) [95] | Canada | n = 19,363 adults (50.9% M) (mean age: 45.9 years; mean BMI: 26.9 kg/m2) | Recall 24 h | 45.1 ± 0.14% * of TEI |
Batal et al., (2018) [7] | Canada | n = 3700 adults (62.7% W) (mean age: 45.1 years; mean BMI: 30.2 kg/m2) | Recall 24 h | 53.9% of TEI SD or SEM: nd |
Moubarac et al., (2017) [96] | Canada | n = 33694 subjects (52.5% F) (mean age: nd, ≥2 years; mean BMI: nd) | 2 Recall 24 h | 47.7 ± 0.2% * of TEI |
Sandoval-Insausti et al., (2020a) [44] | Spain | n = 652 older subjects (55.7% M) (mean age: 67.1 ± 5.8 years; mean BMI: nd) | FFQ (860 items) | 17.3 ± 10.2% of TEI |
Sandoval-Insausti et al., (2020b) [43] | Spain | n = 1822 older subjects (51.3% W) (mean age: 68.7 years; mean BMI: nd) | FFQ (860 items) | 19.3% of TEI SD or SEM: nd |
Da Rocha et al., (2020) [20] | Spain | n = 386 children (52% M) (mean age: 5.3 ± 1 years; mean BMI: 15.7 ± 1.6 kg/m2) | FFQ (149 items) | 32.2 ± 8% of TEI |
Blanco-Rojo et al., (2019) [97] | Spain | n = 11,898 adults (50.5% W) (mean age: 46.9 ± 0.3 years; mean BMI: nd) | FFQ (880 items) | 24.4 ± 0.2% * of TEI |
Asma’ et al., (2020) [98] | Malaysia | n = 200 adults (75% F) (mean age: 33 years; mean BMI: 25.3 ± 6.8 kg/m2) | 2 Recall 24 h | 24% of TEI SD or SEM: nd |
Asma’ et al., (2020) [99] | Malaysia | n = 167 adults (74.9% F) (mean age: nd, range 18–49 years; mean BMI = 24.9 ± 5.2 kg/m2) | 2 Recall 24 h (2 non-consecutive days: 1 of the week and 1 of the weekend) | 23% of TEI SD or SEM: nd |
Asma’ et al., (2019) [100] | Malaysia | n = 200 adults (75% F) (mean age: nd, range 18–59 years; mean BMI: nd) | FFQ (165 items) | 40.4% of TEI SD or SEM: nd |
Machado et al., (2020a) [101] | Australia | n = 7411 adults + older subjects (51.7% M) (mean age: nd, range 20–85 years; mean BMI: 27.4 kg/m2) | 2 Recall 24 h | 38.9% of TEI SD or SEM: nd |
Machado et al., (2019 and 2020b) [102,103] | Australia | n = 12153 subjects (% M/W: nd) (mean age: nd, ≥2 years; mean BMI: nd) | 2 Recall 24 h | 42.0% of TEI SD or SEM: nd |
Vandevijvere et al., (2020) [104] | Belgium | 2004 years, n = 3083 subjects (≥15 years; (% M/W: nd) 2014–2015 years, n = 3146 subjects (range 3–64 years; 50.8% F) | 2 Recall 24 h (adults and teenagers) 2 food diaries for children (3–9 years) | Data from 2004 (survey) = 30.3% (95% CI: 29.3–31.5) of TEI Data from 2014–2015 (survey) = 29.9% (95% CI: 29.0–30.8) of TEI |
Khandpur et al., (2020) and Parra et al., (2019) [105,106] | Colombia | n = 38,643 adults (51.9% F) (mean age: 26.5 ± 0.2 years; mean BMI: nd) | Recall 24 h | 15.9 ± 0.3% * of TEI |
Monge et al., (2020) [107] | Mexico | n = 64934 adults (100% F) (mean age: 41.7 ± 7.2 years; mean BMI: nd) | FFQ (140 items) | 29.8 ± 9.4% of TEI |
Marrón-Ponce et al., (2018 and 2019) [108,109] | Mexico | n = 10,087 subjects (50.5% W) (mean age: nd, ≥1 years; mean BMI: nd) | Recall 24 h | 30.0 ± 4.5% * of TEI |
Bonaccio et al., (2021) [55] | Italy | n = 24,325 adults + older subjects (% M/W: nd) (mean age: nd, ≥35 years; mean BMI: nd) | FFQ (188 items) | 10% of TEI SD or SEM: nd |
Dinu et al., (2021) [56] | Italy | n = 110 adults (67% F) (mean age: 35.3 ± 9.9 years; mean BMI: 23 ± 3.2 kg/m2) | FFQ (94 items) | 11 ± 7% of TEI |
Shim et al., (2021) [110] | Korea | n = 57423 subjects (% M/W: nd) (mean age: nd, ≥1 years; mean BMI: nd) | Recall 24 h | 24.9% of TEI SD or SEM: nd Consumption for years: 2010–2012 = 23.1% of TEI 2016–2018 = 26.1% of TEI |
Sung et al., (2021) [111] | Korea | n = 7364 adults (52.9% M) (mean age: 41.7 ± 0.3 years (M), 42.8 ± 0.3 years (W); mean BMI: nd) | Recall 24 h (every season) | 26.8% of TEI SD or SEM: nd |
Vedovato et al., (2020) [21] | Portugal | n = 1175 children + adolescents (52% M) (mean age: nd, range 4–17 years; mean BMI: nd) | Food diary (1 or 2 week days and 1 day of the weekend) | Data nd (see Table 3) |
Costa De Miranda et al., (2021) [16] | Portugal | n = 3852 adults + older subjects (% M/W: nd) (mean age: nd, ≥18 years; BMI: nd) | 2 Recall 24 h | 22.2 ± 0.38% * of TEI |
Cediel et al., (2018 and 2020) [112,113] | Chile | n = 4920 subjects (60.7% W) (mean age: nd, ≥2 years; mean BMI: nd) | Recall 24 h | 28.6 ± 0.5% * of TEI |
Fangupo et al., (2021) [22] | New Zealand | n = 669 children (% M/W: nd) (mean age: nd, range 12–60 mo.; mean BMI: nd) | FFQ (90 items) | Range: 39.8–54% of TEI |
Pinho et al., (2020) [45] | Netherlands | n = 8104 older subjects (80.5% W) (mean age 70 ± 10 years; mean BMI 25.8 ± 4.5 kg/m2) | FFQ (160 items) | 37 ± 11% of TEI |
Fliss-Isakov et al., (2020) [114] | Israel | n = 652 adults + older subjects (50.8% M) (mean age: 58.5 ± 6.6 years; mean BMI: 28.2 ± 5.4 kg/m2) | FFQ (117 items) | 38.2 ± 16.2% of TEI |
Koiwai et al., (2019) [115] | Japan | n = 617 adults (58.5% W) (mean age: 45.6 ± 8.4 years; mean BMI: nd) | Food diary | 38.2 ± 0.9% * of TEI |
Setyowati et al., (2018) [116] | Indonesia | n = 1605 subjects (50.4% W) (mean age: nd, ≥0 years; mean BMI: nd) | Recall 24 h | 19.5% of TEI SD or SEM: nd |
Nasreddine et al., (2018) [117] | Lebanon | n = 302 adults (61.3% W) (mean age: 39.3 ± 13.8 years; mean BMI: nd) | FFQ (80 items) | 36.5 ± 16.5% of TEI |
Author (Year) | Sex | UPF Consumption and Statistic |
---|---|---|
Adams and White (2015) [48] | F = 51.4% M = 48.6% | F = 52.8% (95% CI 51.9–53.7) of TEI M = 53.5% (95% CI 52.3–54.4) of TEI Significantly higher (p < 0.05) in men compared to women |
Baraldi et al., (2018) [49] | (% M/F: nd) | F = 58.8% (95% CI: 58.1–59.5) of TEI M = 58.3% (95% CI: 57.6–59.0) of TEI No differences between genders |
Batal et al., (2018) [94] | F = 62.6% M = 37.4% | F = 54.4 ± 24.4% of TEI M = 53.4± 25.1% of TEI No differences between genders |
Bielemann et al., (2015) [58] | F = 48.6% M = 51.4% | F = 51.9% (95% CI: 51.4–52.5) of TEI M = 50.4% (95% CI: 49.9–51.0) of TEI Significantly higher (p < 0.001) in women compared to men |
Calixto Andrade et al., (2021) [84] | F = 63.3% M = 36.7% | F = 31.4% (95% CI: 30.1–32.7) of TEI M = 30.9% (95% CI: 30.0–31.9) of TEI Statistics: nd |
Cediel et al., (2018 and 2020) [112,113] | F = 60.7% M = 39.3% | F = 29.4% (95% CI: 28.1–30.6) of TEI M = 27.8% (95% CI: 26.5–29.2) of TEI No differences between sexes |
Da Rocha et al., (2020) [20] | F = 48% M = 52% | F = 32.0% of TEI M = 32.3% of TEI SD or SEM nd Statistics: nd |
Gupta et al., (2020) [81] | F = 82.1% M = 17.9% | F = median 59.9% ± 10.8% of TEI M = median 58.4% ± 10.5% of TEI No differences between sexes |
Khandpur et al., (2020) [105] | F = 51.9% M = 48.1% | F = 16.2% ± 0.2% * of TEI M = 15.5% ± 0.2% * of TEI Significantly higher (p = 0.007) in women compared to men |
Machado et al., (2020a) [101] | F = 48.3% M = 51.7% | F = 38.5% of TEI M = 40.7% of TEI SD or SEM nd No differences between sexes |
Marrón-Ponce et al., (2018 and 2019) [108,109] | F = 50.5% M = 49.5% | F = 30.1% of TEI M = 29.5% of TEI SD or SEM: nd No differences between sexes |
Martínez-Steele et al., (2019) [83] | (% M/F: nd) | F = 55.0 ± 0.5% * of TEI M = 55.9 ± 0.6% * of TEI No differences between sexes |
Martinez-Steele et al., (2020) [51] | (% M/F: nd) | F = 58.2 ± 0.5 *% of TEI M = 58.4 ± 0.4 *% of TEI No differences between sexes |
Moubarac et al., (2017) [96] | F = 52.5% M = 47.5% | F = 46.5% of TEI M = 48.6% of TEI SD or SEM nd Significantly higher (p < 0.001) in men compared to women |
Nardocci et al., (2019) [95] | F = 49.1% M = 50.9% | F = 44.2 ± 0.4% * of TEI M = 45.9 ± 0.4% * of TEI Significantly higher (p < 0.05) in men compared to women |
Rauber et al., (2020) [54] | F = 51.6% M = 48.4% | F = 52.8 ± 0.4% * of TEI M = 55.9 ± 0.6% * of TEI Significantly higher (p < 0.05) in men compared to women |
Sandoval-Insausti et al., (2020b) [43] | F = 51.3% M = 48.7% | F = 20.7% of TEI M = 17.7% of TEI SD or SEM nd Statistics: nd |
Schnabel et al., (2019) [89] | F = 73.1% M = 26.9% | F = 29.4 ± 0.06% * of TEI M = 28.3 ± 0.10% * of TEI Significantly higher (p < 0.001) in women compared to men |
Shim et al., (2021) [110] | (% M/F: nd) | F = 24.1% (95% CI: 23.8–24.4) of TEI M = 25.8% (95% CI: 25.5–26.1) of TEI Significantly higher (p < 0.05) in men compared to women |
Simões et al., (2018) [73] | F = 54.2% M = 45.8% | F = 23.0% (IQR: 16.7–29.9) of TEI M = 20.6% (IQR: 14.7–27.5) of TEI Significantly higher (p < 0.001) in women compared to men |
Smiljanec et al., (2020) [14] | F = 62.5% M = 37.5% | F = 50.8 ± 2.4% of TEI M = 48.8 ± 5.2% of TEI No differences between sexes |
Sparrenberger et al., (2015) [30] | F = 50% M = 50% | F = 47.1 ± 1.5% * of TEI M = 49.2 ± 1.6% * of TEI No differences between sexes |
Srour et al., (2020) [87] | F = 79.2% M = 20.8% | F = 17.2 ± 9.7% of TEI M = 17.6 ± 9.9% of TEI Significantly higher (p < 0.001) in men compared to women |
Sung et al., (2021) [111] | F = 47.1% M = 52.9% | F = 25.1 ± 0.38% * of TEI M = 28.4% ± 0.36% * of TEI Significantly higher (p < 0.0001) in men compared to women |
Vandevijvere et al., (2019) [119] | 2004 = (% M/F: nd) 2014–2015 = F = 50.8% M = 49.2% | 2004 = F = 28.9% (95% CI: 27.1–30.2) of TEI M = 32.3% (95% CI: 30.9–34.3) of TEI 2014–2015 = F = 29.7% (95% CI: 28.7–31.2) of TEI M = 29.9% (95% CI: 28.6–31.2) of TEI Statistics: nd |
Yang et al., (2020) [79] | F = 50.2% M = 49.8% | F = median 54.8% (IQR: 47.8‒61.4) of TEI M = median 55.0% (IQR: 48.4‒61.7) of TEI No differences between sexes |
Author (Year) | Age | UPF Consumption for Age and Statistics |
---|---|---|
Costa et al., (2021) [60] | n = 3128 children (6 years) n = 3454 adolescents (11 years) | 6 years = 42% (IQR: 34.6–49.8) of TEI 11 years = 32.7% (IQR: 25.1–41.3) of TEI Statistic: nd |
Calixto Andrade et al., (2021) [84] | 18–39 years = 34.1% 40–59 years = 44.8% >60 years = 21.1% | 18–39 years = 39.1% (95% CI: 37.8–40.5) of TEI 40–59 years = 28.1% (95% CI: 27.2–29.0) of TEI >60 years = 21.6% (95% CI: 20.4–22.8) of TEI Statistics: nd |
Shim et al., (2021) [110] | nd | 1–12 years = 28.9% (95% CI: 28.5–29.4) of TEI 13–19 years = 32.6% (95% CI: 31.9–33.4) of TEI 20–49 years = 27.7% (95% CI: 27.3–28.0) of TEI 50–64 years = 19.6% (95% CI: 19.2–19.9) of TEI >65 years = 15.1% (95% CI: 14.8–15.8) of TEI Significantly higher (p < 0.05) in adolescents and lower in subjects older than 65 years |
Sung et al., (2021) [111] | n = 1114 (19–29 years) n = 3301 (30–49 years) n = 2949 (50–64 years) | 19–29 years = 35.7 ± 0.6% * of TEI 30–49 years = 27.7 ± 0.4% * of TEI 50–64 years = 20.0 ± 0.4% * of TEI Significantly higher (p < 0.0001) in younger |
Costa De Miranda et al., (2021) [16] | n = 3102 (18–65 years) n = 750 (>65 years) | 18–65 years = 23.8 ± 0.42% * of TEI >65 years = 15.9 ± 0.56% * of TEI Significant differences (p = 0.001) between adults and older subjects |
Fangupo et al., (2021) [22] | n = 501 (12 mo) n = 497 (24 mo) n = 475 (36 mo) | 12 mo = 44.5% (95% CI: 43.0–46.0) of TEI 24 mo = 39.8% (95% CI: 34.6–41.0) of TEI 60 mo = 54% (95% CI: 53.0–54.9) of TEI Intraclass correlation coefficients ranging from 0.23 to 0.36 |
Leffa et al., (2020) [24] | n = 308 children (3 and 6 years) | 3 years = 43.4% (IQR 34.3–51.1%) of TEI 6 years = 47.7% (IQR 41.5–53.8%) of TEI Significant differences (p < 0.001) between age |
Gupta et al., (2020) [81] | n = 286 (21–40 years) n = 230 (41–50 years) n = 239 (≥51 years) | 21–40 years = 60.2 ± 11.1% of TEI 41–50 years = 60.6 ± 10.0% of TEI ≥51 years = 58.1 ± 10.9% of TEI Consumption at ≥51 years, but not at 41–50 years, significantly lower (p < 0.05) compared to 21–40 years |
Martinez Steele et al., (2020) [51] | nd | 6–11 years = 68.2 ± 0.5% * of TEI 12–19 years = 66.9 ± 0.7% * of TEI >20 years = 55.9 ± 0.4% * of TEI Significantly lowest (p < 0.05) at >20 years |
Srour et al., (2020) [87] | n = 59,247 (18–44 years) n = 28,930 (45–59 years) n = 16,530 (>60 years) | 18–44 years = 19.4 ± 10.6% of TEI 45–59 years = 14.7 ± 8% of TEI >60 years = 14 ± 7.2% of TEI Significant differences (p < 0.001) between groups |
Rauber et al., (2020) [54] | 19–29 years = 18.7% 30–59 years = 51.0% >60 years = 30.3% | 19–29 years = 59.2 ± 1.3% * of TEI 30–59 years = 54 ± 0.4% * of TEI >60 years = 51.8 ± 0.5% * of TEI Significant differences (p < 0.05) in the group of subjects aged >60 years |
Polsky et al., (2020) [92] | nd | Young children, 2–5 years: 51.0% (95% CI: 49.8 52.3) Children, 6–12 years: 55.8% (95% CI: 55.0–56.6) Adolescent girls, 13–18 years: 57.2% (95% CI: 56.1–58.3) Adolescent boys, 13–18 years: 57.4% (95% CI: 56.2–58.5) Adult girls, 19–54 years: 44.8% (95% CI: 43.8–45.8) Adult men, 19–54 years: 48.2% (95% CI: 47.0–49.4) Older women, >55 years: 41.7% (95% CI: 40.6–42.8) Older men, >55 years: 42.5% (95% CI: 41.5–43.6) 2015 years: Young children, 2–5 years: 48.0% (95% CI: 46.1–49.9) Children 6–12 years: 53.0% (95% CI: 51.9–54.2) Adolescent girls, 13–18 years: 50.4% (95% CI: 48.5–52.4) Adolescent boys, 13–18 years: 53.2% (95% CI: 51.5–54.9) Adult women, 19–54 years: 41.6% (95% CI: 40.2–43.0) Adult men, 19–54 years: 45.4% (95% CI. 43.8–47.0) Older women, >55 years: 45.2% (95% CI: 44.0–46.4) Older men, >55 years: 45.3% (95% CI: 43.9–46.7) Statistic: nd |
Machado et al., (2020a) [101] | 20–39 years = 38.5% 40–59 years = 36.4% >60 years = 25.1% | 20–39 years = 43.4% of TEI 40–59 years = 36.2% of TEI >60 years = 36.2% of TEI SD or SE: nd Statistics: nd |
Khandpur et al., (2020) [105] | 2–9 years = 18.5% 10–19 years = 23.0% 20–34 years = 26.3% 35–49 years = 20.0% ≥50 years = 12.2% | 2–9 years = 19.3 ± 0.3% * of TEI 10–19 years = 19.3 ± 0.3% * of TEI 20–34 years = 15.4 ± 0.3% * of TEI 35–49 years = 12.2 ± 0.3% * of TEI ≥50 years = 11.4 ± 0.4% * of TEI Significant differences (p < 0.001) between age groups |
Vedovato et al., (2020) [21] | n = 1175 children (3 and 7 years) | 4 years = 27.3 ± 11.1% of TEI 7 years = 29.3 ± 10.4% of TEI Interclass correlation coefficient = 0.32 |
Machado et al., (2019 and 2020b) [102,103] | n = 822 (2–5 years) n = 889 (6–11 years) n = 1204 (12–19 years) n = 7135 (20–64 years) n = 2103 (>65 years) | 2–5 years = 47.3% of TEI 6–11 years = 53.1% of TEI 12–19 years = 54.3% of TEI 20–64 years = 39.4% of TEI >65 years = 36.3% of TEI SD or SE: nd Statistic: nd |
Vandevijvere et al., (2019) and (2020) [104,119] | n = 992 (3–9 years) n = 928 (10–17 years) n = 1226 (18–64 years) | 3–9 years = 33.3% (95% CI: 32.1–35.0) of TEI 10–17 years = 29.2% (95% CI: 27.7–30.3) of TEI 18–64 years = 29.6% (28.5–30.7) of TEI Significantly higher (p < 0.05) in children compared to adolescents and adults |
Neri et al., (2019) [18] | n = 2411 (2–5 years) n = 3335 (6–11 years) n = 3726 (12–19 years) | 2–5 years = 58.2% of TEI 6–11 years = 66.2% of TEI 12–19 years = 66.4% of TEI SD or SE: nd Statistics: nd |
Martínez-Steele et al., (2019) [83] | n = 2126 (20–39 years) n = 2239 (40–59 years) n = 2020 (>60 years) | 20–39 years = 58.9 ± 0.6% * of TEI 40–59 years = 54.6 ± 0.8% * of TEI >60 years = 52.2 ± 0.6% * of TEI Significantly lower (p < 0.001) at >60 years compared to 40–59 and 20–39 years |
Schnabel et al., (2019) [89] | nd | 45–64 years = 29.6 ± 0.06% * of TEI ≥65 years = 26.3 ± 0.13% * of TEI Significant differences (p < 0.001) between groups |
Nardocci et al., (2019) [95] | nd | 18–34 years = 50.2 ± 0.55% * of TEI 35–44 years = 20.6 ± 0.77% * of TEI 45–64 years = 34.9% ± 0.46% * of TEI >65 years = 41.9 ± 0.42% * of TEI Significantly lower (p < 0.05) at 35–55 years, 45–64 years, and >65 years compared to 18–34 years |
Cediel et al., (2018 and 2020) [112,113] | n = 1374 (2–19 years) n = 1668 (20–49 years) n = 948 (50–64 years) n = 930 (>65 years) | 2–19 years = 38.6% (95% CI: 35.7–39.4) of TEI 20–49 years = 26.7% (95% CI: 26.2–29.1) of TEI 50–64 years = 21.8% (95% CI: 19.5–23.6) of TEI >65 years = 18.3% (95% CI: 15.9–18.9) of TEI Significantly lower (p < 0.001) at >65 years |
Marrón-Ponce et al., (2018 and 2019) [108,109] | 1–4 years = 7.6% 5–11 years = 16.1% 12–19 years = 14.5% >20 years = 61.8% | 1–4 years = 38.6% of TEI 5–11 years = 34.3% of TEI 12–19 years = 35.5% of TEI ≥20 years = 26.2% of TEI SD or SEM: nd Significant differences (p < 0.05) between age groups |
Rauber et al., (2018 and 2019) [46,53] | nd | 1.5–10 years = 63.5 ± 0.34% * of TEI 11–18 years = 68.0 ± 0.40% * of TEI 19–64 years = 54.9 ± 0.35% * of TEI >65 years = 53.0 ± 0.52% * of TEI Significant differences (p < 0.001) in children and adolescents |
Setyowati et al., (2018) [116] | 0–4 years = 6.5% 5–12 years = 14.1% 13–18 years = 11.5% 19–55 years = 55% >55 years = 12.9% | 0–4 years = 41.4% of TEI 5–12 years = 29% of TEI 13–18 years = 27.8% of TEI 19–55 years = 16.1% of TEI >55 years = 9% of TEI SD or SE: nd Statistic: nd |
Simões et al., (2018) [73] | 35–44 years = 22.3% 45–54 years = 39.4% 55–64 years = 27.9% 65–74 years = 10.4% | 35–44 years = 24.8% (IQR: 18.6–31.5) of TEI 45–54 years = 22.2% (IQR 16.3–29.0) of TEI 55–64 years = 20% (IQR 14.1–26.7) of TEI 65–74 years = 19.5% (IQR 13.5–26.4) of TEI Significantly higher (p < 0.001) in the group aged 35–44 years and then decreasing with age |
Baraldi et al., (2018) [49] | nd | 2–9 years = 65.9% (95% CI: 65.0–66.8) of TEI 10–19 years = 66.8% (95% CI: 65.9–67.7) of TEI 20–39 years = 59.5 % (95% CI: 58.7–60.3) of TEI 40–59 years = 55.2% (95% CI: 54.1–56.4) of TEI >60 years = 52.8 % (95% CI: 51.9 -53.7) of TEI Significantly lowest (p < 0.05) at >60 years |
Moubarac et al., (2017) [96] | n = 13,779 (2–18 years) n = 3812 (19–30 years) n = 5601 (31–50 years) n = 4611 (51–64 years) n = 5891 (>65 years) | 2–18 years = 55.1% of TEI 19–30 years = 51% of TEI 31–50 years = 44.9% of TEI 51–64 years = 42.4% of TEI >65 years = 42.6% of TEI SD or SE: nd Significantly higher (p < 0.001) at >65 years |
Karnopp et al., (2017) [29] | <24 mo = 72.5% >24 mo = 27.5% | <24 mo = 19.7 ± 1.3% * of TEI >24 mo = 36 ± 0.8% * of TEI Statistics: nd |
Sparrenberger et al., (2015) [30] | n = 66 (55% F) (2–6 years) n = 36 (43.4% F) (7–10 years) | 2–6 years = 43.7 ± 1.4% * of TEI 7–10 years = 54.7 ± 1.7% * of TEI Significant differences (p < 0.001) between groups |
Adams and White (2015) [48] | 18–29 years = 19.3% 30–39 years = 17.0% 40–49 years = 19.0% 50–59 years = 15.7% 60–69 years = 13.8% ≥70 years = 15.2% | 18–29 years = 58.2% (95% CI: 56.3–60.2) of TEI 30–39 years = 55.9 % (95% CI: 54.5–57.3) of TEI 40–49 years = 52.5% (95% CI: 50.7–53.6) of TEI 50–59 years = 49.7% (95% CI: 48.1–51.3) of TEI 60–69 years = 49% (95% CI: 47.5–50.5) of TEI ≥70 years = 50.6% (95% CI: 49.0–52.2) of TEI Significant negative association between age and percentage of TEI from UPF |
Author (Year) | Body Mass Index (BMI) | UPF Consumption for BMI and Statistics |
---|---|---|
Bielemann et al., (2015) [58] | BMI <24.9 kg/m2 = 70.8% BMI 25–29.9 kg/m2 = 20.8% BMI ≥30 kg/m2 = 8.4% | BMI 25–29.9 kg/m2 = 50.5% of TEI BMI <24.9 kg/m2 = 51.6% of TEI SD or SEM nd Significant differences (p = 0.003) between groups |
Nardocci et al., (2019) [95] | BMI 18.5–24.9 kg/m2 = 40.2% BMI 25–29.9 kg/m2 = 37.6% BMI ≥30 kg/m2 = 22.2% | BMI 18.5–24.9 kg/m2 = 44.3 ± 0.4% * of TEI BMI 25–29.9 kg/m2 = 44.8 ± 0.45% * of TEI BMI ≥30 kg/m2 = 46.8 ± 0.6% * of TEI Significantly higher (p < 0.05) in obese subjects |
Schnabel et al., (2019) [89] | nd | BMI <18.5 kg/m2 = 28.3 ± 0.30% * of TEI BMI 18.5–24.9 kg/m2 = 28.6 ± 0.07% * of TEI BMI 25–29.9 kg/m2 = 29.3 ± 0.10% * of TEI BMI ≥30 kg/m2 = 31.3 ± 0.16% * of TEI Significant differences (p < 0.001) between groups |
Srour et al., (2020) [87] | BMI <25 kg/m2 = 69.1% BMI 25–29.9 kg/m2 = 20.2% BMI ≥30 kg/m2 = 7.8% | BMI <25 kg/m2 = 17.1 ± 9.7 % of TEI BMI 25–29.9 kg/m2 = 17 ± 9.6% of TEI BMI ≥30 kg/m2 = 18.8 ± 11.1% of TEI Significant differences (p < 0.001) between groups |
Vandevijvere et al., (2019) [119] | BMI 18.5–24.9 kg/m2 = 40.2% BMI 25–29.9 kg/m2 = 37.6% BMI ≥30 kg/m2 = 22.2% | BMI 18.5–24.9 kg/m2 = 30.7% (95% CI: 29.1–31.9) of TEI BMI 25–29.9 kg/m2 = 28.5% (95% CI: 27.5–31.1) of TEI BMI ≥30 kg/m2 = 29.3% (95% CI: 26.6–31.1%) of TEI No significant differences between groups |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, R.W.; Mitchell, P.C. Food processing: A century of change. Br. Med. Bull. 2000, 56, 1–17. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Southgate, D.A.T.; Biessy, C.; Chajès, V.; van Bakel, M.M.E.; Boutron-Ruault, M.C.; McTaggart, A.; Grioni, S.; Verkaik-Kloosterman, J.; et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 2009, 63, S206–S225. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Davidou, S.; Christodoulou, A.; Fardet, A.; Frank, K. The holistico-reductionist Siga classification according to the degree of food processing: An evaluation of ultra-processed foods in French supermarkets. Food Funct. 2020, 11, 2026–2039. [Google Scholar] [CrossRef] [PubMed]
- Batal, M.; Johnson-Down, L.; Moubarac, J.C.; Ing, A.; Fediuk, K.; Sadik, T.; Tikhonov, C.; Chan, L.; Willows, N. Quantifying associations of the dietary share of ultra-processed foods with overall diet quality in First Nations peoples in the Canadian provinces of British Columbia, Alberta, Manitoba and Ontario. Public Health Nutr. 2018, 21, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Martinez, L.; Allès, B.; Touvier, M.; Hercberg, S.; Méjean, C.; Kesse-Guyot, E. Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Santé study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-processed foods and health outcomes: A narrative review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies. Nutr. J. 2020, 19. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef] [Green Version]
- Sadler, C.R.; Grassby, T.; Hart, K.; Raats, M.; Sokolović, M.; Timotijevic, L. Processed food classification: Conceptualisation and challenges. Trends Food Sci. Technol. 2021, 112, 149–162. [Google Scholar] [CrossRef]
- Smiljanec, K.; Mbakwe, A.U.; Ramos-Gonzalez, M.; Mesbah, C.; Lennon, S.L. Associations of ultra-processed and unprocessed/minimally processed food consumption with peripheral and central hemodynamics, and arterial stiffness in young healthy adults. Nutrients 2020, 12, 3229. [Google Scholar] [CrossRef] [PubMed]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef]
- Costa de Miranda, R.; Rauber, F.; de Moraes, M.M.; Afonso, C.; Santos, C.; Rodrigues, S.; Levy, R.B. Consumption of ultra-processed foods and non-communicable disease-related nutrient profile in Portuguese adults and elderly (2015–2016): The UPPER project. Br. J. Nutr. 2021, 125, 1177–1187. [Google Scholar] [CrossRef]
- Oliveira, T.; Ribeiro, I.; Jurema-Santos, G.; Nobre, I.; Santos, R.; Rodrigues, C.; Oliveira, K.; Henrique, R.; Ferreira-e-Silva, W.; Araújo, A. Can the Consumption of Ultra-Processed Food Be Associated with Anthropometric Indicators of Obesity and Blood Pressure in Children 7 to 10 Years Old? Foods 2020, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Neri, D.; Martinez-Steele, E.; Monteiro, C.A.; Levy, R.B. Consumption of ultra-processed foods and its association with added sugar content in the diets of US children, NHANES 2009–2014. Pediatr. Obes. 2019, 14, e12563. [Google Scholar] [CrossRef] [PubMed]
- Onita, B.M.; Azeredo, C.M.; Jaime, P.C.; Levy, R.B.; Rauber, F. Eating context and its association with ultra-processed food consumption by British children. Appetite 2021, 157, 105007. [Google Scholar] [CrossRef]
- Da Rocha, B.R.S.; Rico-Campà, A.; Romanos-Nanclares, A.; Ciriza, E.; Barbosa, K.B.F.; Martínez-González, M.Á.; Martín-Calvo, N. Adherence to Mediterranean diet is inversely associated with the consumption of ultra-processed foods among Spanish children: The SENDO project. Public Health Nutr. 2020. [Google Scholar] [CrossRef]
- Vedovato, G.M.; Vilela, S.; Severo, M.; Rodrigues, S.; Lopes, C.; Oliveira, A. Ultra-processed food consumption, appetitive traits and BMI in children: A prospective study. Br. J. Nutr. 2021, 125, 1427–1436. [Google Scholar] [CrossRef]
- Fangupo, L.J.; Haszard, J.J.; Taylor, B.J.; Gray, A.R.; Lawrence, J.A.; Taylor, R.W. Ultra-Processed Food Intake and Associations with Demographic Factors in Young New Zealand Children. J. Acad. Nutr. Diet. 2021, 121, 305–313. [Google Scholar] [CrossRef] [PubMed]
- De Lacerda, A.T.; do Carmo, A.S.; de Sousa, T.M.; dos Santos, L.C. Participation of ultra-processed foods in Brazilian school children’s diet and associated factors. Rev. Paul. Pediatr. 2020, 38, e2019034. [Google Scholar] [CrossRef]
- Leffa, P.S.; Hoffman, D.J.; Rauber, F.; Sangalli, C.N.; Valmórbida, J.L.; Vitolo, M.R. Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br. J. Nutr. 2020, 124, 341–348. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Fonseca, P.C.; Ribeiro, S.A.V.; Andreoli, C.S.; de Carvalho, C.A.; Pessoa, M.C.; de Novaes, J.F.; Priore, S.E.; Franceschini, S.D.C.C. Association of exclusive breastfeeding duration with consumption of ultra-processed foods, fruit and vegetables in Brazilian children. Eur. J. Nutr. 2019, 58, 2887–2894. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.S.; Silva, D.A.; Gontijo, C.A.; Rinaldi, A.E.M. Consumption of minimally processed and ultra-processed foods among students from public and private schools. Rev. Paul. Pediatr. 2019, 37, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Batalha, M.A.; França, A.K.T.D.C.; Conceição, S.I.O.D.; Santos, A.M.D.; Silva, F.D.S.; Padilha, L.L.; Silva, A.A.M.D. Consumo de alimentos processados e ultraprocessados e fatores associados em crianças entre 13 e 35 meses de idade. Cad. Saude Publica 2017, 33, e00152016. [Google Scholar] [PubMed] [Green Version]
- Bielemann, R.M.; Santos, L.P.; dos Santos Costa, C.; Matijasevich, A.; Santos, I.S. Early feeding practices and consumption of ultraprocessed foods at 6 y of age: Findings from the 2004 Pelotas (Brazil) Birth Cohort Study. Nutrition 2018, 47, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Karnopp, E.V.N.; Vaz, J.D.S.; Schafer, A.A.; Muniz, L.C.; Souza, R.D.L.V.D.; Santos, I.D.; Gigante, D.P.; Assunção, M.C.F. Consumo alimentar de crianças menores de seis anos conforme o grau de processamento. J. Pediatr. 2017, 93, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Sparrenberger, K.; Friedrich, R.R.; Schiffner, M.D.; Schuch, I.; Wagner, M.B. Ultra-processed food consumption in children from a Basic Health Unit. J. Pediatr. 2015, 91, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, A.S.; Neves, F.S.; Batista, A.P.; Machado-Coelho, G.L.L.; Sartorelli, D.S.; de Faria, E.R.; Netto, M.P.; Oliveira, R.M.; Fontes, V.S.; Cândido, A.P.C. Percentage of energy contribution according to the degree of industrial food processing and associated factors in adolescents (EVA-JF study, Brazil). Public Health Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.L.; Gratão, L.H.A.; do Carmo, A.S.; Costa, A.B.P.; de Freitas Cunha, C.; de Oliveira, T.R.P.R.; Mendes, L.L. School Type, Eating Habits, and Screen Time are Associated with Ultra-Processed Food Consumption among Brazilian Adolescents. J. Acad. Nutr. Diet. 2021, 121, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- D’avila, H.F.; Kirsten, V.R. Energy intake from ultra-processed foods among adolescents. Rev. Paul. Pediatr. 2017, 35, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, R.R.; Peter, N.B.; Muniz, L.C. Food consumption according to the level of processing among adolescents from the rural area of a municipality in the south of brazil. Cienc. Saude Coletiva 2021, 26, 1105–1114. [Google Scholar] [CrossRef]
- Viola, P.C.D.A.F.; de Carvalho, C.A.; Bragança, M.L.B.M.; da Cunha França, A.K.T.; de Britto, M.T.S.S.; da Silva, A.A.M. High consumption of ultra-processed foods is associated with lower muscle mass in Brazilian adolescents in the RPS birth cohort. Nutrition 2020, 79–80, 110983. [Google Scholar] [CrossRef]
- Rauber, F.; Martins, C.A.; Azeredo, C.M.; Leffa, P.S.; da Costa Louzada, M.L.; Levy, R.B. Eating context and ultraprocessed food consumption among UK adolescents. Br. J. Nutr. 2021, 1–11. [Google Scholar] [CrossRef]
- Enes, C.C.; Camargo, C.M.D.; Justino, M.I.C. Ultra-processed food consumption and obesity in adolescents. Rev. Nutr. 2019, 32, e18170. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, K.W.; Tinius, R.A.; Cade, W.T.; Steele, E.M.; Cahill, A.G.; Parra, D.C. Relationships between consumption of ultra-processed foods, gestational weight gain and neonatal outcomes in a sample of US pregnant women. PeerJ 2017, 5, e4091. [Google Scholar] [CrossRef]
- De Barros Gomes, C.; Malta, M.B.; da Costa Louzada, M.L.; Benício, M.H.D.A.; Barros, A.J.; Carvalhaes, M.A.D.B.L. Ultra-processed Food Consumption by Pregnant Women: The Effect of an Educational Intervention with Health Professionals. Matern. Child Health J. 2019, 23, 692–703. [Google Scholar] [CrossRef]
- Graciliano, N.G.; da Silveira, J.A.C.; de Oliveira, A.C.M. The consumption of ultra-processed foods reduces overall quality of diet in pregnant women. Cad. Saude Publica 2021, 37, e00030120. [Google Scholar] [CrossRef]
- Paulino, D.S.M.; Pinho-Pompeu, M.; Assumpção, D.; Kasawara, K.T.; Surita, F.G. Dietary intake profile in high-risk pregnant women according to the degree of food processing. J. Matern. Neonatal Med. 2020. [Google Scholar] [CrossRef]
- Silva, C.F.M.; Saunders, C.; Peres, W.; Folino, B.; Kamel, T.; dos Santos, M.S.; Padilha, P. Effect of ultra-processed foods consumption on glycemic control and gestational weight gain in pregnant with pregestational diabetes mellitus using carbohydrate counting. PeerJ 2021, 9, e10514. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; Lepez-Garcia, E.; Moreno-Franco, B.; Laclaustra, M.N.; Donat-Vargas, C.; OrdovÃis, J.M.; RodrÃ-Guez-Artalejo, F.; Guallar-Castillen, P. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Insausti, H.; Jiménez-Onsurbe, M.; Donat-Vargas, C.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-processed food consumption is associated with abdominal obesity: A prospective cohort study in older adults. Nutrients 2020, 12, 2368. [Google Scholar] [CrossRef] [PubMed]
- Pinho, M.G.M.; Lakerveld, J.; Harbers, M.C.; Sluijs, I.; Vermeulen, R.; Huss, A.; Boer, J.M.A.; Verschuren, W.M.M.; Brug, J.; Beulens, J.W.J.; et al. Ultra-processed food consumption patterns among older adults in the Netherlands and the role of the food environment. Eur. J. Nutr. 2020, 60, 2567–2580. [Google Scholar] [CrossRef]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; de Rezende, L.F.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed foods and excessive free sugar intake in the UK: A nationally representative cross-sectional study. BMJ Open 2019, 9, e027546. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-processed food consumption and risk of obesity: A prospective cohort study of UK Biobank. Eur. J. Nutr. 2021, 60, 2169–2180. [Google Scholar] [CrossRef]
- Adams, J.; White, M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: Cross-sectional analysis of UK National Diet and Nutrition Survey (2008–2012). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [Green Version]
- Martínez Steele, E.; Baraldi, L.G.; da Costa Louzada, M.L.; Moubarac, J.-C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef] [Green Version]
- Martínez Steele, E.; Khandpur, N.; da Costa Louzada, M.L.; Monteiro, C.A. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older. PLoS ONE 2020, 15, e0236738. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption and excess weight among US adults. Br. J. Nutr. 2018, 120, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauber, F.; Steele, E.M.; da Costa Louzada, M.L.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and indicators of obesity in the United Kingdom population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef]
- Bonaccio, M.; di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sofi, F.; Cerletti, C.; Donati, M.B.; De Gaetano, G.; Iacoviello, L. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study on behalf of the Moli-sani Study Investigators. Am. J. Clin. Nutr 2021, 113, 446–455. [Google Scholar] [CrossRef]
- Dinu, M.; Bonaccio, M.; Martini, D.; Madarena, M.P.; Vitale, M.; Pagliai, G.; Esposito, S.; Ferraris, C.; Guglielmetti, M.; Rosi, A.; et al. Reproducibility and validity of a food-frequency questionnaire (NFFQ) to assess food consumption based on the NOVA classification in adults. Int. J. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Da Conceição, A.R.; De Almeida Fonseca, P.C.; De Castro Morais, D.; De Souza, E.C.G. Association of the degree of food processing with the consumption of nutrients and blood pressure. Mundo Saude 2019, 43, 512–529. [Google Scholar] [CrossRef]
- Bielemann, R.M.; Santos Motta, J.V.; Minten, G.C.; Horta, B.L.; Gigante, D.P. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev. Saude Publica 2015, 49, 28. [Google Scholar] [CrossRef]
- Zhong, G.-C.; Gu, H.-T.; Peng, Y.; Wang, K.; Wu, Y.-Q.-L.; Hu, T.-Y.; Jing, F.-C.; Hao, F.-B. Association of ultra-processed food consumption with cardiovascular mortality in the US population: Long-term results from a large prospective multicenter study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 21. [Google Scholar] [CrossRef]
- Costa, C.D.S.; Assunção, M.C.F.; Loret de Mola, C.; Cardoso, J.D.S.; Matijasevich, A.; Barros, A.J.D.; Santos, I.S. Role of ultra-processed food in fat mass index between 6 and 11 years of age: A cohort study. Int. J. Epidemiol. 2021, 50, 256–265. [Google Scholar] [CrossRef]
- Da Silva, D.C.G.; Ferreira, F.G.; Pereira, D.L.M.; de Magalhães, E.L.G.; Longo, G.Z. Degree of food processing and its relationship with overweight and body adiposity in Brazilian adults. Rev. Nutr. 2021, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Scaranni, P.D.O.; de Oliveira Cardoso, L.; Chor, D.; Melo, E.C.P.; Matos, S.M.A.; Giatti, L.; Barreto, S.M.; da Fonseca, M.D.J.M. Ultra-processed foods, changes in blood pressure and incidence of hypertension: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2021, 24, 3352–3360. [Google Scholar] [CrossRef] [PubMed]
- Cattafesta, M.; Petarli, G.B.; Zandonade, E.; Bezerra, O.M.D.P.A.; Abreu, S.M.R.D.; Salaroli, L.B. Energy contribution of NOVA food groups and the nutritional profile of the Brazilian rural workers’ diets. PLoS ONE 2020, 15, e0240756. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.; Bezerra, I.W.L.; Pereira, G.S.; Torres, K.G.; Costa, R.M.; Oliveira, A.G. Relationships between Motivations for Food Choices and Consumption of Food Groups: A Prospective Cross-Sectional Survey in Manufacturing Workers in Brazil. Nutrients 2020, 12, 1490. [Google Scholar] [CrossRef]
- Smaira, F.I.; Mazzolani, B.C.; Peçanha, T.; dos Santos, K.M.; Rezende, D.A.N.; Araujo, M.E.; Bonfiglioli, K.; Scagliusi, F.B.; Benatti, F.B.; de Sá Pinto, A.L.; et al. Ultra-processed food consumption associates with higher cardiovascular risk in rheumatoid arthritis. Clin. Rheumatol. 2020, 39, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.L.; Luft, V.C.; Giatti, L.; Duncan, B.B.; Chor, D.; Maria de Jesus, M.; Matos, S.M.A.; Molina, M.D.C.B.; Barreto, S.M.; Levy, R.B.; et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020, 23, 1076–1086. [Google Scholar] [CrossRef] [Green Version]
- Silverio, R.N.C.; de Aquino Lacerda, E.M.; Fortins, R.F.; de Lima, G.C.F.; Scancetti, L.B.; do Carmo, C.N.; da Cunha, L.V.S.; Luescher, J.L.; de Carvalho Padilha, P. Predictive factors of non-HDL cholesterol in children and adolescents with type 1 diabetes mellitius: A cross-sectional study. Diabetes Res. Clin. Pract. 2019, 154, 9–16. [Google Scholar] [CrossRef]
- Sousa, R.D.S.; Bragança, M.L.B.M.; Oliveira, B.R.D.; Coelho, C.C.N.D.S.; Silva, A.A.M.D. Association between the Degree of Processing of Consumed Foods and Sleep Quality in Adolescents. Nutrients 2020, 12, 462. [Google Scholar] [CrossRef] [Green Version]
- Longo, A.; Ribas, B.; Weber, B.; Bertoldi, E.; Borges, L.; Abib, R. Consumption of foods according to their degree of processing in patients with established atherosclerosis disease. Rev. Chil. Nutr. 2020, 47, 351–358. [Google Scholar] [CrossRef]
- Rezende-Alves, K.; Hermsdorff, H.H.M.; Miranda, A.E.D.S.; Lopes, A.C.S.; Bressan, J.; Pimenta, A.M. Food processing and risk of hypertension: Cohort of Universities of Minas Gerais, Brazil (CUME Project). Public Health Nutr. 2020. [Google Scholar] [CrossRef]
- Ferreira Fortins, R.; de Aquino Lacerda, E.M.; Silverio, R.N.C.; do Carmo, C.N.; Ferreira, A.A.; Felizardo, C.; do Nascimento, B.F.; Luescher, J.L.; de Carvalho Padilha, P. Predictor factors of glycemic control in children and adolescents with type 1 diabetes mellitus treated at a referral service in Rio de Janeiro, Brazil. Diabetes Res. Clin. Pract. 2019, 154, 138–145. [Google Scholar] [CrossRef]
- Silva, F.M.; Giatti, L.; de Figueiredo, R.C.; Molina, M.D.C.B.; de Oliveira Cardoso, L.; Duncan, B.B.; Barreto, S.M. Consumption of ultra-processed food and obesity: Cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008–2010). Public Health Nutr. 2018, 21, 2271–2279. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Simões, B.; Barreto, S.M.; Del Carmen Bisi Molina, M.; Luft, V.C.; Duncan, B.B.; Schmidt, M.I.; Benseñor, I.J.M.; de Oliveira Cardoso, L.; Levy, R.B.; Giatti, L. Consumption of ultra-processed foods and socioeconomic position: A cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health. Cad. Saude Publica 2018, 34, e00019717. [Google Scholar]
- Da Costa Louzada, M.L.; Ricardo, C.Z.; Steele, E.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2018, 21, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Da Costa Louzada, M.L.; Martins, A.P.B.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.-C.; Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev. Saude Publica 2015, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.-C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, L.G.; Steele, E.M.; Da Costa Louzada, M.L.; Monteiro, C.A. Associations between ultraprocessed food consumption and total water intake in the US population. J. Acad. Nutr. Diet. 2021, 121, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Bidinotto, A.B.; Martinez-Steele, E.; Cunha-Cruz, J.; Thomson, W.M.; Hugo, F.N.; Hilgert, J.B. Food processing and its association with dental caries: Data from NHANES 2011–2014. Community Dent. Oral Epidemiol. 2021. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Steele, E.M.; Moore, L.V.; Jackson, S.L. Ultra-Processed Foods and Excess Heart Age among U.S. Adults. Am. J. Prev. Med. 2020, 59, e197–e206. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated with Depressive Symptoms among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef]
- Gupta, S.; Rose, C.M.; Buszkiewicz, J.; Ko, L.K.; Mou, J.; Cook, A.; Aggarwal, A.; Drewnowski, A. Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: Findings from the Seattle Obesity Study (SOS) III. Br. J. Nutr. 2020, 773–781. [Google Scholar] [CrossRef]
- Zhang, Z.; Jackson, S.L.; Martinez, E.; Gillespie, C.; Yang, Q. Association between ultraprocessed food intake and cardiovascular health in US adults: A cross-sectional analysis of the NHANES 2011–2016. Am. J. Clin. Nutr. 2021, 113, 428–436. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef]
- Andrade, G.C.; Julia, C.; Deschamps, V.; Srour, B.; Hercberg, S.; Kesse-Guyot, E.; Allès, B.; Chazelas, E.; Deschasaux, M.; Touvier, M.; et al. Consumption of ultra-processed food and its association with sociodemographic characteristics and diet quality in a representative sample of French adults. Nutrients 2021, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Gehring, J.; Touvier, M.; Baudry, J.; Julia, C.; Buscail, C.; Srour, B.; Hercberg, S.; Péneau, S.; Kesse-Guyot, E.; Allès, B. The consumption of ultra-processed foods by fish-eaters, vegetarians and vegans is associated with the duration and commencing age of diet. Proc. Nutr. Soc. 2020, 79, 15–18. [Google Scholar] [CrossRef]
- Gehring, J.; Touvier, M.; Baudry, J.; Julia, C.; Buscail, C.; Srour, B.; Hercberg, S.; Péneau, S.; Kesse-Guyot, E.; Allès, B. Consumption of Ultra-Processed Foods by Pesco-Vegetarians, Vegetarians, and Vegans: Associations with Duration and Age at Diet Initiation. J. Nutr. 2021, 151, 120–131. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283. [Google Scholar] [CrossRef]
- Vasseur, P.; Dugelay, E.; Benamouzig, R.; Savoye, G.; Lan, A.; Srour, B.; Hercberg, S.; Touvier, M.; Hugot, J.P.; Julia, C.; et al. Dietary Patterns, Ultra-processed Food, and the Risk of Inflammatory Bowel Diseases in the NutriNet-Santé Cohort. Inflamm. Bowel Dis. 2021, 27, 65–73. [Google Scholar] [CrossRef]
- Schnabel, L.; Kesse-Guyot, E.; Allès, B.; Touvier, M.; Srour, B.; Hercberg, S.; Buscail, C.; Julia, C. Association Between Ultraprocessed Food Consumption and Risk of Mortality among Middle-aged Adults in France. JAMA Intern. Med. 2019, 179, 490. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, L.; Buscail, C.; Sabate, J.M.; Bouchoucha, M.; Kesse-Guyot, E.; Allès, B.; Touvier, M.; Monteiro, C.A.; Hercberg, S.; Benamouzig, R.; et al. Association between Ultra-Processed Food Consumption and Functional Gastrointestinal Disorders: Results from the French NutriNet-Santé Cohort. Am. J. Gastroenterol. 2018, 113, 1217–1228. [Google Scholar] [CrossRef]
- Polsky, J.Y.; Moubarac, J.C.; Garriguet, D. Consumption of ultra-processed foods in Canada. Health Rep. 2020, 31, 3–15. [Google Scholar] [PubMed]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef]
- Batal, M.; Johnson-Down, L.; Moubarac, J.-C.C.; Ing, A.; Fediuk, K.; Sadik, T.; Chan, H.M.; Willows, N. Sociodemographic associations of the dietary proportion of ultra-processed foods in First Nations peoples in the Canadian provinces of British Columbia, Manitoba, Alberta and Ontario. Int. J. Food Sci. Nutr. 2018, 69, 753–761. [Google Scholar] [CrossRef]
- Nardocci, M.; Leclerc, B.S.; Louzada, M.L.; Monteiro, C.A.; Batal, M.; Moubarac, J.C. Consumption of ultra-processed foods and obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef]
- Moubarac, J.C.; Batal, M.; Louzada, M.L.; Steele, E.M.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Sandoval-Insausti, H.; López-Garcia, E.; Graciani, A.; Ordovás, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Consumption of Ultra-Processed Foods and Mortality: A National Prospective Cohort in Spain. Mayo Clin. Proc. 2019, 94, 2178–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asma’, A.; Gan, H.J.; Hayati, M.Y.; Khairil-Shazmin, K.; Zainudin, A.A. Food classification system based on food processing and its relationship with nutritional status of adults in Terengganu, Malaysia. Food Res. 2019, 4, 539–546. [Google Scholar]
- Khasbullah, N.A.; Ahmad, F.T.; Yusof, H.M. Ultra-processed Food Consumption in Relation to BMI and Body Fat Percentage of Adults in Terengganu. Malays. J. Med. Health Sci. 2020, 16, 37–43. [Google Scholar]
- Asma’, A.; Wan Syakirah Alia, W.M.; Aziz, Y.; Hayati, M.Y. Energy contribution of NOVA food groups and socio-demographic determinants of ultra-processed groups among adults in Terengganu, Malaysia. Food Res. 2019, 3, 640–648. [Google Scholar]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef] [Green Version]
- Machado, P.P.; Steele, E.M.; da Costa Louzada, M.L.; Levy, R.B.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption drives excessive free sugar intake among all age groups in Australia. Eur. J. Nutr. 2020, 59, 2783–2792. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Pedroni, C.; De Ridder, K.; Castetbon, K. The cost of diets according to their caloric share of ultraprocessed and minimally processed foods in belgium. Nutrients 2020, 12, 2787. [Google Scholar] [CrossRef]
- Khandpur, N.; Cediel, G.; Obando, D.A.; Jaime, P.C.; Parra, D.C. Sociodemographic factors associated with the consumption of ultra-processed foods in Colombia. Rev. Saude Publica 2020, 54, 19. [Google Scholar] [CrossRef] [Green Version]
- Parra, D.C.; Da Costa Louzada, M.L.; Moubarac, J.C.; Bertazzi-Levy, R.; Khandpur, N.; Cediel, G.; Monteiro, C.A. Association between ultra-processed food consumption and the nutrient profile of the Colombian diet in 2005. Salud Publica Mex. 2019, 61, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Monge, A.; Silva Canella, D.; López-Olmedo, N.; Lajous, M.; Cortés-Valencia, A.; Stern, D. Ultraprocessed beverages and processed meats increase the incidence of hypertension in Mexican women. Br. J. Nutr. 2020, 126, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Marrón-Ponce, J.A.; Flores, M.; Cediel, G.; Monteiro, C.A.; Batis, C. Associations between Consumption of Ultra-Processed Foods and Intake of Nutrients Related to Chronic Non-Communicable Diseases in Mexico. J. Acad. Nutr. Diet. 2019, 119, 1852–1865. [Google Scholar] [CrossRef] [PubMed]
- Marrón-Ponce, J.A.; Sánchez-Pimienta, T.G.; Da Costa Louzada, M.L.; Batis, C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.-S.; Shim, S.-Y.; Cha, H.-J.; Kim, J.; Kim, H.C. Socioeconomic Characteristics and Trends in the Consumption of Ultra-Processed Foods in Korea from 2010 to 2018. Nutrients 2021, 13, 1120. [Google Scholar] [CrossRef]
- Sung, H.; Park, J.M.; Oh, S.U.; Ha, K.; Joung, H. Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women. Nutrients 2021, 13, 698. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; Da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cediel, G.; Reyes, M.; Corvalán, C.; Levy, R.B.; Uauy, R.; Monteiro, C.A. Ultra-processed foods drive to unhealthy diets: Evidence from Chile. Public Health Nutr. 2020, 24, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Fliss-Isakov, N.; Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Shibolet, O.; Kariv, R. Ultra-processed food intake and smoking interact in relation with colorectal adenomas. Nutrients 2020, 12, 3507. [Google Scholar] [CrossRef]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Matsumoto, S.; Ozawa, K.; Machado, P.P.; Monteiro, C.A. Consumption of ultra-processed foods decreases the quality of the overall diet of middle-aged Japanese adults. Public Health Nutr. 2019, 22, 2999–3008. [Google Scholar] [CrossRef]
- Setyowati, D.; Andarwulan, N.; Giriwono, P.E. Processed and ultraprocessed food consumption pattern in the Jakarta Individual Food Consumption Survey 2014. Asia Pac. J. Clin. Nutr. 2018, 27, 840–847. [Google Scholar]
- Nasreddine, L.; Tamim, H.; Itani, L.; Nasrallah, M.P.; Isma’Eel, H.; Nakhoul, N.F.; Abou-Rizk, J.; Naja, F. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults. Public Health Nutr. 2018, 21, 160–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandpur, N.; Neri, D.A.; Monteiro, C.; Mazur, A.; Frelut, M.-L.; Boyland, E.; Weghuber, D.; Thivel, D. Ultra-Processed Food Consumption among the Paediatric Population: An Overview and Call to Action from the European Childhood Obesity Group. Ann. Nutr. Metab. 2020, 76, 109–113. [Google Scholar] [CrossRef]
- Vandevijvere, S.; De Ridder, K.; Fiolet, T.; Bel, S.; Tafforeau, J. Consumption of ultra-processed food products and diet quality among children, adolescents and adults in Belgium. Eur. J. Nutr. 2019, 58, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Cruz Lopes, A.E.; Araújo, L.F.; Levy, R.B.; Barreto, S.M.; Giatti, L. Association between consumption of ultra-processed foods and serum C-reactive protein levels: Cross-sectional results from the ELSA-Brasil study. Sao Paulo Med. J. 2019, 137, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, J.; Albaloul, A.; Kopytek, A.; Elliott, P.; Frost, G. Effect of ultraprocessed food intake on cardiometabolic risk is mediated by diet quality: A cross-sectional study. BMJ Nutr. Prev. Health 2021. [Google Scholar] [CrossRef]
- Da Silva, A.; Brum Felício, M.; Caldas, A.P.S.; Hermsdorff, H.H.; Torreglosa, C.R.; Bersch-Ferreira, Â.C.; Weber, B.; Marcadenti, A.; Bressan, J. Ultra-processed foods consumption is associated with cardiovascular disease and cardiometabolic risk factors in Brazilians with established cardiovascular events. Int. J. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.C.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019, 20, 10–19. [Google Scholar] [CrossRef]
- Martines, R.M.; Machado, P.P.; Neri, D.A.; Levy, R.B.; Rauber, F. Association between watching TV whilst eating and children’s consumption of ultraprocessed foods in United Kingdom. Matern. Child. Nutr. 2019, 15, e12819. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.A.C.; Emmett, P.M.; Newby, P.K.; Northstone, K. A comparison of dietary patterns derived by cluster and principal components analysis in a UK cohort of children. Eur. J. Clin. Nutr. 2011, 65, 1102–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, G.C.; Gombi-Vaca, M.F.; da Costa Louzada, M.L.; Azeredo, C.M.; Levy, R.B. The consumption of ultra-processed foods according to eating out occasions. Public Health Nutr. 2020, 23, 1041–1048. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Moreno-Franco, B.; Åkesson, A.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. High Consumption of Ultra-Processed Food is Associated with Incident Dyslipidemia: A Prospective Study of Older Adults. J. Nutr. 2021. [Google Scholar] [CrossRef]
- Orlich, M.J.; Jaceldo-Siegl, K.; Sabaté, J.; Fan, J.; Singh, P.N.; Fraser, G.E. Patterns of food consumption among vegetarians and non-vegetarians. Br. J. Nutr. 2014, 112, 1644–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018; ISBN 978-92-5-130635-2. [Google Scholar]
- Riboli, E. Nutrition and cancer: Background and rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann. Oncol. 1992, 3, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J.; Forde, C.G.; Mullally, D.; Gibney, E.R. Ultra-processed foods in human health: A critical appraisal. Am. J. Clin. Nutr. 2017, 106, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.M. Food processing: Criteria for dietary guidance and public health? Proc. Nutr. Soc. 2019, 78, 4–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, M.; Puppo, F.; Del Bo’, C.; Vinelli, V.; Riso, P.; Porrini, M.; Martini, D. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients 2021, 13, 2778. https://doi.org/10.3390/nu13082778
Marino M, Puppo F, Del Bo’ C, Vinelli V, Riso P, Porrini M, Martini D. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients. 2021; 13(8):2778. https://doi.org/10.3390/nu13082778
Chicago/Turabian StyleMarino, Mirko, Federica Puppo, Cristian Del Bo’, Valentina Vinelli, Patrizia Riso, Marisa Porrini, and Daniela Martini. 2021. "A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms" Nutrients 13, no. 8: 2778. https://doi.org/10.3390/nu13082778