Next Article in Journal
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation
Next Article in Special Issue
A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms
Previous Article in Journal
Weight Loss Strategies and the Risk of Skeletal Muscle Mass Loss
Previous Article in Special Issue
What Is the Nutritional Composition of Ultra-Processed Food Marketed in Italy?
 
 
nutrients-logo
Article Menu

Article Menu

Article

Use of Different Food Classification Systems to Assess the Association between Ultra-Processed Food Consumption and Cardiometabolic Health in an Elderly Population with Metabolic Syndrome (PREDIMED-Plus Cohort)

1
Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
2
Cardiometabolic Nutrition Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
3
Cardiovascular and Nutritional Epidemiology Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
4
Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid—IdiPaz Hospital, 28046 Madrid, Spain
5
Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
6
Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD 21218, USA
7
Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
8
Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31009 Pamplona, Spain
9
Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
10
Unitat de Nutrició Humana, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201 Reus, Spain
11
Human Nutrition Unit, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
12
Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
13
Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
14
Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31009 Pamplona, Spain
15
Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
16
Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29016 Málaga, Spain
17
Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL-UMH), 03010 Alicante, Spain
18
Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), 07120 Palma de Mallorca, Spain
19
Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14071 Córdoba, Spain
20
Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, 08007 Barcelona, Spain
21
Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, 29016 Málaga, Spain
22
Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
23
Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Service of Preventive Medicine, Complejo Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canary Health Service, 35001 Las Palmas de Gran Canaria, Spain
24
Department of Preventive Medicine and Public Health, University of Granada, 18011 Granada, Spain
25
Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma de Mallorca, Spain
26
Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
27
Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, 08907 Barcelona, Spain
28
Departamento de Ciencias de la Salud, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain
29
Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
30
Biomedical Research Centre for Diabetes and Metabolic Diseases Network (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
31
Endocrinology and Nutrition Service, IDIBAPS, Hospital Clinic, University of Barcelona, 08007 Barcelona, Spain
32
Department of Endocrinology and Nutrition, Hospital Fundación Jiménez Díaz, Instituto de Investigaciones Biomédicas IISFJD, University Autónoma, 28015 Madrid, Spain
33
Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, 28040 Madrid, Spain
34
Centro Salud Cabo Huertas, 03540 Alicante, Spain
35
Internal Medicine Department, Instituto de Investigación Biomédica de Málaga (IBIMA), Regional University Hospital of Malaga, 29010 Malaga, Spain
36
School of Health Sciences, Blanquerna-Ramon Llull University, 08001 Barcelona, Spain
37
Atención Primaria, Osasunbidea, Servicio Navarro de Salud, 31003 Pamplona, Spain
38
Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Licia Iacoviello
Nutrients 2021, 13(7), 2471; https://doi.org/10.3390/nu13072471
Received: 28 May 2021 / Revised: 7 July 2021 / Accepted: 13 July 2021 / Published: 20 July 2021
(This article belongs to the Special Issue Consumption of Ultra-Processed Foods and Health Harm)
The association between ultra-processed food (UPF) and risk of cardiometabolic disorders is an ongoing concern. Different food processing-based classification systems have originated discrepancies in the conclusions among studies. To test whether the association between UPF consumption and cardiometabolic markers changes with the classification system, we used baseline data from 5636 participants (48.5% female and 51.5% male, mean age 65.1 ± 4.9) of the PREDIMED-Plus (“PREvention with MEDiterranean DIet”) trial. Subjects presented with overweight or obesity and met at least three metabolic syndrome (MetS) criteria. Food consumption was classified using a 143-item food frequency questionnaire according to four food processing-based classifications: NOVA, International Agency for Research on Cancer (IARC), International Food Information Council (IFIC) and University of North Carolina (UNC). Mean changes in nutritional and cardiometabolic markers were assessed according to quintiles of UPF consumption for each system. The association between UPF consumption and cardiometabolic markers was assessed using linear regression analysis. The concordance of the different classifications was assessed with intra-class correlation coefficients (ICC3, overall = 0.51). The highest UPF consumption was obtained with the IARC classification (45.9%) and the lowest with NOVA (7.9%). Subjects with high UPF consumption showed a poor dietary profile. We detected a direct association between UPF consumption and BMI (p = 0.001) when using the NOVA system, and with systolic (p = 0.018) and diastolic (p = 0.042) blood pressure when using the UNC system. Food classification methodologies markedly influenced the association between UPF consumption and cardiometabolic risk markers. View Full-Text
Keywords: cardiometabolic risk; classification systems; diet; food processing; IARC; IFIC; NOVA; PREDIMED-Plus; ultra-processed food; UNC cardiometabolic risk; classification systems; diet; food processing; IARC; IFIC; NOVA; PREDIMED-Plus; ultra-processed food; UNC
Show Figures

Figure 1

MDPI and ACS Style

Martinez-Perez, C.; San-Cristobal, R.; Guallar-Castillon, P.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Castañer, O.; Martinez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; Vioque, J.; Romaguera, D.; López-Miranda, J.; Estruch, R.; Tinahones, F.J.; Lapetra, J.; Serra-Majem, L.; Bueno-Cavanillas, A.; Tur, J.A.; Sánchez, V.M.; Pintó, X.; Gaforio, J.J.; Matía-Martín, P.; Vidal, J.; Vázquez, C.; Ros, E.; Bes-Rastrollo, M.; Babio, N.; Sorlí, J.V.; Lassale, C.; Pérez-Sanz, B.; Vaquero-Luna, J.; Bazán, M.J.A.; Barceló-Iglesias, M.C.; Konieczna, J.; Ríos, A.G.; Bernal-López, M.R.; Santos-Lozano, J.M.; Toledo, E.; Becerra-Tomás, N.; Portoles, O.; Zomeño, M.D.; Abete, I.; Moreno-Rodriguez, A.; Lecea-Juarez, O.; Nishi, S.K.; Muñoz-Martínez, J.; Ordovás, J.M.; Daimiel, L. Use of Different Food Classification Systems to Assess the Association between Ultra-Processed Food Consumption and Cardiometabolic Health in an Elderly Population with Metabolic Syndrome (PREDIMED-Plus Cohort). Nutrients 2021, 13, 2471. https://doi.org/10.3390/nu13072471

AMA Style

Martinez-Perez C, San-Cristobal R, Guallar-Castillon P, Martínez-González MÁ, Salas-Salvadó J, Corella D, Castañer O, Martinez JA, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem L, Bueno-Cavanillas A, Tur JA, Sánchez VM, Pintó X, Gaforio JJ, Matía-Martín P, Vidal J, Vázquez C, Ros E, Bes-Rastrollo M, Babio N, Sorlí JV, Lassale C, Pérez-Sanz B, Vaquero-Luna J, Bazán MJA, Barceló-Iglesias MC, Konieczna J, Ríos AG, Bernal-López MR, Santos-Lozano JM, Toledo E, Becerra-Tomás N, Portoles O, Zomeño MD, Abete I, Moreno-Rodriguez A, Lecea-Juarez O, Nishi SK, Muñoz-Martínez J, Ordovás JM, Daimiel L. Use of Different Food Classification Systems to Assess the Association between Ultra-Processed Food Consumption and Cardiometabolic Health in an Elderly Population with Metabolic Syndrome (PREDIMED-Plus Cohort). Nutrients. 2021; 13(7):2471. https://doi.org/10.3390/nu13072471

Chicago/Turabian Style

Martinez-Perez, Celia, Rodrigo San-Cristobal, Pilar Guallar-Castillon, Miguel Ángel Martínez-González, Jordi Salas-Salvadó, Dolores Corella, Olga Castañer, Jose Alfredo Martinez, Ángel M. Alonso-Gómez, Julia Wärnberg, Jesús Vioque, Dora Romaguera, José López-Miranda, Ramon Estruch, Francisco J. Tinahones, José Lapetra, Lluis Serra-Majem, Aurora Bueno-Cavanillas, Josep A. Tur, Vicente Martín Sánchez, Xavier Pintó, José J. Gaforio, Pilar Matía-Martín, Josep Vidal, Clotilde Vázquez, Emilio Ros, Maira Bes-Rastrollo, Nancy Babio, Jose V. Sorlí, Camille Lassale, Beatriz Pérez-Sanz, Jessica Vaquero-Luna, María Julia Ajejas Bazán, María Concepción Barceló-Iglesias, Jadwiga Konieczna, Antonio García Ríos, María Rosa Bernal-López, José Manuel Santos-Lozano, Estefanía Toledo, Nerea Becerra-Tomás, Olga Portoles, María Dolores Zomeño, Itziar Abete, Anai Moreno-Rodriguez, Oscar Lecea-Juarez, Stephanie K. Nishi, Júlia Muñoz-Martínez, José M. Ordovás, and Lidia Daimiel. 2021. "Use of Different Food Classification Systems to Assess the Association between Ultra-Processed Food Consumption and Cardiometabolic Health in an Elderly Population with Metabolic Syndrome (PREDIMED-Plus Cohort)" Nutrients 13, no. 7: 2471. https://doi.org/10.3390/nu13072471

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop